JPH06220513A - Circulation layer type preliminary reducing furnace for powdery iron ore - Google Patents

Circulation layer type preliminary reducing furnace for powdery iron ore

Info

Publication number
JPH06220513A
JPH06220513A JP4356207A JP35620792A JPH06220513A JP H06220513 A JPH06220513 A JP H06220513A JP 4356207 A JP4356207 A JP 4356207A JP 35620792 A JP35620792 A JP 35620792A JP H06220513 A JPH06220513 A JP H06220513A
Authority
JP
Japan
Prior art keywords
reduction furnace
iron ore
preliminary reduction
furnace
preliminary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4356207A
Other languages
Japanese (ja)
Other versions
JPH0699734B2 (en
Inventor
Yong-Ha Kim
ヨン ハ キム
Il-Ok Lee
イル オク リ
Mun-Dok Park
ムン ドク バク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANGUTSUKUSHINCHIYORUGANKISURU
HANGUTSUKUSHINCHIYORUGANKISURUYONGUJIYOHABU
HANKUK SHINCHORU GANKISURU YONGJOHABU
Original Assignee
HANGUTSUKUSHINCHIYORUGANKISURU
HANGUTSUKUSHINCHIYORUGANKISURUYONGUJIYOHABU
HANKUK SHINCHORU GANKISURU YONGJOHABU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGUTSUKUSHINCHIYORUGANKISURU, HANGUTSUKUSHINCHIYORUGANKISURUYONGUJIYOHABU, HANKUK SHINCHORU GANKISURU YONGJOHABU filed Critical HANGUTSUKUSHINCHIYORUGANKISURU
Publication of JPH06220513A publication Critical patent/JPH06220513A/en
Publication of JPH0699734B2 publication Critical patent/JPH0699734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces

Abstract

PURPOSE: To improve and uniformize reduction ratio by stabilizing the fluidity of iron ore by arranging two sets of preliminary reduction furnaces and many pieces of gas supplying ports.
CONSTITUTION: The powdery iron ore is supplied into a first circulating tube 31 connected with the lower part of a second cyclone 30, and further, supplied into the first preliminary reduction furnace 10. At this time, larger granule iron ore is reduced while forming bubble or a turbulent flow fluidized bed in the first pre-reduction furnace 10 by adjusting the flowing speed of a reducing gas, and a part thereof is discharged through a first discharging port 13. During the time when middle/finer granule iron ores are supplied under scattering state accompanied with the flowing reduction gas in the first pre-reduction furnace 10 to the lower part of the second pre-reduction furnace 20 through a second circulating tube 14, they are reduced under high speed fluidized bed state with the summarized reducing gas flow of the first pre-reduction furnace 10 and the second pre-reduction furnace 20, which is above the grain terminal velocity. In the second circulating tube 14 and a third circulating tube 41, in order to prevent the tube clogging caused by the middle/finer granule iron ore, a small quantity of reducing gas is supplied from a supplying branch tube S through many pieces of gas supplying ports P.
COPYRIGHT: (C)1994,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒度分布の広い粉鉄鉱
石を予備還元する循環流動層式予備還元炉に関する。さ
らに詳しくは、溶融還元法で鉄を生産するために鉄鉱石
を溶融還元する循環流動層炉で、広い粒度分布を有する
鉄鉱石の流動を安定化し、鉄鉱石の還元操業を最適化す
る鉄鉱石予備還元炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circulating fluidized bed type pre-reduction furnace for pre-reducing iron ore powder having a wide particle size distribution. More specifically, in a circulating fluidized bed furnace that melts and reduces iron ore to produce iron by the smelting reduction method, iron ore that stabilizes the flow of iron ore having a wide particle size distribution and optimizes the reduction operation of iron ore Preliminary reduction furnace.

【0002】[0002]

【従来の技術】通常、鉄鉱石を還元して溶鉄を生産する
方法としては、高炉を使用する方法、シャフト炉(Shaf
t furnace)を使用して還元された鉄鉱石を電気炉で溶解
する方法などが採用されてきた。
2. Description of the Related Art Generally, as a method for producing molten iron by reducing iron ore, a method using a blast furnace, a shaft furnace (Shaf
A method of melting reduced iron ore in an electric furnace has been adopted.

【0003】高炉工程による溶鉄製造方法では、熱源お
よび還元剤として多量のコークスを使用し、鉄鉱石は通
気性と還元性を向上させるため焼結鉱の形で高炉に装入
している。このため、現在の高炉法は強粘結炭を乾留す
るためのコークス炉設備および焼結鉱製造設備を必要と
する。従って、高炉法は莫大な設備費と共にエネルギー
を多消費するものである。またコークス製造原料の強粘
結炭は世界的に賦存量が少なく、地域的にも偏在してい
るので鉄鉱需要の増大に基づく需給上の問題が深刻とな
っている。一方、シャフト炉による鉄鉱石の還元法は、
鉄鉱石をペレット化(Pellet)する前処理段階が必要で
あり、また還元剤と熱源として天然ガスを使用するの
で、天然ガスの供給が容易な地域だけで商業化運転が可
能であるという欠点があった。このため、コークスを使
用せず、一般炭を使用し、粉状の鉄鉱石から溶鉄を製造
する溶融還元法が新製鉄法として脚光を浴びている。
In the method for producing molten iron by the blast furnace process, a large amount of coke is used as a heat source and a reducing agent, and iron ore is charged into the blast furnace in the form of sinter in order to improve air permeability and reducing property. For this reason, the current blast furnace method requires a coke oven facility and a sinter production facility for the carbonization of strong coking coal. Therefore, the blast furnace method consumes a large amount of energy with enormous equipment costs. In addition, the amount of strong coking coal, which is a raw material for producing coke, is small in the world and locally unevenly distributed, so that the problem of supply and demand due to the increase in iron ore demand is becoming serious. On the other hand, the iron ore reduction method using a shaft furnace is
The pretreatment step of pelletizing iron ore is required, and since natural gas is used as a reducing agent and a heat source, there is a drawback that commercial operation can be performed only in an area where natural gas is easily supplied. there were. Therefore, a smelting reduction method of producing molten iron from powdered iron ore without using coke and without using coke has been highlighted as a new ironmaking method.

【0004】溶融還元法では、普通、予備還元炉で予備
還元された鉄鉱石を溶融還元炉に装入して溶鉄に還元す
る方式が採用されている。予備還元炉では、鉄鉱石の溶
融還元の前に、鉄鉱石を固体状態で還元するので、装入
した鉄鉱石を溶融還元炉で生じた高温の還元性ガスと接
触させ還元する必要がある。予備還元工程は、鉄鉱石と
還元性ガスの接触状態によって移動層あるいは流動層式
とに分類される。しかし粒径5mm程度以下の粉粒状の
鉄鉱石を予備還元炉に装入し、下部の分散板を還元ガス
を送り、鉄鉱石を流動させながら還元する流動層式が粉
鉄鉱石を予備還元する最も適切な方法として知られてい
る。
In the smelting reduction method, a method of charging iron ore preliminarily reduced in a preliminary reduction furnace into a smelting reduction furnace and reducing it to molten iron is usually adopted. In the preliminary reduction furnace, since the iron ore is reduced in a solid state before the smelting reduction of the iron ore, it is necessary to bring the charged iron ore into contact with the high-temperature reducing gas generated in the smelting reduction furnace for reduction. The preliminary reduction process is classified into a moving bed or fluidized bed type depending on the contact state of the iron ore and the reducing gas. However, a powdered iron ore with a particle size of about 5 mm or less is charged into a pre-reduction furnace, a reducing gas is sent to the lower dispersion plate, and the iron ore is reduced while flowing to pre-reduce the powdered iron ore. Known as the most appropriate method.

【0005】図1は、実開平1−114653号公報に
開示された従来の流動層式予備還元炉である。円筒形の
予備還元炉(104)では鉄鉱石の投入口(101)、
高温還元ガスの導入管(103)、予備還元された鉄鉱
石の排出口(102)、(111)、(112)および
排ガスの排出口(107)が接続されている。予備還元
炉(104)に粉粒状の鉄鉱石を装入してガス分散板
(105)を経て最小流動化速度以上で還元ガスを供給
すると、分散板上の鉄鉱石は流動層を形成しながら混合
撹拌され、この状態で還元ガスと接触、反応して還元さ
れる。このとき還元ガスと共に飛沫同伴された中/微粒
鉄鉱石は、サイクロン(113)、(114)で排ガス
と分離され、循環管(115)、(116)を経て上記
の排出口(111)、(112)から排出される。ある
いは予備還元炉の下部に循環される。一方、上記のよう
に飛沫同伴されることのない予備還元炉(104)で気
泡あるいは乱流流動状態にある大粒鉄鉱石は、予備還元
炉の排出口(102)を経て排出される。
FIG. 1 shows a conventional fluidized bed type preliminary reduction furnace disclosed in Japanese Utility Model Laid-Open No. 1-114653. In the cylindrical preliminary reduction furnace (104), the iron ore charging port (101),
A high-temperature reducing gas introduction pipe (103), pre-reduced iron ore discharge ports (102), (111) and (112) and an exhaust gas discharge port (107) are connected. When the iron ore powdered and granular is charged into the preliminary reduction furnace (104) and the reducing gas is supplied through the gas dispersion plate (105) at the minimum fluidization rate or more, the iron ore on the dispersion plate forms a fluidized bed. The mixture is mixed and stirred, and in this state, it is brought into contact with a reducing gas and reacts with it to be reduced. At this time, the medium / fine iron ore entrained together with the reducing gas is separated from the exhaust gas by the cyclones (113) and (114), passes through the circulation pipes (115) and (116), and the above-mentioned discharge port (111), ( 112). Alternatively, it is circulated under the preliminary reduction furnace. On the other hand, large iron ore in a bubble or turbulent flow state in the preliminary reduction furnace (104) that is not entrained as described above is discharged through the discharge port (102) of the preliminary reduction furnace.

【0006】しかし図1のような予備還元炉において
は、循環管(115)、(116)を通った中/微粒鉄
鉱石が一つの下部循環管(108)に集まるので下部循
環管(108)が詰まって循環が難しくなる。あるい
は、正常循環であっても予備還元炉の下部に循環された
鉄鉱石は一般的な循環流動層の特性上、予備還元炉の下
部に過剰負荷を与え、流動操業が不安定となり還元率が
低下する。また、中/微粒鉄鉱石と大粒鉄鉱石が一つの
予備還元炉で還元されるので還元率が鉄鉱石の粒径によ
って不均一となるという欠点がある。
However, in the pre-reduction furnace as shown in FIG. 1, since the medium / fine iron ore that has passed through the circulation pipes (115) and (116) is collected in one lower circulation pipe (108), the lower circulation pipe (108). It becomes difficult to circulate because of clogging. Alternatively, even under normal circulation, iron ore circulated in the lower part of the pre-reduction furnace overloads the lower part of the pre-reduction furnace due to the characteristics of the general circulating fluidized bed, and the fluidization operation becomes unstable and the reduction rate is reduced. descend. Further, since the medium / fine iron ore and the large iron ore are reduced in one preliminary reduction furnace, there is a drawback that the reduction rate becomes non-uniform depending on the particle size of the iron ore.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
のような問題点を解決し、鉄鉱石の流動を安定化させな
がら、還元率の向上と均一性が図られる循環流動式鉄鉱
石予備還元炉を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems and to stabilize the flow of iron ore, while improving the reduction rate and improving the uniformity of the circulating fluidized iron ore. To provide a preliminary reduction furnace.

【0008】[0008]

【課題を解決するための手段】本発明の目的を達成する
ための技術的な構成は、大粒鉄鉱石が乱流流動層を形成
しながら還元される第1予備還元炉、該第1予備還元炉
にガス供給口が形成された第2循環管を媒介として連通
された下部に中/微粒鉄鉱石が供給される第2予備還元
炉、該第2予備還元炉にガス供給口がつくられた第3循
環管を媒介としてつながり、中/微粒鉄鉱石が第1予備
還元炉と第2予備還元炉の総合還元ガスによって高速流
動層を形成するように循環させる第1サイクロン、該第
1サイクロンと第1予備還元炉に第1循環管を媒介とし
てつながり、第1循環管には鉄鉱石を供給するホッパー
がつながれた第2サイクロンを含む循環流動層式予備還
元炉である。
The technical constitution for achieving the object of the present invention is a first preliminary reduction furnace in which large iron ore is reduced while forming a turbulent fluidized bed, and the first preliminary reduction. A second preliminary reduction furnace in which medium / fine iron ore is supplied to the lower part communicated with a second circulation pipe having a gas supply opening formed in the furnace, and a gas supply opening is formed in the second preliminary reduction furnace A first cyclone, in which the medium / fine iron ore is circulated through a third circulation pipe so as to form a high-speed fluidized bed by the integrated reducing gas of the first preliminary reduction furnace and the second preliminary reduction furnace, and the first cyclone. It is a circulating fluidized bed type pre-reduction furnace including a second cyclone connected to a first circulation pipe via a first circulation pipe, and a hopper for supplying iron ore to the first circulation pipe.

【0009】以下本発明を図面により詳しく説明する。
図2は本発明の予備還元炉の一実施態様を示す。予備還
元炉(1)は大粒鉄鉱石を還元する第1予備還元炉(1
0)と中/微粒鉄鉱石を還元する第2予備還元炉(2
0)を具備する。該第1還元炉(10)は下端部に還元
ガス供給口(11)を備え、内部にはガス分散板(1
2)が装着されている。該第1予備還元炉の一方の下部
は次に説明する第2サイクロン(30)の下端部と第1
循環管(31)を媒介として連結している。第1予備還
元炉の他方側下部には、第1排出口(13)が備えら
れ、第1予備還元炉の上部側は第2循環管(14)を介
して第2予備還元炉(20)の下部側と連結している。
第2予備還元炉(20)は中/微粒鉄鉱石を還元するも
のであり、下端部に還元ガス供給口(21)を備え、内
部にはガス分散板(22)が装着されている。第2予備
還元炉の下部側には第2排出口(23)が備えられ、該
第2予備還元炉の上部側は第1サイクロン(40)の上
部側と連結されている。
The present invention will be described in detail below with reference to the drawings.
FIG. 2 shows one embodiment of the preliminary reduction furnace of the present invention. The preliminary reduction furnace (1) is a first preliminary reduction furnace (1) for reducing large iron ore.
0) and a second preliminary reduction furnace (2) for reducing medium / fine iron ore
0) is provided. The first reduction furnace (10) is provided with a reducing gas supply port (11) at a lower end thereof, and has a gas dispersion plate (1) inside.
2) is installed. One lower part of the first preliminary reduction furnace is connected to the lower end of the second cyclone (30), which will be described next, and the first lower part.
The circulation pipe (31) is connected as a medium. A first discharge port (13) is provided on the lower side of the other side of the first preliminary reduction furnace, and an upper side of the first preliminary reduction furnace is provided with a second preliminary reduction furnace (20) through a second circulation pipe (14). Is connected to the lower side of.
The second preliminary reduction furnace (20) is for reducing medium / fine iron ore, has a reducing gas supply port (21) at the lower end, and is equipped with a gas dispersion plate (22) inside. A second discharge port (23) is provided on the lower side of the second preliminary reduction furnace, and the upper side of the second preliminary reduction furnace is connected to the upper side of the first cyclone (40).

【0010】第1サイクロン(40)の下端部は第3循
環管(41)を介して第2予備還元炉(20)の中間側
部と連結され、第1サイクロン(40)の上端部は導管
を介して第2サイクロン(30)の上部側と連結され、
第2サイクロン(30)の上端部には排出口(32)が
備えられ、該排出口から大気中に排気ガスが放出される
ようになっている。鉄鉱石を供給するホッパー(50)
は第2サイクロン(30)と第1予備還元炉(10)を
連通する第1循環管(31)に連結されている。第2循
環管(14)および第3循環管(41)は多数個のガス
供給口(P)を備え、移送鉄鉱石の詰まり現象を防止し
ている。第3循環管(41)の中間部位には第3排出口
(42)が設けられる。sは還元ガスの供給支管を示
す。
The lower end of the first cyclone (40) is connected to the intermediate side of the second preliminary reduction furnace (20) through the third circulation pipe (41), and the upper end of the first cyclone (40) is a conduit. Is connected to the upper side of the second cyclone (30) via
A discharge port (32) is provided at the upper end of the second cyclone (30), and exhaust gas is discharged into the atmosphere from the discharge port. Hopper for supplying iron ore (50)
Is connected to a first circulation pipe (31) connecting the second cyclone (30) and the first preliminary reduction furnace (10). The second circulation pipe (14) and the third circulation pipe (41) are provided with a large number of gas supply ports (P) to prevent the transfer iron ore from clogging. A third outlet (42) is provided at an intermediate portion of the third circulation pipe (41). Reference numeral s indicates a supply branch pipe of the reducing gas.

【0011】上記のように構成された本発明の予備還元
炉(1)の作用について説明する。粉鉄鉱石は、第2サ
イクロン(30)下部に連結された第1循環管(31)
にホッパー(50)から供給され、第1循環管(31)
を経て第1予備還元炉(10)に供給される。このとき
第1予備還元炉(10)に供給される還元ガスの流速を
調整することにより、大粒鉄鉱石は第1予備還元炉(1
0)内で気泡あるいは乱流流動層を形成しながら還元さ
れ、その一部は第1排出口(13)を経て排出される。
第1予備還元炉(10)中の還元ガスの流れにより飛沫
同伴した中/微粒鉄鉱石は、第2循環管(14)を経て
第2予備還元炉(20)の下部に供給される。第2予備
還元炉(20)中の中/微粒鉄鉱石は、粒子終末速度以
上の第1予備還元炉(10)と第2予備還元炉(20)
の総合還元ガスの流れにより高速流動層の状態で第1サ
イクロン(40)と第3循環管(41)を通って第2予
備還元炉(20)の中間部に再循環される過程で還元さ
れる。還元される中粒鉄鉱石は第2排出口(23)を、
微粒鉄鉱石は第3排出口(42)を経て排出される。第
2循環管(14)と第3循環管(41)とには、中/微
粒鉄鉱石による管詰まりを防止するため、多数個のガス
供給口(P)を経て供給支管(s)からの還元ガスを微
量供給する。
The operation of the preliminary reduction furnace (1) of the present invention constructed as above will be described. The fine iron ore is the first circulation pipe (31) connected to the lower part of the second cyclone (30).
Is supplied from the hopper (50) to the first circulation pipe (31)
And is supplied to the first preliminary reduction furnace (10). At this time, by adjusting the flow rate of the reducing gas supplied to the first preliminary reduction furnace (10), the large iron ore can be removed from the first preliminary reduction furnace (1).
In (0), it is reduced while forming bubbles or turbulent fluidized bed, and a part of it is discharged through the first discharge port (13).
The medium / fine iron ore entrained by the flow of the reducing gas in the first preliminary reduction furnace (10) is supplied to the lower part of the second preliminary reduction furnace (20) via the second circulation pipe (14). Medium / fine iron ore in the second pre-reduction furnace (20) is the first pre-reduction furnace (10) and the second pre-reduction furnace (20) whose particle terminal velocity is higher
In the process of being recirculated to the middle part of the second preliminary reduction furnace (20) through the first cyclone (40) and the third circulation pipe (41) in the state of a high-speed fluidized bed by the flow of integrated reducing gas of It Medium grain iron ore to be reduced is discharged through the second outlet (23),
The fine iron ore is discharged through the third discharge port (42). The second circulation pipe (14) and the third circulation pipe (41) are connected from the supply branch pipe (s) through a large number of gas supply ports (P) in order to prevent pipe clogging by medium / fine iron ore. Supply a small amount of reducing gas.

【0012】以下実施例により本発明を更に詳しく説明
する。 実施例 本発明の実施例を示す図2の予備還元炉システムにおい
て、大粒鉄鉱石用の第1予備還元炉(10)と中/微粒
鉄鉱石用の第2予備還元炉(20)の炉体は円筒形であ
る。鉄鉱石の供給口は第2サイクロン(30)の第1循
環管(31)に連結され、予備還元された大粒鉄鉱石の
第1排出口(13)は第1予備還元炉(10)の下部
に、中/微粒鉄鉱石の排出口(23、42)がそれぞれ
第2予備還元炉(20)の下部と第3循環管(41)の
中間に設けられている。
The present invention will be described in more detail with reference to the following examples. Example In the preliminary reduction furnace system of FIG. 2 showing an example of the present invention, furnace bodies of a first preliminary reduction furnace (10) for large iron ore and a second preliminary reduction furnace (20) for medium / fine iron ore Is cylindrical. The iron ore supply port is connected to the first circulation pipe (31) of the second cyclone (30), and the first discharge port (13) of the pre-reduced large iron ore is the lower part of the first pre-reduction furnace (10). In addition, the medium / fine iron ore discharge ports (23, 42) are respectively provided in the lower part of the second preliminary reduction furnace (20) and the middle of the third circulation pipe (41).

【0013】以上のように構成された予備還元炉に粒度
分布の広い粉粒状の鉄鉱石を装入し、炉体下部の還元ガ
ス供給口(11)からガス分散板(12)を経て、約9
00℃の還元ガスを供給する。大粒鉄鉱石は第1予備還
元炉(10)で気泡/乱流流動層を、中/微粒鉄鉱石は
第2予備還元炉(20)で高速流動層を形成しながれ還
元され、各々の排出口(13、23、42)を経て排出
される。
A powdery iron ore having a wide particle size distribution is charged into the preliminary reduction furnace having the above-mentioned structure, and the reducing gas supply port (11) at the lower part of the furnace body is passed through the gas dispersion plate (12) to 9
A reducing gas at 00 ° C. is supplied. Large iron ore is reduced by forming a bubbly / turbulent fluidized bed in the first preliminary reduction furnace (10) and medium / fine iron ore in the second preliminary reduction furnace (20) while forming a high-speed fluidized bed, and is reduced. It is discharged through (13, 23, 42).

【0014】本実施例による実験結果を次に示す。 1) 原料鉄鉱石:MT.F. 組成:T.Fe 62.36%、SiO2 5.65%、
Al23 2.91%、S 0.007%、P 0.06
5% 粒度分布:0.065〜0.25mm=30%、0.25
〜1.0mm=40%、1.0〜5.0mm=30% 装入量:2kg 2) 還元ガス:LPG部分燃焼ガス+貯蔵容器内の一
酸化ガス 組成:CO 48%、CO2 11%、H2 21%、H
2O 9%、N211% 温度:約900℃ 第1予備還元炉内空塔ガス流速:6.4m/s 第2予備還元炉内空塔ガス流速:10.7m/s 3) 第1予備還元炉:内径62.3mm、高さ1,50
0mm 第2予備還元炉:内径62.3mm、高さ3,750mm
The experimental results according to this example are shown below. 1) Raw iron ore: MT. F. Composition: T. Fe 62.36%, SiO 2 5.65%,
Al 2 O 3 2.91%, S 0.007%, P 0.06
5% particle size distribution: 0.065 to 0.25 mm = 30%, 0.25
~ 1.0 mm = 40%, 1.0-5.0 mm = 30% Charge amount: 2 kg 2) Reducing gas: LPG partial combustion gas + monoxide gas in storage container Composition: CO 48%, CO 2 11% , H 2 21%, H
2 O 9%, N 2 11% Temperature: about 900 ° C. First preliminary reduction furnace empty column gas flow rate: 6.4 m / s Second preliminary reduction furnace empty column gas flow rate: 10.7 m / s 3) First Pre-reduction furnace: Inner diameter 62.3 mm, height 1,50
0mm 2nd preliminary reduction furnace: Inner diameter 62.3mm, height 3,750mm

【0015】以上の条件で実験を行った結果、軸方向鉄
鉱石の濃度分布は、第1予備還元炉(10)の場合には
炉下部が25〜32%、炉中部が12〜16%、炉上部
が10〜13%であり、第2予備還元炉(20)の場合
には炉下部が11〜13%、炉中部が5〜8%、炉上部
が4〜6%であり、従来の単一循環管の予備還元炉の炉
下部40〜50%、炉上部1〜3%の場合よりも均一に
保持され、循環流動が安定であった。約60分間操業後
の平均還元率は、第1排出口(13)が63%、第2排
出口(23)が55%、第3排出口(42)が62%で
あった。このとき、第1サイクロン(40)を通って循
環される鉄鉱石粒径は0.065〜1.0mm、第1予備
還元炉(10)内は主に1mm以上の鉄鉱石であった。
還元ガスの供給流速によって各々の排出口(13、2
3、42)を通って排出される鉄鉱石の粒径の調整がで
きた。また鉄鉱石の炉内滞留時間を制御することによっ
て鉄鉱石の還元率の変化が確認された。
As a result of conducting the experiment under the above conditions, the axial iron ore concentration distribution shows that in the case of the first preliminary reduction furnace (10), the lower part of the furnace is 25 to 32%, the middle part is 12 to 16%, The upper part of the furnace is 10 to 13%, and in the case of the second preliminary reduction furnace (20), the lower part of the furnace is 11 to 13%, the middle part of the furnace is 5 to 8%, and the upper part of the furnace is 4 to 6%. The pre-reduction furnace with a single circulation pipe maintained a more uniform rate than in the case of 40 to 50% in the lower part of the furnace and 1 to 3% in the upper part of the furnace, and the circulation flow was stable. The average reduction rate after operating for about 60 minutes was 63% at the first outlet (13), 55% at the second outlet (23), and 62% at the third outlet (42). At this time, the iron ore particle size circulated through the first cyclone (40) was 0.065 to 1.0 mm, and the inside of the first preliminary reduction furnace (10) was mainly 1 mm or more of iron ore.
Depending on the reducing gas supply flow rate, each outlet (13, 2,
The particle size of the iron ore discharged through 3, 42) could be adjusted. It was also confirmed that the reduction rate of iron ore was changed by controlling the residence time of iron ore in the furnace.

【0016】[0016]

【発明の効果】本発明によれば、予備還元炉内での軸方
向の鉄鉱石濃度分布を比較的均一に保持して流動を安定
化することができる。また2段の予備還元炉を通って粒
径によって分級されながら還元率が比較的均一な還元鉄
を得ることができる。さらには長時間の操業でも微粒鉄
鉱石によって循環管が詰まるという現象を防止すること
ができる。
According to the present invention, the flow of iron ore can be stabilized by keeping the axial distribution of iron ore concentration relatively uniform in the preliminary reduction furnace. Further, it is possible to obtain reduced iron having a relatively uniform reduction rate while being classified by particle size through a two-stage preliminary reduction furnace. Furthermore, it is possible to prevent the phenomenon that the circulation pipe is clogged with the fine iron ore even during long-time operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の流動層式予備還元炉の断面図を示す。FIG. 1 shows a sectional view of a conventional fluidized bed type preliminary reduction furnace.

【図2】本発明による粉鉄鉱石の循環流動層式予備還元
炉の構成を示す説明図である。
FIG. 2 is an explanatory view showing the constitution of a circulating fluidized bed type preliminary reduction furnace for fine iron ore according to the present invention.

【符号の説明】[Explanation of symbols]

10 第1予備還元炉 11 第2排出口 14 第2循環管 20 第2予備還元炉 23 第2排出口 30 第2サイクロン 31 第1循環管 40 第1サイクロン 41 第3循環管 42 第3排出口 50 ホッパー 10 1st preliminary reduction furnace 11 2nd discharge port 14 2nd circulation pipe 20 2nd preliminary reduction furnace 23 2nd discharge port 30 2nd cyclone 31 1st circulation pipe 40 1st cyclone 41 3rd circulation pipe 42 3rd discharge port 50 hopper

フロントページの続き (72)発明者 リ イル オク 大韓民国ポハンシティ、キョンサンブクー ド、ジコクドン、キョスアパート、9ドン 1601ホ (72)発明者 バク ムン ドク 大韓民国ポハンシティ、キョンサンブクー ド、テュホドン、チョンウテリンアパー ト、2チャ102ドン1303ホFront Page Continuation (72) Inventor Liluok Pohang City, Kyongsan Bukdo, Jikokdong, Kyos Apartment, 9 Dong 1601ho (72) Inventor Bakmunduk Republic of Korea Pohang City, Kyongsan Bukdo, Tyuho Dong, Jung Uterin Aperto, 2 Cha 102 Don 1303 Ho

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粉鉄鉱石を予備還元する還元炉におい
て、大粒鉄鉱石を乱流流動層の形成により還元する第1
予備還元炉(10)と、ガス供給口(P)を設けた第2
循環管(14)を介して該第1予備還元炉と連通された
第2予備還元炉(20)と、該第2予備還元炉は該第2
循環管(14)によりその下部に中/微粒の鉄鉱石が供
給されるものであり、ガス供給口(P)を設けた第3循
環管(41)を介して該第2予備還元炉とつながった第
1サイクロン(40)と、該第1サイクロンは該中/微
粒の鉄鉱石を第1予備還元炉と第2予備還元炉の総合還
元ガスによって高速流動層を形成するように循環するも
のであり、該第1サイクロンとつながった第2サイクロ
ン(30)と、該第2サイクロンの下端部に設けられ、
かつ第1予備還元炉(10)につなげる第1循環管(3
1)と、該第1循環管に連結された鉄鉱石を供給するホ
ッパー(50)とを具備することを特徴とする粉鉄鉱石
の循環流動層式予備還元炉。
1. A reduction furnace for pre-reducing fine iron ore, wherein large iron ore is reduced by forming a turbulent fluidized bed.
Second with a preliminary reduction furnace (10) and a gas supply port (P)
The second preliminary reduction furnace (20) communicated with the first preliminary reduction furnace via the circulation pipe (14), and the second preliminary reduction furnace includes the second preliminary reduction furnace.
Medium / fine iron ore is supplied to the lower part by a circulation pipe (14) and is connected to the second preliminary reduction furnace via a third circulation pipe (41) provided with a gas supply port (P). A first cyclone (40), and the first cyclone circulates the medium / fine iron ore so as to form a fast fluidized bed by the integrated reducing gas of the first preliminary reduction furnace and the second preliminary reduction furnace. And a second cyclone (30) connected to the first cyclone and provided at the lower end of the second cyclone,
And the first circulation pipe (3) connected to the first preliminary reduction furnace (10)
A circulating fluidized bed preliminary reduction furnace for fine iron ore, comprising: 1) and a hopper (50) for supplying iron ore connected to the first circulation pipe.
JP4356207A 1991-11-07 1992-11-04 Circulating fluidized bed type pre-reduction furnace for fine iron ore Expired - Fee Related JPH0699734B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019910019779A KR940001137B1 (en) 1991-11-07 1991-11-07 Prereduction furnace of circulation type
KR91-19779 1991-11-07

Publications (2)

Publication Number Publication Date
JPH06220513A true JPH06220513A (en) 1994-08-09
JPH0699734B2 JPH0699734B2 (en) 1994-12-07

Family

ID=19322440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4356207A Expired - Fee Related JPH0699734B2 (en) 1991-11-07 1992-11-04 Circulating fluidized bed type pre-reduction furnace for fine iron ore

Country Status (3)

Country Link
JP (1) JPH0699734B2 (en)
KR (1) KR940001137B1 (en)
CN (1) CN1056652C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830803A (en) * 1987-01-16 1989-05-16 Kyowa Gas Chemical Industry Co., Ltd. Method of making a molded article of methacrylic resin
KR100256341B1 (en) * 1995-12-26 2000-05-15 이구택 Multistep fluidised-bed preliminary reducing apparatus for iron ore and method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10060516A1 (en) * 2000-12-06 2002-06-20 Mg Technologies Ag Process for introducing granular ore into a roasting furnace
UA84758C2 (en) * 2004-05-31 2008-11-25 Оутотек Ойй Method and equipment for direct reduction
CN102051426B (en) * 2009-11-02 2012-08-22 贾会平 Method and device for smelting iron by reduction
CN104561523A (en) * 2015-01-05 2015-04-29 西安建筑科技大学 Magnetism-keeping roasting device for quickly firing magnetite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830803A (en) * 1987-01-16 1989-05-16 Kyowa Gas Chemical Industry Co., Ltd. Method of making a molded article of methacrylic resin
KR100256341B1 (en) * 1995-12-26 2000-05-15 이구택 Multistep fluidised-bed preliminary reducing apparatus for iron ore and method therefor

Also Published As

Publication number Publication date
CN1075201A (en) 1993-08-11
KR930010197A (en) 1993-06-22
CN1056652C (en) 2000-09-20
KR940001137B1 (en) 1994-02-14
JPH0699734B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
KR970003636B1 (en) A furnace for reduction fine coal in the manufacture of iron melts
US5762681A (en) Fluidized bed type reduction apparatus for iron ores and method for reducing iron ores using the apparatus
US4886246A (en) Metal-making apparatus involving the smelting reduction of metallic oxides
US5897829A (en) Apparatus for reducing fine iron ore
JPH06220513A (en) Circulation layer type preliminary reducing furnace for powdery iron ore
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
US6235079B1 (en) Two step twin-single fluidized bed pre-reduction apparatus for pre-reducing fine iron ore, and method therefor
KR100262486B1 (en) Reduction process and equipment and smelting reduction equipment of fine iron ore
KR920007177Y1 (en) Pre-reduction furnace of fludized bed style for iron ore
KR100276343B1 (en) High-temperature reduced iron cooler and fluidized bed furnace reduction device of iron ore with this cooler
JP2579785B2 (en) Pre-reduction device for smelting reduction
JP2002531705A (en) Fluidized bed type fine iron ore reduction apparatus and method therefor
JPS6311609A (en) Prereduction device for iron ore
JPH01129917A (en) Device for preheating and charging material in reduction furnace
KR940008451B1 (en) Fluidized pre-reduction furnace
JPS5948841B2 (en) Transfer device for powdery pre-reduced ore in smelting reduction equipment
JPH03138309A (en) Apparatus for reducing ore
JPH032922B2 (en)
JPS5980706A (en) Operating method of preliminary reduction furnace with fluidized bed
JPH08253801A (en) Method for using reduced ore in blast furnace
JPS63103008A (en) Blast furnace operational method using high al2o3 ore
JP2003517097A (en) Method for minimizing elution loss of fine iron ore in fluidized bed reduction operation
JPS62230907A (en) Production of molten metal from powdery ore
JPS6247941B2 (en)
JPH0270024A (en) Rising method for fluidized bed prereduction furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees