JPS62230907A - Production of molten metal from powdery ore - Google Patents

Production of molten metal from powdery ore

Info

Publication number
JPS62230907A
JPS62230907A JP61073888A JP7388886A JPS62230907A JP S62230907 A JPS62230907 A JP S62230907A JP 61073888 A JP61073888 A JP 61073888A JP 7388886 A JP7388886 A JP 7388886A JP S62230907 A JPS62230907 A JP S62230907A
Authority
JP
Japan
Prior art keywords
solid reducing
reducing agent
carbon
furnace
based solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61073888A
Other languages
Japanese (ja)
Other versions
JPH062894B2 (en
Inventor
Eiji Katayama
英司 片山
Hisao Hamada
浜田 尚夫
Shinobu Takeuchi
忍 竹内
Takashi Ushijima
牛島 崇
Hideyuki Momokawa
桃川 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP61073888A priority Critical patent/JPH062894B2/en
Publication of JPS62230907A publication Critical patent/JPS62230907A/en
Publication of JPH062894B2 publication Critical patent/JPH062894B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To easily control the layer heights of a reducing agent fluidized bed and packed bed by charging the coarse grains of the carbon solid reducing agents to be charged into a vertical type reduction furnace into the reduction furnace from the upper part thereof and charging the fine grains from respective tuyeres. CONSTITUTION:The carbon solid reducing agents are supplied from a preliminary treatment furnace 14 into the melt reduction furnace 6 to form the packed bed 4 and the fluidized bed 5. An oxygen-contg. gas 2 is blown from a lower tuyere 3 into the packed bed 4 to burn the solid reducing agent and is acted as the fluidizing gas to form the fluidized bed 5 in the upper part. Powdery ore 1 of the preliminary treatment furnace 16 for the ore is charged into the fluidized bed 5 and is melted. The molten metal is dropped to the furnace bottom. The carbon solid reducing agents to be discharged from the preliminary treatment furnace 14 are fractionated to the coarse grains 15 and the fine grains 15a in this operation. The coarse grains are inserted into the reduction furnace 6 from above and the fine grains 15a are blown separated from the coarse grains 15 from the upper tuyere 8 and the lower tuyere 3 into the furnace. The amts. of the carbon solid reducing agents to be respectively blown from the tuyeres 3, 8 are properly determined according to the grain size distribution of the coarse grains 15.

Description

【発明の詳細な説明】 本発明は、金属酸化物を含有する粉状鉱石からの溶融金
属製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing molten metal from powdered ore containing metal oxides.

〔従来の技術〕[Conventional technology]

鉄鋸石その他の金属鉱石fi源は粉鉱石が多くなり、今
後益々粉鉱石の割合が増加する傾向にある。特に低品位
鉱石の品位を向上させるために。
Powder ore is becoming more common as a fi source for sawstone and other metal ores, and the proportion of powder ore is likely to increase in the future. Especially to improve the grade of low-grade ores.

浮選、磁選などの選鉱が行われ、粒鉱の比率が増加する
ことが予想される。粉鉱石を塊成化した後、これを還元
して溶融金属を得る方法は塊成化のためのコストが必要
であるため、粉状鉱石を塊成化することなく、流動層を
用いて還元する方法および装置が開発されている。
The ratio of grain ore is expected to increase as ore beneficiation such as flotation and magnetic separation is carried out. The method of agglomerating fine ore and then reducing it to obtain molten metal requires the cost of agglomeration, so it is possible to reduce the ore using a fluidized bed without agglomerating the fine ore. Methods and devices have been developed to do so.

本発明者らはさきに特願昭60−193914において
竪型還元炉内に炭素系固体還元剤の充填層とその上方に
炭素系固体還元剤の流動層とを維持し、粉状鉱石を酸素
含有気体と共に流動層に装入し酸素含有気体を炭素系固
体還元剤の充填層に吹込み、粉状鉱石を溶融還元する溶
融金属製造方:It*、坦安1伽 このような技術においては、 (1)従来は、その操業時の炉内温度、圧力、ガス流量
などの炉内条件から炉内の実際ガス流量を計算し、終端
速度Ui  (粒子が系外に飛びだすガス流速)のn倍
相当のガス流速に対応する炭素系固体還元剤粒径以上の
ものを炉内に装入していた。この粒径より小さい篩下の
留分は未利用で。
The present inventors previously proposed in Japanese Patent Application No. 60-193914 that they maintained a packed bed of carbon-based solid reducing agent in a vertical reduction furnace and a fluidized bed of carbon-based solid reducing agent above the bed, and oxygenated powder ore. Molten metal production method in which powdered ore is melted and reduced by charging the oxygen-containing gas into a fluidized bed and blowing the oxygen-containing gas into a packed bed of a carbon-based solid reducing agent: It*, Dan'an 1 (1) Conventionally, the actual gas flow rate in the furnace is calculated from the furnace conditions such as temperature, pressure, and gas flow rate during operation, and n of the terminal velocity Ui (gas flow rate at which particles fly out of the system) is calculated. Carbon-based solid reducing agent particles with a particle size larger than that corresponding to double the gas flow rate were charged into the furnace. The subsieve fraction smaller than this particle size is unused.

あった。there were.

(2)発生または入手した炭素系固体還元剤は微粉を含
めて全量を炉内に装入していた。従って微粉は排ガスと
ともに飛散し、その顕熱を有効利用することは困難であ
った。
(2) The entire amount of generated or obtained carbon-based solid reducing agent, including fine powder, was charged into the furnace. Therefore, the fine powder is scattered along with the exhaust gas, making it difficult to effectively utilize its sensible heat.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、金属酸化物を含有する粉状鉱石を塊成化する
ことなく、竪型還元炉を用いて炭素系固体還元剤と酸素
含有ガスにより粉状鉱石を溶融還元するプロセスにおい
て、炭素系固体還元剤の使用粒径範囲を拡大して炭素系
固体還元剤の使用歩留を向上することを目的とする。
The present invention provides a process for melting and reducing powdery ore containing metal oxides using a carbon-based solid reducing agent and oxygen-containing gas using a vertical reduction furnace without agglomerating powdery ore containing carbon-based metal oxides. The purpose is to expand the usable particle size range of solid reducing agents and improve the usage yield of carbon-based solid reducing agents.

また、充填層に滞留する粗粒炭素系固体還元剤と流動層
に滞留する細粒炭素系固体還元剤のそれぞれの滞留量と
、石炭乾留炉で発生するチャーや前工程で発生する炭材
の粒度の分布のバランスをとって操業する必要がある。
In addition, the amount of the coarse carbon-based solid reducing agent retained in the packed bed and the fine-grained carbon-based solid reducing agent retained in the fluidized bed, as well as the amount of char generated in the coal carbonization furnace and carbonaceous material generated in the previous process, It is necessary to operate with a balanced particle size distribution.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、竪型還元炉内に炭素系固体還元剤の充填層と
その上方に炭素系固体還元剤の流動層とを維持し1円周
方向複数箇所に設けられた羽口から酸素含有気体を炭素
系固体還元剤の充填層に吹込み、金属〜化物を含有する
粉状鉱石を酸素含有気体と共に流動層に装入して、溶融
還元する溶融金属製造方法において、竪型還元炉に装入
する炭素系固体還元剤を、炉頂からは温度、圧力、ガス
流速および固体(炭素系固体還元剤)の見掛密度、ガス
の密度、粘性係数から計算される終端速度相当径の2倍
以上の粒径の炭素系固体還元剤を混入し、終端速度相当
径の2倍未満の粒径の炭素系固体還元剤を、炉頂から装
入される炭素系固体還元剤の粒径分布に応じて、固体還
元剤の流動層など固体還元剤の充填層に分配装入するこ
とを問題解決の手段とする。
The present invention maintains a packed bed of a carbon-based solid reducing agent and a fluidized bed of the carbon-based solid reducing agent above the packed bed in a vertical reduction furnace, and supplies oxygen-containing gas from tuyeres provided at multiple locations in the circumferential direction. In a molten metal production method, in which powdered ore containing metals and compounds is charged into a fluidized bed together with an oxygen-containing gas and melted and reduced, the powdered ore is charged into a vertical reduction furnace. From the top of the furnace, the carbon-based solid reducing agent is heated at a temperature twice the terminal velocity equivalent diameter calculated from the temperature, pressure, gas flow rate, apparent density of the solid (carbon-based solid reducing agent), gas density, and viscosity coefficient. The carbon-based solid reducing agent with a particle size of less than twice the terminal velocity equivalent diameter is mixed into the particle size distribution of the carbon-based solid reducing agent charged from the top of the furnace. Accordingly, a solution to the problem is to distribute the solid reducing agent into a packed bed, such as a fluidized bed of the solid reducing agent.

〔作用〕  ゛ 本発明では炭素系固体還元剤のうち、終端速度U、相当
径の2倍以上の粒径の炭素系固体還元剤を溶融還元炉の
炉頂から装入すると共にこの炉頂から装入する炭素系固
体還元剤の粒度分布に応じて、相当径の2倍未満の炭素
系固体還元剤を粉状鉱石吹込羽口(上段羽口)または炭
素系固体還元剤充填層吹込羽口(下段羽口)から吹込む
、この吹込に当ってその上、下段羽口からのそれぞれの
吹込量配分は、炉頂から装入する炭素系固体還元剤の粒
度によって定める。
[Function] ゛In the present invention, among the carbon-based solid reducing agents, a carbon-based solid reducing agent having a particle size of at least twice the terminal velocity U and the equivalent diameter is charged from the top of the melting reduction furnace, and the carbon-based solid reducing agent is charged from the top of the furnace. Depending on the particle size distribution of the charged carbon-based solid reducing agent, the carbon-based solid reducing agent with a size less than twice the equivalent diameter is inserted into the powdered ore injection tuyere (upper tuyere) or the carbon-based solid reducing agent packed bed injection tuyere. The distribution of the amount of air injected from the lower tuyere (lower tuyere) is determined by the particle size of the carbon-based solid reducing agent charged from the top of the furnace.

充填層に吹込羽口から吹込まれた微粉炭素系固体還元剤
は酸素によって燃焼し、その燃焼に消費された酸素分だ
け粗粒炭素系固体還元剤の燃焼量を削減する。
The fine carbon-based solid reducing agent injected into the packed bed from the tuyere is combusted by oxygen, and the amount of coarse carbon-based solid reducing agent combusted is reduced by the amount of oxygen consumed in the combustion.

粉状鉱石吹込羽口から吹込まれた炭素系固体還元剤は酸
素により燃焼し高温粒となり、同伴して吹込まれる鉱石
が溶融して吹込炭素系固体還元剤の表面に溶着するので
、溶融還元が促進されると共に炭素系固体還元剤が有効
利用され、炭素系固体還元剤原単位が向上する。
The carbon-based solid reducing agent injected from the powdered ore injection tuyere is combusted by oxygen and becomes high-temperature particles, and the accompanying ore injected melts and welds to the surface of the blown carbon-based solid reducing agent, resulting in smelting reduction. is promoted, the carbon-based solid reducing agent is effectively utilized, and the carbon-based solid reducing agent consumption rate is improved.

このように微粒炭素系固体還元剤を上、下段羽口から吹
込むことにより、従来、流動層から飛散してしまう炭素
系固体還元割分や、上方から装入することが適当でなか
った炭素系固体還元剤を有効に利用できると共に、粗粒
炭素系固体還元剤の粒径分布に応じて、下段羽口に吹込
む微粉炭素系固体還元剤を増減することにより、炭素系
固体還元剤充填層の降下速度を調節することができ、充
填層の層高を適切な範囲に制御することが容易にでき、
炉の安定操業をすることができる。
By injecting the fine carbon-based solid reducing agent from the upper and lower tuyeres in this way, the carbon-based solid reduced fraction that would conventionally scatter from the fluidized bed and the carbon that was not suitable to be charged from above can be removed. By increasing or decreasing the amount of finely divided carbon-based solid reducing agent injected into the lower tuyere according to the particle size distribution of the coarse carbon-based solid reducing agent, the carbon-based solid reducing agent can be filled effectively. The descending speed of the bed can be adjusted, and the height of the packed bed can be easily controlled within an appropriate range.
The furnace can be operated stably.

なお終端速度相当径は温度、圧力、ガス流速、固体(炭
素系固体還元剤)の見掛密度、ガスの密度、粘性係数を
用いてA11enの式およびNewtonの式から計算
することができる。
Note that the terminal velocity equivalent diameter can be calculated from the A11en formula and Newton's formula using temperature, pressure, gas flow rate, apparent density of the solid (carbon-based solid reducing agent), gas density, and viscosity coefficient.

〔実施例〕〔Example〕

第1図に示す溶融還元システムを用いて本発明方法を実
施した。
The method of the present invention was carried out using the melt reduction system shown in FIG.

溶融還元炉6には炭素系固体還元剤予備処理炉14から
炭素系固体還元剤を供給して、還元炉6内に充填層4と
流動層5を形成する。還元炉6の下段羽口3から酸素含
有気体2を充填層4中に吹込み、この気体によって充填
層4内の固体還元剤を燃焼させると共に、この気体は充
填層4の上方に流動層5を形成する流動化ガスとして作
用する。流動層5には鉱石予備処理炉16で流動予備還
元された粉状鉱石を粉状鉱石装入口(上段羽口)8から
装入する。この鉱石は流動層内で溶融して充填層4を通
って炉底に滴下し、その滴下過程において溶融還元され
、溶融金属10、溶融スラグ11となって炉底に溜まり
、出銑口12から排出される。
A carbon-based solid reducing agent is supplied from a carbon-based solid reducing agent pretreatment furnace 14 to the melting reduction furnace 6 to form a packed bed 4 and a fluidized bed 5 in the reduction furnace 6 . Oxygen-containing gas 2 is blown into the packed bed 4 from the lower tuyere 3 of the reduction furnace 6, and the solid reducing agent in the packed bed 4 is combusted by this gas. acts as a fluidizing gas to form Powdered ore that has been fluidized and prereduced in an ore pretreatment furnace 16 is charged into the fluidized bed 5 through a powdery ore charging port (upper tuyere) 8 . This ore is melted in the fluidized bed, passes through the packed bed 4, and drips onto the furnace bottom. During the dripping process, it is melted and reduced, becoming molten metal 10 and molten slag 11, which accumulate at the furnace bottom, and are passed through the tap hole 12. be discharged.

溶融還元炉6から排出された排ガス13は鉱石予備処理
16の還元ガスとして、また炭素系固体還元剤予備処理
炉14の乾留ガスとして利用される。
The exhaust gas 13 discharged from the smelting reduction furnace 6 is used as a reducing gas for the ore pretreatment 16 and as carbonization gas for the carbon-based solid reducing agent pretreatment furnace 14.

以上のシステムにおいて、実施例は、炭素系固体還元剤
予備処理炉から排出された炭素系固体還元剤を粗粒と細
粒に分別し、粗粒15は還元炉6の」−力から炉内に挿
入し、細粒15aは粗粒とは別に−F段羽口8、下段羽
口3から吹込まれる。
In the above system, in the embodiment, the carbon-based solid reducing agent discharged from the carbon-based solid reducing agent pretreatment furnace is separated into coarse particles and fine particles, and the coarse particles 15 are separated from the "-force" in the reducing furnace 6. The fine grains 15a are blown into the -F stage tuyere 8 and the lower stage tuyere 3 separately from the coarse grains.

上段羽口8と下段羽口3からそれぞれ吹込まれる微粉炭
素系固体還元剤の量は粗粒炭素系固体還元剤15の粒度
分布に応じて吹込量を定めてそれぞれ吹込まれる。
The amount of the fine carbon-based solid reducing agent blown into each of the upper tuyere 8 and the lower tuyere 3 is determined depending on the particle size distribution of the coarse-grained carbon-based solid reducing agent 15.

本発明による溶融金属の製造を炉径1.2mの還元炉で
行った結果を次に示す。
The results of producing molten metal according to the present invention in a reduction furnace with a furnace diameter of 1.2 m are shown below.

実施例1 1)粉状鉄鉱石 銘柄:MBR−PB 粒径:主に150メツシユ以下 2)供給炭素系固体還元剤 種類:高炉用コークス 粒径:粒径分布 20”10mm  34%10〜5m
m   27% 5〜1mm    24% 一1mm     15% (終端速度相当径0.5mm) 炉頂装入分 20〜inn 羽口吹込分 Inm未満 供給量:1040kg/H 流動層吹込:95kg/H (全装入量の9.1%) 充填層吹込:61kg/H (全装入量の5.9%) 3)銑鉄生産量:11.8t/日 実施例2 1)粉状鉄鉱石 銘柄:MBR−PB 粒径:主に150メツシユ以下 2)供給炭素系固体還元剤 種類:高炉用コークス 粒径:粒径分布 20〜10mm28%10〜5mm2
8% 5〜1 m m    25% −1mm     19% (終端速度相当径0.5mm) 炉頂装入分 20 w 1 m m 羽口吹込分 1mm未満 供給量:997kg/H 流動層吹込ニア8kg/H (全装入量の7.8%) 充填層吹込:111kg/H (全装入量の111%) (実施例1に比較し、供給コークスの粗粒分が少なかっ
たため、充填層吹込分の装入率が多い、) 3)銑鉄生産量:11.2t/日 上記操業条件による操業によって溶融還元炉を安定的に
操業することができた。
Example 1 1) Powdered iron ore brand: MBR-PB Particle size: Mainly 150 mesh or less 2) Supply carbon-based solid reducing agent type: Blast furnace coke Particle size: Particle size distribution 20"10mm 34%10~5m
m 27% 5-1mm 24% -1mm 15% (Terminal speed equivalent diameter 0.5mm) Furnace top charging 20-inn Tuyere injection Less than Inm supply: 1040kg/H Fluidized bed injection: 95kg/H (Total 9.1% of the charging amount) Packed bed injection: 61 kg/H (5.9% of the total charging amount) 3) Pig iron production: 11.8 t/day Example 2 1) Powdered iron ore brand: MBR -PB Particle size: Mainly 150 mesh or less 2) Supply carbon-based solid reducing agent Type: Blast furnace coke Particle size: Particle size distribution 20-10mm28%10-5mm2
8% 5-1 mm 25% -1 mm 19% (Terminal velocity equivalent diameter 0.5 mm) Furnace top charge 20 w 1 mm Tuyere injection less than 1 mm Supply amount: 997 kg/H Fluidized bed injection near 8 kg/ H (7.8% of the total charging amount) Packed bed blowing: 111 kg/H (111% of the total charging amount) (Compared to Example 1, since the coarse particle content of the supplied coke was smaller, the packed bed blowing amount 3) Pig iron production: 11.2 t/day The smelting reduction furnace could be stably operated under the above operating conditions.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば次のような優れた効果が
ある。
As described above, the present invention has the following excellent effects.

a)従来細粒ないし微粉炭素系固体還元剤は別のプロセ
スで使用していたが本発明により同一・プロセスにおい
て使用可能となり、充@層流動層の層高を容易に制御で
きると共に炭素系固体還元剤原単位を低減することが可
能となった。
a) Conventionally, fine particles or fine powder carbon-based solid reducing agents were used in separate processes, but with the present invention, they can be used in the same process, making it possible to easily control the bed height of a packed bed fluidized bed, and reducing carbon-based solids. It has become possible to reduce the unit consumption of reducing agent.

b)溶融還元炉排ガス中のダスト処理において、飛散炭
素系固体還元剤の発生量が減少し、処理工数が低減した
b) In the treatment of dust in the exhaust gas of the smelting reduction furnace, the amount of scattered carbon-based solid reducing agent generated was reduced, and the number of processing steps was reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の適用される竪型還元炉の概略縦断
面図である。 1・・・粉状鉱石 2・・・酸素を含む気体 3.8・・・羽口 4・・・炭素系固体還元剤の充填層 5・・・炭素系固体還元剤の流動層 6・・・竪型溶融還元炉 10・・・溶融金属 11・・・溶融スラグ 12・・・出銑口
FIG. 1 is a schematic longitudinal sectional view of a vertical reduction furnace to which the method of the present invention is applied. 1...Powdered ore 2...Gas containing oxygen 3.8...Tuyere 4...Filled bed of carbon-based solid reducing agent 5...Fluidized bed of carbon-based solid reducing agent 6...・Vertical smelting reduction furnace 10... Molten metal 11... Molten slag 12... Tapping port

Claims (1)

【特許請求の範囲】 1 竪型還元炉内に炭素系固体還元剤の充填層とその上
方に炭素系固体還元剤の流動層とを維持し、円周方向複
数箇所に設けられた羽口から酸素含有気体を炭素系固体
還元剤の充填層に吹込み、金属酸化物を含有する粉状鉱
石を酸素含有気体と共に流動層に装入して、溶融還元す
る溶融金属製造方法において、竪型還元炉に装入する炭
素系固体還元剤を、炉頂から装入するものと羽口から装
入するものとに分け、炉頂からは終端速度相当径の2倍
以上の粒径のものを装入し、終端速度相当径の2倍未満
の粒径の炭素系固体還元剤は、上記炉頂から装入される
炭材の粒径分布に応じ て、固体還元剤の流動層と固体還元剤の充填層とに分配
して装入することを特徴とする粉状鉱石からの溶融金属
製造方法。
[Claims] 1. A packed bed of a carbon-based solid reducing agent and a fluidized bed of a carbon-based solid reducing agent are maintained above the packed bed of a carbon-based solid reducing agent in a vertical reduction furnace, and tuyeres provided at multiple locations in the circumferential direction Vertical reduction is a molten metal production method in which oxygen-containing gas is blown into a packed bed of a carbon-based solid reducing agent, and powdered ore containing metal oxides is charged into a fluidized bed together with the oxygen-containing gas to melt and reduce. The carbon-based solid reducing agent charged into the furnace is divided into those charged from the top of the furnace and those charged from the tuyere, and those with a particle size of more than twice the terminal velocity equivalent diameter are charged from the top of the furnace. The carbon-based solid reducing agent with a particle size less than twice the terminal velocity equivalent diameter is separated into a fluidized bed of the solid reducing agent and a solid reducing agent depending on the particle size distribution of the carbon material charged from the top of the furnace. A method for producing molten metal from powdered ore, characterized by distributing and charging the molten metal into a packed bed.
JP61073888A 1986-03-31 1986-03-31 Method for producing molten metal from powdered ore Expired - Lifetime JPH062894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61073888A JPH062894B2 (en) 1986-03-31 1986-03-31 Method for producing molten metal from powdered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61073888A JPH062894B2 (en) 1986-03-31 1986-03-31 Method for producing molten metal from powdered ore

Publications (2)

Publication Number Publication Date
JPS62230907A true JPS62230907A (en) 1987-10-09
JPH062894B2 JPH062894B2 (en) 1994-01-12

Family

ID=13531197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61073888A Expired - Lifetime JPH062894B2 (en) 1986-03-31 1986-03-31 Method for producing molten metal from powdered ore

Country Status (1)

Country Link
JP (1) JPH062894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131942A (en) * 1987-06-30 1992-07-21 Kawasaki Steel Corporation Method for producing molten metal from powder state ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131942A (en) * 1987-06-30 1992-07-21 Kawasaki Steel Corporation Method for producing molten metal from powder state ore

Also Published As

Publication number Publication date
JPH062894B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
US2894831A (en) Process of fluidized bed reduction of iron ore followed by electric furnace melting
US5535991A (en) Plant for producing molten pig iron or molten steel pre-products
JP2001506315A (en) Direct reduction of metal oxide nodules
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
US2805929A (en) Process for obtaining iron from material containing iron oxides
KR100241616B1 (en) Method for manufacturing molten pig iron or steel prototype and plant for performing the same
KR100240810B1 (en) A process for the production of molten pig iron or steel pre-products and a plant for carrying out the process
US6264722B1 (en) Process for producing liquid pig iron or intermediate steel products and installation for implementing it
JP2001505618A (en) Process for producing liquid pig iron or liquid steel pre-products
JPS62230907A (en) Production of molten metal from powdery ore
US5131942A (en) Method for producing molten metal from powder state ore
JPS6256537A (en) Manufacture of molten metal from powdery ore containing metal oxide
JPS5918452B2 (en) Method for producing molten metal from powdered ore
US2846301A (en) Processes of smelting finely divided metallic ore
JPH06220513A (en) Circulation layer type preliminary reducing furnace for powdery iron ore
US2784078A (en) Process of smelting finely divided metallic ore
JPS6311609A (en) Prereduction device for iron ore
JP2895520B2 (en) Method and apparatus for supplying carbon material to smelting reduction furnace
JPS62227022A (en) Preheating and reducing device for iron ore
JPH032922B2 (en)
JPH08295913A (en) Production of low phosphorus pig iron by smelting reduction furnace
JPS6311610A (en) Prereduction device for iron ore
JPS6131166B2 (en)
JPS5980706A (en) Operating method of preliminary reduction furnace with fluidized bed
JPH01319620A (en) Method of operating smelting reduction furnace