JP2620793B2 - Preliminary reduction furnace for smelting reduction - Google Patents

Preliminary reduction furnace for smelting reduction

Info

Publication number
JP2620793B2
JP2620793B2 JP28815087A JP28815087A JP2620793B2 JP 2620793 B2 JP2620793 B2 JP 2620793B2 JP 28815087 A JP28815087 A JP 28815087A JP 28815087 A JP28815087 A JP 28815087A JP 2620793 B2 JP2620793 B2 JP 2620793B2
Authority
JP
Japan
Prior art keywords
ore
furnace
reduction
discharge pipe
reducing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28815087A
Other languages
Japanese (ja)
Other versions
JPH01129915A (en
Inventor
卓也 前田
慶吉 村上
邁 山田
充晴 岸本
健一 矢島
良彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP28815087A priority Critical patent/JP2620793B2/en
Priority to ZA888247A priority patent/ZA888247B/en
Priority to AU24742/88A priority patent/AU596758B2/en
Priority to KR1019880014715A priority patent/KR910008113B1/en
Priority to MX013743A priority patent/MX169583B/en
Priority to CA000582690A priority patent/CA1301453C/en
Priority to BR888805903A priority patent/BR8805903A/en
Priority to ES88118877T priority patent/ES2051285T3/en
Priority to AT88118877T priority patent/ATE102258T1/en
Priority to EP88118877A priority patent/EP0316819B1/en
Priority to DE3888096T priority patent/DE3888096T2/en
Priority to CN88107813A priority patent/CN1014996B/en
Priority to US07/272,053 priority patent/US4886246A/en
Publication of JPH01129915A publication Critical patent/JPH01129915A/en
Application granted granted Critical
Publication of JP2620793B2 publication Critical patent/JP2620793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、金属酸化物を含有する鉱石(以下、鉱石
という)の溶融還元に使用する予備還元炉に関するもの
で、とくに幅広い粒度分布を有する粉粒状鉱石を使用で
きる予備還元炉に関するものである。
Description: TECHNICAL FIELD The present invention relates to a pre-reduction furnace used for smelting reduction of ores containing metal oxides (hereinafter referred to as ores), and particularly has a wide particle size distribution. The present invention relates to a pre-reduction furnace capable of using powder ore.

(従来の技術) 溶融還元法は、酸化鉄(鉄鉱石)などの鉱石を溶融状
態で還元して鉄やフェロアロイを製造する方法であり、
将来の原料およびエネルギー事情に適応するとして最近
注目されるようになり、実用化のための研究開発が進め
られている技術である。この方法に期待される特長はつ
ぎの点にある。すなわち、製鉄法としては、高炉法と比
べて、安価な原料の使用、粉鉱の塊成化などの事前処理
工程の省略、設備の小型化などを実現できること、また
フェロアロイの製造法としては、電力に依存しないプロ
セスの実用化が可能であることなどである。
(Conventional technology) The smelting reduction method is a method for producing iron and ferroalloy by reducing ore such as iron oxide (iron ore) in a molten state,
It is a technology that has recently attracted attention for adapting to future raw materials and energy conditions, and is being researched and developed for practical use. The expected features of this method are as follows. That is, compared to the blast furnace method, the iron making method can use inexpensive raw materials, omit pretreatment steps such as agglomeration of fine ore, and can realize the downsizing of equipment. The practical application of a process that does not depend on electric power is possible.

溶融還元法には種々のプロセスが提案されており還元
工程から大別すると、溶融還元炉のみからなるものと、
予備還元炉と溶融還元炉から構成されるものとがある
が、後者が一般的である。後者は、鉱石を固体状態で予
備還元したのちに溶融還元するもので、炉の形式や熱の
発生法などが異なる多くのプロセスが含まれる。こうい
ったプロセスには、溶融還元炉において金属浴中へ石炭
などを吹き込み、還元にともなって生成した、還元力の
ある高温ガスを予備還元炉に導入して鉱石を予備還元す
るなど、溶融還元炉の排ガスが有する熱と還元力を有効
に利用できる利点がある。
Various processes have been proposed for the smelting reduction method.
There are some which consist of a preliminary reduction furnace and a smelting reduction furnace, the latter being common. In the latter, the ore is pre-reduced in the solid state and then melt-reduced, and includes many processes with different furnace types and heat generation methods. In such a process, coal is blown into a metal bath in a smelting reduction furnace, and high-temperature gas with reducing power generated by the reduction is introduced into the pre-reduction furnace to pre-reduce the ore. There is an advantage that the heat and reducing power of the furnace exhaust gas can be effectively used.

予備還元炉は、装入される鉱石と還元ガスとの接触態
様によって、流動層式や移動層式(いわゆるシャフト
炉)などに分類されるが、鉱石が粉粒状である場合には
流動層式が好適であるとされ、各種の流動層式予備還元
炉が開発されている。すなわち、流動層においては粉粒
体があたかも流体のように流れやすくなるので粉粒体の
連続処理に適していること、粉粒体層全体の温度を均一
に保てること、および粉粒体とガスとの接触がよいこと
などがその理由である。
Preliminary reduction furnaces are classified into a fluidized bed type and a moving bed type (so-called shaft furnace), etc., depending on the state of contact between the charged ore and the reducing gas. And various fluidized bed prereduction furnaces have been developed. That is, in the fluidized bed, the granules easily flow like a fluid, so that they are suitable for continuous treatment of the granules, the temperature of the whole granule layer can be kept uniform, and the granules and gas The reason is good contact with the user.

従来の予備還元炉の一例を第2図に示す。図におい
て、円筒状の予備還元炉51には鉱石の供給管52、高温の
還元ガスの導入管53、予備還元鉱石(以下、予備還元鉄
という)の排出管54および排ガスの排出管55が、それぞ
れ図の位置に接続され、炉内には還元ガスを整流するた
めの通孔56aを有する分散板56が、導入管53の上部に水
平に設置されている。予備還元炉1に粉粒状鉱石を装入
し、下方の導入管53より分散板56を介して適当な流速で
還元ガスを送り込むと、分散板56上の粉粒状鉱石は流動
層57を形成して混合攪拌され、この状態で還元ガスと接
触・反応して予備還元される。なお、ここで形成される
流動層57は、あたかも流体が沸騰しているかのようにガ
ス流が気泡となって粉粒体中を立ちのぼる、いわば気泡
流動層である。予備還元された鉱石は、排出管54を経て
次工程の溶融還元炉へ移送される(特開昭58−217615参
照)。
FIG. 2 shows an example of a conventional preliminary reduction furnace. In the figure, an ore supply pipe 52, a high-temperature reducing gas introduction pipe 53, a pre-reduction ore (hereinafter referred to as pre-reduced iron) discharge pipe 54 and an exhaust gas discharge pipe 55 are provided in a cylindrical pre-reduction furnace 51, Dispersion plates 56, each connected to the position shown in the figure and having a through hole 56a for rectifying the reducing gas, are installed horizontally above the inlet pipe 53 in the furnace. When the particulate ore is charged into the pre-reduction furnace 1 and the reducing gas is sent from the lower inlet pipe 53 through the dispersion plate 56 at an appropriate flow rate, the particulate ore on the dispersion plate 56 forms a fluidized bed 57. In this state, the mixture is brought into contact with and reacting with a reducing gas to be preliminarily reduced. It should be noted that the fluidized bed 57 formed here is a so-called bubble fluidized bed in which the gas flow rises in the granular material as bubbles as if the fluid were boiling. The pre-reduced ore is transferred to the smelting reduction furnace of the next step through the discharge pipe 54 (see Japanese Patent Application Laid-Open No. 58-217615).

(発明が解決しようとする問題点) 上述した従来の予備還元炉においては、円滑な流動層
を形成させるために、原料としての鉱石の粒度が厳しく
制限される。すなわち粉粒体が適正な流動層を形成する
ためのガス流速は、粉粒体の径によって規制されるた
め、広範囲な粒度分布を有する鉱石を処理することは出
来ない。したがって、上記のような予備還元炉に装入さ
れる鉱石の粒度は、一般に3mm以下に制限され、プロセ
スや鉱石の種類によってはこのうえに平均粒径や微粉粒
鉱石の含有量についても制限を受ける場合がある。一
方、たとえば製鉄原料としてわが国に輸入される鉄鉱石
には、3mm以上の粒度を有するものがかなり(一般に30
%程度)含まれ、また、10mmを超えるものも皆無ではな
い。
(Problems to be Solved by the Invention) In the above-mentioned conventional prereduction furnace, in order to form a smooth fluidized bed, the particle size of ore as a raw material is severely limited. That is, since the gas flow rate for forming the appropriate fluidized bed by the granular material is regulated by the diameter of the granular material, it is not possible to treat ore having a wide particle size distribution. Therefore, the particle size of the ore charged to the above-mentioned prereduction furnace is generally limited to 3 mm or less, and depending on the process and the type of ore, the average particle size and the content of the fine-grained ore are further limited. May receive. On the other hand, for example, iron ore imported into Japan as a raw material for iron making has a considerable amount of particles having a particle size of 3 mm or more (generally 30 mm or more).
%), And not more than 10 mm.

そこで、従来の流動層式の予備還元炉では、装入する
鉱石を事前にふるい分けし、粗粒鉱石は規定粒径以下に
なるように粉砕しておく必要があった。あるいは、ふる
い分けされた粗粒鉱石を粉砕しないで使用する場合はシ
ャフト炉など、他の還元設備によって処理しなければな
らなかった。いずれにしても、調達した鉱石を100%使
用するためには、スクリーンやクラッシャー、または別
の還元設備を使用する必要があり、設備上の負担や工程
の増加を招いていた。
Therefore, in the conventional fluidized bed type pre-reduction furnace, it is necessary to preliminarily screen the ore to be charged and pulverize the coarse ore to a specified particle size or less. Alternatively, when the sieved coarse ore is used without pulverization, it must be treated by another reduction facility such as a shaft furnace. In any case, to use 100% of the ore procured, it was necessary to use a screen, a crusher, or another reduction facility, resulting in an increase in the facility load and the number of processes.

(発明の目的) 本発明は上記した種々の問題点を解消するためになさ
れたもので、幅広い粒度分布を有する粉粒状鉱石を、従
来のように事前にふるい分けしたり粉砕したりすること
なく、原料としてそのまま使用することのできる予備還
元炉を提供しようとするものである。
(Object of the Invention) The present invention has been made in order to solve the above-mentioned various problems, and without previously sieving or pulverizing a granular ore having a wide particle size distribution as in the prior art, An object of the present invention is to provide a preliminary reduction furnace that can be used as a raw material as it is.

(問題点を解決するための手段) 上記した目的を達成するためのこの発明の要旨とする
ところは、金属酸化物を含有する鉱石を炉体上部または
中腹部より装入し、炉体底部より導入した高温の還元ガ
スと接触させることにより鉱石を還元する予備還元炉に
おいて、多数の還元ガス通孔が穿設され、中央部又は傾
斜低位置に鉱石排出口を開設した漏斗状又は傾斜板状の
分散板を前記炉体内の底部寄りに配設する一方、炉体上
部に還元ガスの排出管を接続して該排出管にサイクロン
セパレータを介装し、そのセパレータの下部に微粉粒状
鉱石の排出管を接続したことである。また、鉱石中に0.
5mm以下の微粉を含む場合は、前記セパレータ下部に二
方向払出しバルブを接続し、該バルブを介して前記微粉
粒状鉱石の排出管を接続すると共に、微粉粒状鉱石の循
環管を、該バルブから炉体の中腹部までの間に接続する
とよい。
(Means for Solving the Problems) The gist of the present invention for achieving the above-mentioned object is to charge ore containing a metal oxide from the upper or middle part of the furnace body and from the bottom part of the furnace body. In a pre-reduction furnace that reduces ore by bringing it into contact with the introduced high-temperature reducing gas, a large number of reducing gas through holes are drilled, and a funnel or inclined plate with an ore discharge opening at the center or at a low slope Is disposed near the bottom in the furnace body, a discharge pipe for reducing gas is connected to the upper part of the furnace body, a cyclone separator is interposed in the discharge pipe, and fine ore particles are discharged to the lower part of the separator. That is, the pipe was connected. Also, 0.
When containing fine powder of 5 mm or less, a two-way discharging valve is connected to the lower part of the separator, and a discharge pipe of the fine particulate ore is connected through the valve, and a circulation pipe of the fine particulate ore is connected to the furnace from the valve. It is good to connect between the middle part of the body.

(作 用) この発明の予備還元炉によれば、炉内に幅広い粒径分
布を有する粉粒状鉱石を装入し、下方の還元ガス導入管
より分散板を介して適当な流速で高温の還元ガスを導入
することにより、 a)前記鉱石のうち粗粒状のものは、流動化されずに重
力落下して分散板上に一たん堆積し、分散板の鉱石排出
口からの鉱石の排出にともなって、傾斜した分散板上を
ゆっくりと移動する、いわゆる移動層を形成し、この間
に還元ガスに接触・反応して予備還元され、排出され
る。
(Operation) According to the pre-reduction furnace of the present invention, fine ore having a wide particle size distribution is charged into the furnace, and a high-temperature reduction is performed at an appropriate flow rate from the lower reduction gas introduction pipe through a dispersion plate. By introducing the gas, a) coarse ore of the ore is dropped by gravity without being fluidized and is temporarily deposited on the dispersion plate, and the ore is discharged from the ore discharge port of the dispersion plate. Thus, a so-called moving layer that moves slowly on the inclined dispersion plate is formed, and during this time, it is preliminarily reduced by contacting and reacting with the reducing gas and discharged.

b)中粒状のものは、炉内中腹部において流動層(気泡
流動層)を形成して混合攪拌され、この状態で還元ガス
と接触・反応して予備還元され、前記粗粒状鉱石ととも
に分散板の鉱石排出口から排出される。
b) The medium-granular thing forms a fluidized bed (bubble fluidized bed) in the middle part of the furnace and is mixed and stirred. In this state, it is pre-reduced by contacting and reacting with a reducing gas, and the dispersion plate is mixed with the coarse-grained ore. Is discharged from the ore discharge port.

c)微粉粒状のものは、前記b)の気泡流動層からとび
出し、排ガスとともにサイクロンセパレータに移送さ
れ、ここで分離捕集された後、その下部に接続された微
粉粒状鉱石の排出管から排出される。前記セパレータ下
部に二方向払出しバルブを接続したうえで微粉粒状鉱石
の排出管および循環管を接続した場合には、微粉粒状鉱
石の一部は二方向払出しバルブを介し循環管を経て炉内
へ循環される。この状態も一種の流動化状態であり、高
速循環流動層などと呼ばれているが、微粉粒鉱石はこの
循環を繰り返す間に予備還元され、その一部は前記二方
向払出しバルブを経て微粉粒状鉱石の排出管より逐次排
出される。
c) The fine and particulate matter is blown out of the bubble fluidized bed of b), transferred to the cyclone separator together with the exhaust gas, separated and collected therein, and then discharged from the fine ore discharge pipe connected to the lower part thereof. Is done. When a discharge pipe and a circulation pipe of fine particulate ore are connected after connecting a two-way discharge valve to the lower part of the separator, a part of the fine ore is circulated into the furnace through the circulation pipe via the two-way discharge valve. Is done. This state is also a kind of fluidized state, and is called a high-speed circulating fluidized bed.The fine ore is preliminarily reduced while repeating this circulation, and a part of the fine ore passes through the two-way discharge valve. It is sequentially discharged from the ore discharge pipe.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。
第1図はこの発明の実施例を示す予備還元炉の縦断面図
である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view of a preliminary reduction furnace showing an embodiment of the present invention.

予備還元炉1は、耐火材を内張りした円筒状の炉体か
らなり、還元ガスの排出管5が炉体上部に、鉱石の供給
管2が炉体の中腹部に、並びに還元ガスの導入管3およ
び予備還元鉱石の排出管4が炉体底部にそれぞれ接続さ
れており、炉内には還元ガスを整流するための多数の通
孔6aを穿設した分散板6が導入管3上方の炉体底部寄り
に配設されている。
The pre-reduction furnace 1 is composed of a cylindrical furnace body lined with refractory material, a discharge pipe 5 for reducing gas is provided at the upper part of the furnace body, a supply pipe 2 for ore is provided at a middle part of the furnace body, and a pipe for introducing reducing gas. 3 and a discharge pipe 4 for the pre-reduced ore are connected to the bottom of the furnace body, and a dispersion plate 6 having a large number of through holes 6a for rectifying the reducing gas is provided in the furnace. It is located near the bottom of the body.

そして、本実施例では、前記分散板6を逆円錐形の漏
斗状に形成し、また、その傾斜面は炉内に装入される鉱
石の安息角以上の傾斜角Aを持たせたうえ、分散板6の
中央部に鉱石排出口6bを開設して前記排出管4を接続し
ている。また、排出管5にはサイクロンセパレータ8を
介装し、排ガスダクト11へ送られる途中の還元ガスか
ら、前記セパレータ8により分離捕集された微粉粒鉱石
の移送管10aを、セパレータ8下部のホッパー部に連接
している。さらに、この移送管10aの下端に、二方向払
出しバルブ9を接続し、二方向払出しバルブ9には予備
還元炉1の中腹部へ接続される循環管10bおよび微粉粒
鉱石の排出管10cをそれぞれ接続している。なお、二方
向払出しバルブ9としては、還元ガスが予備還元炉1か
らセパレータ8へ逆流しないよう、いわゆる粉体シール
機能を有する装置が望ましい。一方、予備還元炉1内
は、開口断面積のやや小さい空塔部1bを分散板6の上方
付近に設けて、分散板6直上部の空塔速度を上げること
により粒径の大きい鉱石の流動化を可能にする一方、そ
の上方にこれよりも開口断面積を大きくした空塔部1aを
設けて前記空塔速度を減じることにより炉外に飛散する
微粉の粒径を規制するように考慮している。
In the present embodiment, the dispersion plate 6 is formed in an inverted conical funnel shape, and its inclined surface has an inclination angle A equal to or larger than the repose angle of the ore charged in the furnace. An ore discharge port 6b is opened at the center of the dispersion plate 6, and the discharge pipe 4 is connected thereto. A cyclone separator 8 is interposed in the discharge pipe 5, and a transfer pipe 10 a for the fine ore particles separated and collected by the separator 8 from the reducing gas being sent to the exhaust gas duct 11 is transferred to a hopper below the separator 8. Connected to the department. Further, a two-way discharge valve 9 is connected to the lower end of the transfer pipe 10a. The two-way discharge valve 9 has a circulation pipe 10b connected to the middle part of the pre-reduction furnace 1 and a discharge pipe 10c for fine ore particles, respectively. Connected. The two-way discharge valve 9 is preferably a device having a so-called powder sealing function so that the reducing gas does not flow backward from the preliminary reduction furnace 1 to the separator 8. On the other hand, in the pre-reduction furnace 1, an orifice portion 1b having a slightly smaller opening cross-sectional area is provided near the upper part of the dispersing plate 6, and the ore having a large particle size is increased by increasing the effervescent speed immediately above the dispersing plate 6. On the other hand, it is considered that the superficial portion 1a having a larger opening cross-sectional area is provided above the superficial portion to reduce the superficial superficial speed so as to regulate the particle size of the fine powder scattered outside the furnace. ing.

以上のように構成した予備還元炉1に、幅広い粒度分
布を有する粉粒状鉱石を装入し、下方の導入管3より分
散板6を介して高温の還元ガスを適当な流速で送り込む
と、前述した作用によって、すべての鉱石が還元され、
粗粒状および中粒状のものは排出管4から、微粉粒状の
ものは排出管10cからそれぞれ排出される。すなわち、
粗粒鉱石は分散板6上で移動層7aを、中粒鉱石は開口断
面積が小さくガス流速が比較的高い空塔部1bで気泡流動
層7bを、それぞれ形成して還元されると共に、微粉粒鉱
石は流動層7bのさらに上方へとび出して、開口断面積の
大きい空塔部1aおよび排ガス排出管5から循環管10bを
経て予備還元炉1に至る循環経路内で高速循環流動層7c
を形成して還元され、排出管10cより逐次排出される。
The powdery ore having a wide particle size distribution is charged into the pre-reduction furnace 1 configured as described above, and a high-temperature reducing gas is fed from the lower inlet pipe 3 through the dispersing plate 6 at an appropriate flow rate. All the ore is reduced,
Coarse-grained and medium-granular ones are discharged from the discharge pipe 4, and fine-grained ones are discharged from the discharge pipe 10c. That is,
The coarse ore is reduced by forming the moving bed 7a on the dispersion plate 6, and the medium ore is reduced by forming the bubble fluidized bed 7b in the air column 1b having a small opening cross-sectional area and a relatively high gas flow rate. The granular ore protrudes further upwards from the fluidized bed 7b, and flows in the high-speed circulating fluidized bed 7c in a circulation path from the empty tower 1a having a large opening cross-sectional area and the exhaust gas discharge pipe 5 to the preliminary reduction furnace 1 through the circulation pipe 10b.
Are formed and reduced, and are sequentially discharged from the discharge pipe 10c.

なお、前記実施例では、中粒鉱石は粗粒鉱石とともに
排出管4から排出されるように構成したが、予備還元炉
1の空塔部1bの炉壁に別の排出管を接続して、この排出
管から中粒鉱石だけを分離して排出させるようにしても
よい。また、分散板6から炉体上方に向かって開口断面
積が漸増するように形成してもよい。さらに、漏斗状分
散板6に代えて傾斜板状の分散板(図示せず)を用いて
もよい。
In the above embodiment, the medium ore is configured to be discharged from the discharge pipe 4 together with the coarse ore. However, another discharge pipe is connected to the furnace wall of the empty tower portion 1b of the preliminary reduction furnace 1, Only the medium ore may be separated and discharged from the discharge pipe. Further, the opening cross-sectional area may be formed so as to gradually increase from the dispersion plate 6 toward the upper part of the furnace body. Further, instead of the funnel-shaped dispersion plate 6, an inclined plate-shaped dispersion plate (not shown) may be used.

なお、予備還元された鉱石の炉内滞留時間について
は、粗粒および中粒鉱石は排出管4の下方に接続する排
出バルブ(図示せず)によって、また、微粉粒鉱石は前
記の二方向払出しバルブ9によって、それぞれ排出量
(速度)が制御されるので、これらを制御することによ
って任意に滞留時間を設定することができる。
Regarding the residence time of the pre-reduced ore in the furnace, the coarse and medium ore is discharged by a discharge valve (not shown) connected below the discharge pipe 4, and the fine ore is discharged in the above-described two way. Since the discharge amount (speed) is controlled by the valve 9, the residence time can be arbitrarily set by controlling these.

つぎに、本実施例に関して行った実験結果を示す。 Next, results of an experiment performed on the present example will be described.

1)原料鉱石:鉄鉱石 粒度分布…10mm以上 2% 10〜5mm 18% 5〜0.5mm 31% 0.5mm以下 49% 装入温度…450℃ 2)還元ガス:溶融還元炉排ガス 組成…CO 39%、CO2 21%、H2 14%、 H2O 12%、N2 14% 導入温度…1030℃ 3)予備還元炉プロフィール:第1図参照 A=40゜、Da=φ280m、Db=φ200nm、 Ha=4000mm、Hb=500mm 以上の条件のもとで実験した結果、定常状態におい
て、還元率が約30%の予備還元鉄を排出管4および同10
cより排出・回収した。回収された総予備還元鉄量の内
訳については、排出管4から排出された量が約49%で、
その約95%が粒度は0.5mm以上の中・粗粒状のものであ
り、一方、排出管10cからの量は51%で、その約90%が
0.5mm以下の微粉粒状のものであった。
1) Raw material ore: iron ore Particle size distribution: 10mm or more 2% 10-5mm 18% 5-0.5mm 31% 0.5mm or less 49% Charge temperature: 450 ° C 2) Reducing gas: Exhaust gas from smelting reduction furnace Composition: CO 39% , CO 2 21%, H 2 14%, H 2 O 12%, N 2 14% Introducing temperature… 1030 ° C 3) Preliminary reduction furnace profile: See Fig. 1 A = 40 ゜, Da = φ280m, Db = φ200nm, As a result of an experiment conducted under the conditions of Ha = 4000 mm and Hb = 500 mm or more, in the steady state, a pre-reduced iron with a reduction rate of about 30%
Discharged and collected from c. Regarding the breakdown of the total amount of reserve iron recovered, the amount discharged from the discharge pipe 4 was about 49%,
Approximately 95% of the particles are medium / coarse with a particle size of 0.5 mm or more, while the amount from the discharge pipe 10c is 51%, and about 90%
It was in the form of fine particles of 0.5 mm or less.

さらに、上記した実験について計算上から解析する
と、つぎのことが推測される。
Further, when the above-mentioned experiment is analyzed from a calculation point, the following is presumed.

分散板6直上(空塔部1b)のガス流速は7.0m/sで、こ
の流速では、粒径5mm以下の鉄鉱石のみが流動化する。
空塔部1aのガス流速は5.0m/sで、この流速では、粒径0.
5mm以下の鉄鉱石粉体はガス流に伴われて流動層炉から
とび出すことになる。
The gas flow velocity immediately above the dispersing plate 6 (empty tower portion 1b) is 7.0 m / s, and at this flow velocity, only iron ore having a particle size of 5 mm or less is fluidized.
The gas flow velocity in the empty tower section 1a is 5.0 m / s.
Iron ore powder of 5 mm or less will be ejected from the fluidized bed furnace with the gas flow.

したがって、装入された鉄鉱石のうち、粒径が5mmを
超えるものは分散板6上で移動層を、粒径5mm以下で0.5
mmを超えるものは空塔部1bで流動層(気泡流動層)を、
粒径0.5mm以下のものは高速循環流動層を、それぞれ形
成することになる。なお、このように流動化が可能な最
大粒径や循環させる微粉の最大粒径に関しては、炉体下
方の空塔部1bとその上方にある空塔部1aとのそれぞれに
ついて炉内開口断面積を適宜変更することにより、自由
に設定することができる。その意味で、この予備還元炉
1では、従来の装置による場合よりも還元率の向上を図
ることができる。
Therefore, among the charged iron ores, those having a particle size of more than 5 mm form a moving bed on the dispersing plate 6 and a size of 0.5 mm or less for a particle size of 5 mm or less.
For those exceeding mm, a fluidized bed (bubble fluidized bed) is formed in the empty tower 1b,
Those having a particle size of 0.5 mm or less form a high-speed circulating fluidized bed. With respect to the maximum particle size that can be fluidized and the maximum particle size of the fine powder to be circulated as described above, the opening cross-sectional area in the furnace is determined for each of the empty tower section 1b below the furnace body and the empty tower section 1a above it. Can be freely set by appropriately changing. In this sense, in the preliminary reduction furnace 1, the reduction rate can be improved as compared with the case of the conventional apparatus.

なお、前記実験で、還元ガスの導入量により、2つの
排出管4,10cからそれぞれ排出される鉄鉱石の粒度が設
定されること、および、鉄鉱石の炉内滞留時間を変えれ
ば排出される鉄鉱石の還元率が変更できることもあわせ
て確認した。
In the above experiment, the particle size of the iron ore discharged from each of the two discharge pipes 4 and 10c is set according to the amount of the reducing gas introduced, and the iron ore is discharged if the residence time in the furnace is changed. It was also confirmed that the reduction rate of iron ore can be changed.

(発明の効果) 上記のように構成した本発明の予備還元炉によれば、
下記の効果がもたらされる。
(Effect of the Invention) According to the preliminary reduction furnace of the present invention configured as described above,
The following effects are provided.

(1)粉砕やふるい分けなどの前処理をせずに、幅広い
粒度分布を有する粉粒状鉱石を直接炉内へ装入して、予
備還元することができる。
(1) Powder ore having a wide particle size distribution can be directly charged into a furnace and pre-reduced without pretreatment such as pulverization or sieving.

(2)予備還元された微粉粒鉱石と中・粗粒鉱石とが、
分級されてそれぞれ別の排出管から排出されるので、予
備還元した鉱石を二系統に分けて溶融還元炉へ投入する
ことが可能になる。
(2) Pre-reduced fine ore and medium or coarse ore
Since the classified ore is discharged from different discharge pipes, the ore that has been preliminarily reduced can be divided into two systems and introduced into the smelting reduction furnace.

(3)炉内に装入される鉱石の炉内滞留時間を、粒度別
に任意に設定することができるので、予備還元率を容易
にかつ正確に制御することができる。
(3) Since the residence time of the ore charged in the furnace in the furnace can be arbitrarily set according to the particle size, the preliminary reduction rate can be easily and accurately controlled.

(4)還元ガスの炉内への導入を中止した際にも、分散
板の直上に堆積する粗粒鉱石によって中・微粉粒鉱石の
落下が阻止されるため、分散板の通孔径を大きくするこ
とができ、これにより通孔の目詰まり防止が図られる。
(4) Even when the introduction of the reducing gas into the furnace is stopped, the coarse ore deposited directly on the dispersion plate prevents the drop of the medium or fine particle ore, so the through hole diameter of the dispersion plate is increased. Accordingly, clogging of the through hole is prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施例を示す、予備還元炉の縦断面
図、第2図は従来の予備還元炉の一例を示す縦断面図で
ある。 1……予備還元炉、5……還元ガス排出管、6……分散
板、6a……通孔、6b……鉱石排出口、7a……移動層、7b
……気泡流動層、7c……高速循環流動層、8……サイク
ロンセパレータ、9……二方向払出しバルブ、10b……
微粉粒鉱石循環管、10c……微粉粒鉱石排出管。
FIG. 1 is a longitudinal sectional view of a preliminary reducing furnace showing an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view showing an example of a conventional preliminary reducing furnace. 1 Preliminary reduction furnace, 5 Reducing gas discharge pipe, 6 Dispersion plate, 6a Through hole, 6b Ore discharge port, 7a Moving bed, 7b
…… Bubble fluidized bed, 7c …… High-speed circulating fluidized bed, 8 …… Cyclone separator, 9 …… Two-way discharge valve, 10b ……
Fine ore circulation pipe, 10c ... Fine ore discharge pipe.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸本 充晴 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社神戸工場内 (72)発明者 矢島 健一 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社神戸工場内 (72)発明者 竹村 良彦 兵庫県明石市川崎町1番1号 川崎重工 業株式会社明石工場内 (56)参考文献 特開 昭49−122414(JP,A) 特公 平1−49777(JP,B2) ──────────────────────────────────────────────────続 き Continued on the front page (72) Mitsuharu Kishimoto 3-1-1, Higashi-Kawasaki-cho, Chuo-ku, Kobe, Hyogo Prefecture Inside the Kobe Plant of Kawasaki Heavy Industries, Ltd. (72) Inventor Kenichi Yajima Higashi-Kawasaki-cho, Chuo-ku, Kobe, Hyogo Prefecture 3-1-1, Kawasaki Heavy Industries, Ltd. Kobe Factory (72) Inventor Yoshihiko Takemura 1-1, Kawasaki-cho, Akashi-shi, Hyogo Kawasaki Heavy Industries, Ltd. Akashi Factory (56) References JP 49-122414 ( JP, A) Tokiko Hei 1-49777 (JP, B2)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属酸化物を含有する鉱石を炉体の上部又
は中腹部より装入し、炉体底部より導入した高温の還元
ガスと接触させることにより鉱石を還元する溶融還元用
予備還元炉において、 多数の還元ガス通孔が穿設され、中央部又は傾斜低位置
に鉱石排出口を開設した漏斗状又は傾斜板状の分散板を
前記炉体内の底部寄りに配設する一方、 炉体上部に還元ガスの排出管を接続して該排出管にサイ
クロンセパレータを介装し、そのセパレータの下部に微
粉粒状鉱石の排出管を接続した ことを特徴とする溶融還元用予備還元炉。
An ore containing a metal oxide is charged from the upper or middle part of the furnace body and is brought into contact with a high-temperature reducing gas introduced from the bottom part of the furnace body to reduce the ore to reduce the ore. In the above, a dispersing plate in the form of a funnel or an inclined plate, in which a large number of reducing gas through holes are drilled and an ore discharge port is opened at the center or at an inclined low position, is disposed near the bottom in the furnace, A preliminary reduction furnace for smelting reduction, characterized in that a discharge pipe for reducing gas is connected to the upper part, a cyclone separator is interposed in the discharge pipe, and a discharge pipe for fine ore particles is connected to the lower part of the separator.
【請求項2】前記セパレータ下部に二方向払出しバルブ
を接続し、該バルブを介して前記微粉粒状鉱石の排出管
を接続すると共に、微粉粒状鉱石の循環管を、該バルブ
から炉体の中腹部までの間に接続した特許請求の範囲第
1項に記載の溶融還元用予備還元炉。
2. A two-way discharge valve is connected to the lower part of the separator, and a discharge pipe for the fine ore is connected through the valve, and a circulation pipe for the fine ore is connected to the middle part of the furnace body from the valve. 2. The pre-reduction furnace for smelting reduction according to claim 1, which is connected to the pre-reduction furnace.
【請求項3】前記分散板の傾斜角を装入される鉱石の安
息角以上にした特許請求の範囲第1項または第2項に記
載の溶融還元用予備還元炉。
3. The pre-reduction furnace for smelting reduction according to claim 1, wherein the angle of inclination of the dispersion plate is made larger than the angle of repose of the ore charged.
【請求項4】前記炉体内における、前記分散板直上部付
近の開口断面をその上方の空塔部に比べてやや小さく形
成した特許請求範囲第1項〜第3項のいずれかに記載の
溶融還元用予備還元炉。
4. The melt according to claim 1, wherein an opening cross section in the furnace body near the upper portion of the dispersion plate is formed to be slightly smaller than an empty tower portion above the dispersion plate. Preliminary reduction furnace for reduction.
JP28815087A 1987-11-13 1987-11-13 Preliminary reduction furnace for smelting reduction Expired - Lifetime JP2620793B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP28815087A JP2620793B2 (en) 1987-11-13 1987-11-13 Preliminary reduction furnace for smelting reduction
ZA888247A ZA888247B (en) 1987-11-13 1988-11-03 Metal-making apparatus involving the smelting reduction of metallic oxides
AU24742/88A AU596758B2 (en) 1987-11-13 1988-11-04 Metal-making apparatus involving the smelting reduction of metallic oxides
KR1019880014715A KR910008113B1 (en) 1987-11-13 1988-11-09 Metal-making apparatus involving the smetting redaction of metallic oxides
CA000582690A CA1301453C (en) 1987-11-13 1988-11-10 Metal-making apparatus involving the smelting reduction of metallic oxides
MX013743A MX169583B (en) 1987-11-13 1988-11-10 METAL MANUFACTURING APPARATUS INVOLVING THE REDUCTION OF METALLIC OXID FOUNDRY
BR888805903A BR8805903A (en) 1987-11-13 1988-11-11 METAL PRODUCTION APPLIANCE
ES88118877T ES2051285T3 (en) 1987-11-13 1988-11-11 METALLURGICAL PROCESS AND APPARATUS THAT CONDUCTS THE REDUCTION BY METAL OXID FUSION.
AT88118877T ATE102258T1 (en) 1987-11-13 1988-11-11 METHOD AND APPARATUS FOR MANUFACTURE OF METAL INCLUDING METAL REDUCTION METAL OXIDES.
EP88118877A EP0316819B1 (en) 1987-11-13 1988-11-11 Metal-making process and apparatus involving the smelting reduction of metallic oxides
DE3888096T DE3888096T2 (en) 1987-11-13 1988-11-11 Method and device for producing metal containing the smelting reduction of metal oxides.
CN88107813A CN1014996B (en) 1987-11-13 1988-11-12 Metal-making apparatus involving smelting reduction of metallic oxides
US07/272,053 US4886246A (en) 1987-11-13 1988-11-14 Metal-making apparatus involving the smelting reduction of metallic oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28815087A JP2620793B2 (en) 1987-11-13 1987-11-13 Preliminary reduction furnace for smelting reduction

Publications (2)

Publication Number Publication Date
JPH01129915A JPH01129915A (en) 1989-05-23
JP2620793B2 true JP2620793B2 (en) 1997-06-18

Family

ID=17726453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28815087A Expired - Lifetime JP2620793B2 (en) 1987-11-13 1987-11-13 Preliminary reduction furnace for smelting reduction

Country Status (2)

Country Link
JP (1) JP2620793B2 (en)
ZA (1) ZA888247B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536641B2 (en) * 1989-12-04 1996-09-18 日本鋼管株式会社 Ore fluidized bed reduction furnace and smelting reduction method using the same
JP2536642B2 (en) * 1989-12-04 1996-09-18 日本鋼管株式会社 Method of adjusting gas flow for preliminary reduction in smelting reduction equipment equipped with preliminary reduction furnace
AT405942B (en) * 1995-03-17 1999-12-27 Voest Alpine Ind Anlagen METHOD FOR REDUCING FINE ORE AND SYSTEM FOR IMPLEMENTING THE METHOD
AT408233B (en) * 2000-01-20 2001-09-25 Voest Alpine Ind Anlagen FLUID BED UNIT AND METHOD FOR REDUCING OXIDE CONTAINING MATERIAL
CN115341065B (en) * 2021-05-14 2023-08-11 宝山钢铁股份有限公司 Production method of hot-pressed iron block with carbon emission lower than zero

Also Published As

Publication number Publication date
JPH01129915A (en) 1989-05-23
ZA888247B (en) 1989-08-30

Similar Documents

Publication Publication Date Title
KR970003636B1 (en) A furnace for reduction fine coal in the manufacture of iron melts
US5762681A (en) Fluidized bed type reduction apparatus for iron ores and method for reducing iron ores using the apparatus
KR910008113B1 (en) Metal-making apparatus involving the smetting redaction of metallic oxides
US5897829A (en) Apparatus for reducing fine iron ore
KR19980051236A (en) Three-stage Fluidized Bed Reduction Apparatus for Ferrous Iron Ore with X-Type Circulation Tube
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
JPH06220513A (en) Circulation layer type preliminary reducing furnace for powdery iron ore
US6235079B1 (en) Two step twin-single fluidized bed pre-reduction apparatus for pre-reducing fine iron ore, and method therefor
JP2579785B2 (en) Pre-reduction device for smelting reduction
JP2562172B2 (en) Iron ore fluidized bed reduction device
WO2000034531A1 (en) Fluidized bed type fine iron ore reducing apparatus, and method therefor
JPH01129917A (en) Device for preheating and charging material in reduction furnace
KR100276343B1 (en) High-temperature reduced iron cooler and fluidized bed furnace reduction device of iron ore with this cooler
JPH01184211A (en) Fluidized bed reduction device for ore
KR940008450B1 (en) Making method and device of iron ore prereduction
JPH01129916A (en) Method for charging ore in smelting reduction furnace
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JPH01152225A (en) Device for drying and preheating granular ore
JPH01111810A (en) Iron ore fluidized bed reduction apparatus
JPH01111808A (en) Iron ore fluidized bed reduction apparatus
JPH0639607B2 (en) Pre-reduction ore transfer device in smelting reduction steelmaking facility
JPH0324213A (en) Treatment of drop ore of preliminary reduction furnace
JPH03138309A (en) Apparatus for reducing ore
JPH0649520A (en) Fluidized bed furnace
JPH03183715A (en) Fluidized bed pre-reduction method for powdery ore

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080404