JPS5980706A - Operating method of preliminary reduction furnace with fluidized bed - Google Patents

Operating method of preliminary reduction furnace with fluidized bed

Info

Publication number
JPS5980706A
JPS5980706A JP19211682A JP19211682A JPS5980706A JP S5980706 A JPS5980706 A JP S5980706A JP 19211682 A JP19211682 A JP 19211682A JP 19211682 A JP19211682 A JP 19211682A JP S5980706 A JPS5980706 A JP S5980706A
Authority
JP
Japan
Prior art keywords
gas
reducing
hydrocarbon
reduction
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19211682A
Other languages
Japanese (ja)
Other versions
JPS6044366B2 (en
Inventor
Hisao Hamada
浜田 尚夫
Toshihiro Inatani
稲谷 稔宏
Eiji Katayama
英司 片山
Nobuo Tsuchitani
槌谷 暢男
Shiko Takada
高田 至康
Mitsuo Kadoto
角戸 三男
Tsutomu Fujita
勉 藤田
Shunji Hamada
浜田 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19211682A priority Critical patent/JPS6044366B2/en
Publication of JPS5980706A publication Critical patent/JPS5980706A/en
Publication of JPS6044366B2 publication Critical patent/JPS6044366B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To perform an operation which is stable for a long period of time without decreasing reduction rate in the stage of reducing preliminarily powder and granular ore with the high temp. waste gas generated from a melt reduction furnace as reducing gas by using gaseous hydrocarbon of a low temp. together as fluidizing gas and a reducing agent. CONSTITUTION:A part of gas contg. hydrocarbon such as CH3, C3H8 or the like is introduced 13, 13' respectively into a conduit 12 for the above-described high temp. reducing gas or near a supply port 8 for the reducing gas in a preliminary reduction furnace 1. On the other hand, a position of the gas contg. hydro-carbons corresponding to the amt. to remain after subtracting the amt. necessary for the preliminery reduction of Cr2O3 from total gas is supplied directly 9 to the fluidized bed 2 region of the furnace 1, and the operation of the furnace 1 is performed. The temp. of the reducing gas of a high temp. can be decreased effectively by increasing the flow rate of the gas contg. hydrocarbon to be supplied 12. However, in the case of reducing preliminarily hardly reducing Cr2O3, the rate of partial thermal crackng of hydrocarbon increases and there is possibilitythat the amt. effective for reducing Cr2O3 decreases. Therefore, it is possible to compensate some part (corresponding to the remaining part) with the amt. of the gas contg. hydrocarbon to be supplied directly into the bed 2.

Description

【発明の詳細な説明】 本発明は、流動予備還元炉の操業方法に関するものであ
り、どくに溶融還元炉から発生する高温の排ガスを還元
ガスとし金属酸化物を含む粉粒状鉱石を流動層予備還元
炉で予備還元するときに、低温の炭化水素含有ガスをも
流動化ガスならびに還元剤として一緒に使う新しい操業
方法について提案する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for operating a fluidized pre-reduction furnace, in which high-temperature exhaust gas generated from a smelting reduction furnace is used as a reducing gas to prepare powdery ore containing metal oxides in a fluidized bed. We propose a new operating method that uses low-temperature hydrocarbon-containing gas as a fluidizing gas and reducing agent during preliminary reduction in a reduction furnace.

近年のフェロアロイ製造の技術は、鉱石の資源が低品位
化、粉鉱化の傾向にあるため、そうした鉱石を製錬に当
ってはまず塊成化した後に、一般的には電気炉によって
製錬するのが普通であるから、電力原単位が数千KWH
/lにも達して極めてコスト高となるという問題点があ
った。
In recent years, the technology for producing ferroalloys has been that ore resources tend to be of lower grade and become finer minerals, so when smelting such ores, they are first agglomerated and then smelted using an electric furnace. Since it is common to
There was a problem in that the cost reached as high as 1/l, resulting in an extremely high cost.

そこで最近は、電力によらないフェロクロムその他のフ
ェロアロイ製造技術として、溶融還元法が注目されるに
到っている。例えば、流動層予備還元炉と竪型溶融還元
炉との結合にかかる装置を用い、粉粒状鉱石から直接フ
ェロアロイを製造する方法がそれである。この既知の方
法は−、金属酸化物含有鉱石の予備還元に必要な還元剤
及び熱の供給源として、溶融還元炉の高温排ガスを利用
して流動層形式により予備還元する方法であり、粉粒状
鉱石を塊成化することなく直接使用できる点で前述の方
法に比べると低コストで溶融金属の製造が可能である。
Therefore, recently, the smelting reduction method has been attracting attention as a technology for producing ferrochrome and other ferroalloys that does not rely on electric power. For example, there is a method for directly producing ferroalloy from powdery ore using an apparatus that combines a fluidized bed pre-reduction furnace and a vertical smelting reduction furnace. This known method involves pre-reduction in a fluidized bed format using the high-temperature exhaust gas of a smelting reduction furnace as a source of reducing agent and heat necessary for the pre-reduction of metal oxide-containing ores. Since the ore can be used directly without agglomeration, it is possible to produce molten metal at a lower cost than the above-mentioned methods.

上記した既知方法における予備還元炉としての流動層に
必要な主な条件としては、 (1) 必要なj京元速度が得られる反応温度維持のた
めの熱供給が容易なこと、 (2) 局部過熱や高温域での予備還元鉱石の粘着によ
って焼結が起り流動化が阻害されるようなことがないこ
と、 (3) 均一かつ安定な流動化現象が得られること、 (4) 短い滞留時間でも必要な還元率が得られること
(流動層を多段化する)、 (5) 粒子の流動層からの飛び出しによるダスト発生
が少ないこと、 などがある。
The main conditions necessary for the fluidized bed as a pre-reduction furnace in the above-mentioned known method are (1) easy heat supply to maintain the reaction temperature at which the required JK rate can be obtained, (2) local (3) Uniform and stable fluidization phenomenon can be obtained; (4) Short residence time. However, the required reduction rate can be obtained (using a multistage fluidized bed), and (5) there is less dust generated due to particles flying out of the fluidized bed.

ところが、こうした各種の条件というのは、一般的に言
って予備還元に必要な流動層の温度が高いほど、その維
持が難しく、しかも溶融還元炉から発生する流動化ガス
中に多量のダストが含まれると、その操業法はさらに、
難しさを増大さゼるので、各種の新しい方法や装置の開
発が必要となる。
However, generally speaking, the higher the temperature of the fluidized bed required for pre-reduction, the more difficult it is to maintain these various conditions, and moreover, the fluidized gas generated from the smelting reduction furnace contains a large amount of dust. If the operation method is
This increases the difficulty and requires the development of various new methods and devices.

第1図に、流動層による粉粒状鉱石予備還元用の従来装
置を示ず。予備還元炉1は竪型で、その胴部に粉粒状鉱
石供給口4を具えており、ここには鉱石ホッパー7から
の鉱石を炉内に供給するための供給装置6が設置しであ
る。また、鉱石を滞留させるために炉内に設置したガス
分散板(火格子)3下に当る炉下部には、高温の還元ガ
ス供給口8が開口させである。上記還元ガスとしては、
加熱炉、還元ガス発生炉あるいは溶融還元炉から発生し
た高温の排ガスを使い、還元剤ならびに流動化ガスとす
る。この還元ガスを炉内に導入することにより、ガス分
散板3上の粉粒状鉱石は流動化して、流動層2を形成し
流動還元ができる。なお、図示の9は還元剤としてメタ
ンなどの炭化水素含有ガスを供給する還元剤供給口であ
る。また、図示の10は排出管で、ここを通じて排出さ
れる流動層2からの排出ガス中には、ダストを多足に含
有するのでサイクロン11で除塵する。一方、予備還元
鉱石は、排出管5より排出され、次工程の溶融還元炉な
どへ移送される。
In FIG. 1, a conventional device for preliminary reduction of powdery ore using a fluidized bed is not shown. The preliminary reduction furnace 1 is vertical and has a powder ore supply port 4 in its body, and a supply device 6 for supplying ore from an ore hopper 7 into the furnace is installed here. Further, a high temperature reducing gas supply port 8 is opened in the lower part of the furnace below a gas distribution plate (grate) 3 installed in the furnace to retain the ore. The above reducing gas is
High-temperature exhaust gas generated from a heating furnace, reducing gas generating furnace, or melting reduction furnace is used as a reducing agent and fluidizing gas. By introducing this reducing gas into the furnace, the powdery ore on the gas distribution plate 3 is fluidized, forming a fluidized bed 2, and fluidized reduction can be performed. Note that the illustrated reference numeral 9 is a reducing agent supply port that supplies a hydrocarbon-containing gas such as methane as a reducing agent. Further, the illustrated reference numeral 10 denotes a discharge pipe, and since the exhaust gas from the fluidized bed 2 discharged through this pipe contains a large amount of dust, the dust is removed by a cyclone 11. On the other hand, the pre-reduced ore is discharged from the discharge pipe 5 and transferred to the next process, such as a smelting reduction furnace.

一般に、流動層での予備還元温度は、鉱石の種類や銘柄
で異なり、鉄鉱石では、600〜900℃位、クロム鉱
石では950〜1100℃位であり、還元鉱石の粘着性
によって流動化が阻害される焼結限界温度としては、鉄
鉱石では1000〜1100℃位、クロム鉱石では12
50〜1350℃位である。
Generally, the preliminary reduction temperature in a fluidized bed varies depending on the type and brand of ore, and is approximately 600 to 900 degrees Celsius for iron ore and 950 to 1100 degrees Celsius for chrome ore, and fluidization is inhibited by the stickiness of the reduced ore. The sintering limit temperature for iron ore is about 1000 to 1100℃, and for chromium ore it is about 120℃.
The temperature is about 50 to 1350°C.

ところで、従来の予備還元処理にあっては、予備還元に
必要な還元温度を、高温還元ガスの顕熱によって維持し
ようとすると、高温の還元ガスの導入が必要となり、そ
のために該還元ガスの温度が上記焼結限界温度を越えて
しまい、還元ガス供給口8およびガス分散板3の近辺で
は、粉粒状鉱石がしばしば焼結限界温度以上に過熱され
るので、焼結塊や付着物の成長があったりしてガス分散
板3が目づまりしたり、流動化反応が阻害されるという
欠点が見られた。
By the way, in conventional pre-reduction processing, in order to maintain the reduction temperature necessary for pre-reduction using the sensible heat of the high-temperature reducing gas, it is necessary to introduce a high-temperature reducing gas. exceeds the above-mentioned sintering limit temperature, and in the vicinity of the reducing gas supply port 8 and gas distribution plate 3, the powdery ore is often overheated to a temperature exceeding the sintering limit temperature, resulting in the growth of sintered lumps and deposits. There were disadvantages in that the gas distribution plate 3 was clogged and the fluidization reaction was inhibited.

さらに、高温還元ガスどして溶融還元炉発生の排ガスを
使用する場合には、発生ガスの温度が高くなるほどダス
トの含有量も多くなり、ダスhの付着性もより強くなる
ので、同しような問題が生じることがわかった。
Furthermore, when exhaust gas generated from a smelting reduction furnace is used as the high-temperature reducing gas, the higher the temperature of the generated gas, the higher the dust content and the stronger the adhesion of the dust. It turns out there is a problem.

上述したような問題を解決するためには、かかる還元ガ
スの導入温度を下げればよいが、単に温度を低下するだ
けでは、還元温度が低下し、還元率が減少することにな
る。そこで、本発明は、還元率を減少させることなしに
、還元ガスの導入温度を下げることにより、上述した従
来技術の問題点を克服するようにしたのである。その有
効な解決の方法として本発明は、メタンなどの炭化水糸
含有ガスの一部を還元ガス供給口8に達する以前の還元
ガス導管12中に合流させて、その導管12中で高温還
元ガスによる前記炭化水素含有ガスの予熱にあわせ高温
還元ガス自身の部分的熱分解による吸熱反応を導いてそ
の温度低下を図り、上述した従来技術の問題点を一挙に
解決するようにしたのである。以下に本発明の構成の詳
細を、第2図に示す好適実施例の図を参照して説明する
In order to solve the above-mentioned problems, it is sufficient to lower the introduction temperature of the reducing gas, but simply lowering the temperature will lower the reduction temperature and reduce the reduction rate. Therefore, the present invention overcomes the above-mentioned problems of the prior art by lowering the introduction temperature of the reducing gas without reducing the reduction rate. As an effective method for solving this problem, the present invention allows a part of the gas containing hydrocarbon fibers such as methane to merge into the reducing gas conduit 12 before reaching the reducing gas supply port 8, and in the conduit 12, high-temperature reducing gas is In addition to the preheating of the hydrocarbon-containing gas, the high-temperature reducing gas itself undergoes an endothermic reaction through partial thermal decomposition to lower its temperature, thereby solving the problems of the prior art described above at once. The details of the structure of the present invention will be explained below with reference to a diagram of a preferred embodiment shown in FIG.

本発明のようにメタン等炭化水素含有のガスを予備還元
炉の還元剤として用いる方法は、クロム鉱石のような難
還元性の鉱石を還元するときにとりわけ有効である。そ
の理由は、次工程の溶融還元炉発生排ガスを予備還元用
還元剤として使用するようなとぎ、その発生排ガスの主
成分がCOであるために、この排ガスだけではFeの還
元には有効でもクロムの還元は困難であることがら、フ
ェロクロムを製錬するのが困難になるが極めて不経済と
なることが挙げられる。ところが、該メタン等の炭化水
素含有のガスを還元ガスに混合さける場合、rcr20
3還元に有効な固体状炭素を還元剤中に提供することに
なり、円滑な予備還元ができるようになるからである。
The method of using a hydrocarbon-containing gas such as methane as a reducing agent in a pre-reduction furnace as in the present invention is particularly effective when reducing hard-to-reducible ores such as chromium ore. The reason for this is that the exhaust gas generated in the smelting reduction furnace in the next process is used as a reducing agent for preliminary reduction, and the main component of the generated exhaust gas is CO, so although this exhaust gas alone is effective in reducing Fe, it Since it is difficult to reduce ferrochrome, it becomes difficult to smelt ferrochrome, which is extremely uneconomical. However, when mixing hydrocarbon-containing gas such as methane with reducing gas, rcr20
This is because solid carbon, which is effective for the 3-reduction, is provided in the reducing agent, making it possible to carry out smooth preliminary reduction.

そこで、本発明は、該炭化水素含有のガスを予備還元炉
に導入することを主たる内容として構成される方法であ
り、かかる炭化水素含有ガスの一部を、本来的な予備還
元ガスである溶融還元炉発生排ガス中に、その還元ガス
が供給口8に達する前の段階で合流させることにより、
該炭化水素含有ガスの熱分解に伴う吸熱反応で高温還元
ガスの温度低下を図り、高温であることにより起る上述
した弊害を除くようにしたのである。
Therefore, the present invention is a method mainly consisting of introducing the hydrocarbon-containing gas into a pre-reduction furnace, and a part of the hydrocarbon-containing gas is fused into By merging the reducing gas into the exhaust gas generated by the reducing furnace before it reaches the supply port 8,
The endothermic reaction accompanying the thermal decomposition of the hydrocarbon-containing gas lowers the temperature of the high-temperature reducing gas, thereby eliminating the above-mentioned disadvantages caused by high temperatures.

N2図は、本発明の好適実施例であるが、図示の符号1
〜10は従来の予備還元炉と同じ構造を示している。こ
の第2図に示した予備還元炉1において、本発明は、上
述した炭化水素含有ガスの一部を、高温の還元ガス導管
12中または還元ガス供給口8の近傍に炭化水素含有ガ
ス導入口13゜13′を接続して供給し、また他方で該
炭化水素含有ガスのうちCr2O3の予備還元に必要な
その残りの分に相当する量を予備還元炉1の流動層2域
に設けた炭化水素含有ガス供給口9から直接流動層2中
へ供給し予備還元炉の操業を行うようにした。
The N2 diagram is a preferred embodiment of the present invention.
10 shows the same structure as a conventional pre-reduction furnace. In the preliminary reduction furnace 1 shown in FIG. 2, the present invention supplies a portion of the above-mentioned hydrocarbon-containing gas to a hydrocarbon-containing gas inlet in the high-temperature reducing gas conduit 12 or in the vicinity of the reducing gas supply port 8. 13° and 13' are connected and supplied, and on the other hand, an amount of the hydrocarbon-containing gas corresponding to the remaining amount required for the preliminary reduction of Cr2O3 is supplied to the carbonization furnace provided in the fluidized bed 2 area of the preliminary reduction furnace 1. The hydrogen-containing gas was supplied directly from the supply port 9 into the fluidized bed 2 to operate the preliminary reduction furnace.

溶融還元炉発生の高温還元ガス導管12に供給する炭化
水素含有ガスの流量を増すことにより、高温の還元ガス
温度低下により効果的である。ただし、難還元性のCr
2O3を予備還元するような場合、炭化水素の部分的な
熱分解歯が増して、Cr2Q3の還元に有効な量が減少
するおそれがある。この点、本発明にあっては、一部(
残部に当る)を流動層2中へ直接供給する炭化水素含有
生ガス量で補うことができる。ただし、その弁全体の炭
化水素含有量が増えてコストが上界するおそれがある。
By increasing the flow rate of the hydrocarbon-containing gas supplied to the high-temperature reducing gas conduit 12 generated by the smelting reduction furnace, it is more effective to lower the temperature of the high-temperature reducing gas. However, Cr, which is difficult to reduce,
In cases where 2O3 is pre-reduced, there is a risk that the degree of partial thermal decomposition of hydrocarbons will increase and the amount effective for reducing Cr2Q3 will decrease. In this regard, the present invention partially (
The remaining amount) can be supplemented by the amount of hydrocarbon-containing raw gas directly fed into the fluidized bed 2. However, the overall hydrocarbon content of the valve may increase, increasing the cost.

この意味で両者の供給量のバランスを図ることが必要で
あり、高温の還元ガス導管12中へ供給する該生ガス供
給位置は還元ガス供給口8に近い方が好ましい。
In this sense, it is necessary to balance the supply amounts of both, and it is preferable that the raw gas supply position to be supplied into the high-temperature reducing gas conduit 12 be close to the reducing gas supply port 8.

実施例 第2図に示す装置により、本発明操業方法を実施したそ
の結果を以下に説明する。
EXAMPLE The results of implementing the operating method of the present invention using the apparatus shown in FIG. 2 will be described below.

・予備還元炉内径  :1.2m ・鉱  石 : フィリピン産砂クロム(平均粒径0.
2 mm> ・供  給  u        :    260 
 kg/hr・溶融還元炉からの 発生排ガスffl    :  1960  N11l
/hr・発生排ガスの温度 :  1380  ℃・炭
化水素含有生ガス  :コークス炉発生ガス・高温の還
元ガスの 導管への供給m     :  42Nm3/hr・流
動層への直接供給閤 :  57Nm”/hr・高温の
還元ガス供給口 における混合ガス温度 :  1190  ℃実施例で
は、高温の還元ガスの予備還元炉への導入温度が焼結限
界温度以下に低下できたので、高温の還元ガスの導入部
付近での焼結塊や付着物の生成がなく長時間安定な運転
ができた。しかも、クロムの還元率も良好であった。
・Inner diameter of preliminary reduction furnace: 1.2m ・Ore: Sand chromium from the Philippines (average particle size 0.
2 mm> ・Supply u: 260
kg/hr・Exhaust gas ffl from smelting reduction furnace: 1960 N11l
/hr・Temperature of generated exhaust gas: 1380 ℃・Hydrocarbon-containing raw gas: Coke oven generated gas/high temperature reducing gas supplied to conduit m: 42Nm3/hr・Direct supply to fluidized bed: 57Nm”/hr・Mixed gas temperature at the high-temperature reducing gas supply port: 1190 °C In the example, the temperature at which the high-temperature reducing gas was introduced into the preliminary reduction furnace was able to be lowered to below the sintering limit temperature, so the temperature near the high-temperature reducing gas introduction port was It was possible to operate stably for a long time without the formation of sintered lumps or deposits.Moreover, the reduction rate of chromium was also good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来予備還元設備の路線図、第2図は、本発
明予備還元設備の路線図である。 1・・・予備還元炉   2・・・流動層3・・・ガス
分散板   4・・・粉粒状鉱石供給口5・・・予備還
元鉱石排出口 6・・・供給装置    7・・・鉱石ホッパー8・・
・還元ガス供給口 9・・・炭化水素含有ガス供給口 10・・・流動層排ガス排出口 11・・・ザイクロン   12・・・還元ガス導管1
3.13’・・・炭化水素含有ガス供給口特許出願人 
 川崎製鐵株式会社 第1頁の続き ■発 明 者 藤田勉 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内 ■発 明 者 浜田俊二 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内
FIG. 1 is a route map of a conventional pre-reduction facility, and FIG. 2 is a route map of a pre-reduction facility of the present invention. 1... Pre-reduction furnace 2... Fluidized bed 3... Gas distribution plate 4... Powdered ore supply port 5... Pre-reduced ore discharge port 6... Supply device 7... Ore hopper 8...
・Reducing gas supply port 9...Hydrocarbon-containing gas supply port 10...Fluidized bed exhaust gas outlet 11...Zykron 12...Reducing gas conduit 1
3.13'...Hydrocarbon-containing gas supply port Patent applicant
Continued from page 1 of Kawasaki Steel Corporation ■Inventor: Tsutomu Fujita, 1 Kawasakicho, Chiba City, Kawasaki Steel Corporation, Chiba Works ■Inventor: Shunji Hamada, 1, Kawasakicho, Chiba City, Kawasaki Steel Corporation, Chiba Works

Claims (1)

【特許請求の範囲】[Claims] 1、 粉粒状鉱石を流動層予備還元炉に装入する一方、
その炉内には流動化還元ガスを導入して流動化反応を起
させることにより、該鉱石の予備還元を行う予備還元炉
の操業方法において、メタン、プロパン等の炭化水素含
有ガスを、予備還元炉へ供給する高温の還元ガス中に一
部混合させることにより、該高温還元ガスの温度を低下
させるとともに、上記粉粒状鉱石の予備還元に必要とす
る分に相当する残りの炭化水素含有ガスを該予備還元炉
内流動層域へ直接導入することを特徴とする流動層予備
還元かの操業方法。
1. While charging the granular ore into the fluidized bed pre-reduction furnace,
In the method of operating a pre-reduction furnace, the ore is pre-reduced by introducing a fluidizing reducing gas into the reactor to cause a fluidizing reaction. By mixing a portion of the gas into the high-temperature reducing gas supplied to the furnace, the temperature of the high-temperature reducing gas is lowered, and the remaining hydrocarbon-containing gas corresponding to the amount required for preliminary reduction of the above-mentioned granular ore is removed. A method for operating a fluidized bed pre-reduction reactor, characterized in that the pre-reduction reactor is directly introduced into a fluidized bed region within the reactor.
JP19211682A 1982-11-01 1982-11-01 How to operate a fluidized bed pre-reduction furnace Expired JPS6044366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19211682A JPS6044366B2 (en) 1982-11-01 1982-11-01 How to operate a fluidized bed pre-reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19211682A JPS6044366B2 (en) 1982-11-01 1982-11-01 How to operate a fluidized bed pre-reduction furnace

Publications (2)

Publication Number Publication Date
JPS5980706A true JPS5980706A (en) 1984-05-10
JPS6044366B2 JPS6044366B2 (en) 1985-10-03

Family

ID=16285930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19211682A Expired JPS6044366B2 (en) 1982-11-01 1982-11-01 How to operate a fluidized bed pre-reduction furnace

Country Status (1)

Country Link
JP (1) JPS6044366B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053544A1 (en) * 2000-01-20 2001-07-26 Voest-Alpine Industrieanlagenbau Gmbh & Co Fluidized bed aggregate for reducing oxide-containing material
JP2002286662A (en) * 2000-04-06 2002-10-03 Seiko Instruments Inc Portable fluorescent x-ray analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053544A1 (en) * 2000-01-20 2001-07-26 Voest-Alpine Industrieanlagenbau Gmbh & Co Fluidized bed aggregate for reducing oxide-containing material
JP2002286662A (en) * 2000-04-06 2002-10-03 Seiko Instruments Inc Portable fluorescent x-ray analyzer

Also Published As

Publication number Publication date
JPS6044366B2 (en) 1985-10-03

Similar Documents

Publication Publication Date Title
EP0316819B1 (en) Metal-making process and apparatus involving the smelting reduction of metallic oxides
JPH0681016A (en) Method and device for producing molten pig iron or before steel product
EP2576845B1 (en) Process and plant for producing hot metal
CS212734B2 (en) Method of simultaneous combined production of electric energy and raw iron
JPS6169910A (en) Fluidized bed reducing method of iron ore
JPS5980706A (en) Operating method of preliminary reduction furnace with fluidized bed
JPH0699734B2 (en) Circulating fluidized bed type pre-reduction furnace for fine iron ore
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JPH0784624B2 (en) Method for producing molten metal from powdered ore containing metal oxide
JP2579785B2 (en) Pre-reduction device for smelting reduction
JPH032922B2 (en)
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
KR102121909B1 (en) Method for preventing cohesion of ore in fluidized-bed reduction reactor, and the device
JPS6169944A (en) Manufacture by melting and reducing of ferrochrome
JPH0246643B2 (en)
JPS59104410A (en) Fluidized bed type preliminary reducing furnace
JPH09296209A (en) Production of molten metal with carbonaceous material packing layer type smelting reduction furnace
JPS58100640A (en) Preliminary reducing method for chromium ore
JPS59140313A (en) Transporting equipment of granular ore in melting and reducing apparatus
JPS6131166B2 (en)
JPS6056991B2 (en) Fluidized bed pre-reduction furnace with internal
JPS62230907A (en) Production of molten metal from powdery ore
JPS6187847A (en) Reducing method of chromium ore
JPS59109770A (en) Method of operating fluidized-bed spare reducing furnace
JPS6311611A (en) Prereduction device for iron ore