JPH01319620A - Method of operating smelting reduction furnace - Google Patents

Method of operating smelting reduction furnace

Info

Publication number
JPH01319620A
JPH01319620A JP15239688A JP15239688A JPH01319620A JP H01319620 A JPH01319620 A JP H01319620A JP 15239688 A JP15239688 A JP 15239688A JP 15239688 A JP15239688 A JP 15239688A JP H01319620 A JPH01319620 A JP H01319620A
Authority
JP
Japan
Prior art keywords
furnace
coal
reducing agent
reduction furnace
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15239688A
Other languages
Japanese (ja)
Inventor
Eiji Katayama
英司 片山
Hiroshi Itaya
板谷 宏
Toshihiro Inatani
稲谷 稔宏
Shoji Miyagawa
宮川 昌治
Takashi Ushijima
牛島 崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15239688A priority Critical patent/JPH01319620A/en
Publication of JPH01319620A publication Critical patent/JPH01319620A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • C21B13/023Making spongy iron or liquid steel, by direct processes in shaft furnaces wherein iron or steel is obtained in a molten state

Abstract

PURPOSE:To assure the high-temp. necessary for smelting reduction of a metal and to improve productivity by heating powder coal to a specific temp. to lump the coal, then charging the lumped coal into the furnace at the time of blowing the powder coal from the furnace wall charge ports provided to the side wall between furnace top charge ports and tuyeres. CONSTITUTION:A packed layer 2 of a solid carbon reducing agent is formed in the lower part in the vertical reduction furnace 1 and a fluidized bed 3 of the solid carbon reducing agent is formed above the same. Powder ore 5 is blown from the tuyeres 4 provided along the outer circumference of the side wall of the reduction furnace 1 to effect the smelting reduction of the metal oxide. The wall charge ports 8 are provided to the side wall between the furnace top charge port 7 and the tuyeres 4 and the powder coal to constitute the solid carbon reducing agent 6 is charged from these ports 8 and is lumped while the coal is heated to 500-1200 deg.C by the sensible heat and/or latent heat of the in furnace gas flowing into the ports 8. The adequate packed layer 2 is formed by using the powder coal prepd. by mixing the powder coal having a high viscosity and low viscosity. The packed layer 2 of the coarse- grained solid coal reducing agent 6 is positively formed in this way at the low initial cost and the productivity of a molten metal 11 is enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、竪型溶融還元炉の操業方法に関し、粉状鉱石
からの溶融金属製造技術の改善に関する。さらに詳しく
は金属を溶融還元するに必要な高温を確保するために、
溶融還元炉内に比較的粗粒の炭素系固体還元剤からなる
充填層を十分形成できるように当該炉を用いて粉炭を塊
化して装入するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of operating a vertical smelting reduction furnace, and relates to an improvement in technology for producing molten metal from powdered ore. More specifically, in order to secure the high temperature necessary to melt down the metal,
The smelting reduction furnace is used to agglomerate and charge powdered coal so that a packed bed of relatively coarse carbon-based solid reducing agent can be sufficiently formed in the furnace.

[従来の技術1 粉状鉱石と炭素系固体還元剤を直接使って竪型炉で溶融
金属(例えば銑鉄)を製造する方法として、例えば、金
属酸化物を含有する粉状鉱石からの溶融金属製造方法(
特開昭62−56537)が提案されている。
[Prior art 1] As a method for producing molten metal (e.g., pig iron) in a vertical furnace using powdered ore and a carbon-based solid reducing agent directly, for example, molten metal production from powdered ore containing metal oxides is used. Method(
JP-A-62-56537) has been proposed.

この方法は、炉内に炭素系固体還元剤の充填層およびそ
の上方に流動層を維持し、粉状鉱石を酸素を含む気体と
ともに炭素系固体還元剤の流動層に装入し、酸素を含む
気体を炭素系固体還元剤の充填層に吹き込むものである
This method maintains a packed bed of carbon-based solid reducing agent in a furnace and a fluidized bed above it, and charges powdered ore together with oxygen-containing gas into the fluidized bed of carbon-based solid reducing agent. Gas is blown into a packed bed of carbon-based solid reducing agent.

ここで粉状石炭を用いる場合には、竪型還元炉から月1
出される高温ガスを導入した別の炭材予備処理炉で石炭
を予備処理することにより石炭を乾留し、粉状コークス
あるいはチャーとし、炭材予備処理炉から竪型還元炉に
装入するようになっている。あるいは粉状石炭は上記し
た予備処理を施すことなく直接炉内に装入しても良いこ
とになっている。
When using pulverized coal here, once a month from a vertical reduction furnace
The coal is carbonized by pre-treating it in a separate coal pre-treating furnace that introduces the high-temperature gas that is released, turning it into powdered coke or char, which is then charged from the coal pre-treating furnace to a vertical reduction furnace. It has become. Alternatively, powdered coal may be charged directly into the furnace without undergoing the above-mentioned pretreatment.

〔発明が解決しようとする課題1 粉状石炭を竪型還元炉内に装入するに当って、粉状石炭
を予備処理するやり方では炭材予備処理炉を必要とする
ため、設備費が高くつくこと、またその設備保全のため
の余分な作業が必要であるという問題点がある。
[Problem to be solved by the invention 1: When charging pulverized coal into a vertical reduction furnace, the method of pre-treating the pulverized coal requires a carbon material pre-treatment furnace, resulting in high equipment costs. There are problems in that it is difficult to maintain the equipment, and extra work is required to maintain the equipment.

これに対して粉状石炭をコークス化することなく、生の
まま直接竪型還元炉内に装入するやり方は炭材予備処理
炉を必要としないため、設備が安くつくという和声があ
る反面、炉頂あるいは羽口上方の炉壁装入口から投入す
るやり方では、炉内が1400℃の高温に達しているた
め、石炭は急熱され、その揮発分の気化膨張によりクラ
ックを生して粉化する傾向にある。従って、粗粒の石炭
が残留しにくく、十分な充填層を形成することが困難と
なり、金属の溶融還元に必要な高温を確保することが容
易でなく、生産性の向上が難しいという問題点がある。
On the other hand, there is a consensus that the method of directly charging raw coal into a vertical reduction furnace without coking the powdered coal does not require a carbon material pretreatment furnace, making the equipment cheaper. In the method of charging coal from the furnace top or from the furnace wall charging port above the tuyeres, the temperature inside the furnace reaches a high temperature of 1400°C, so the coal is rapidly heated and cracks are formed due to vaporization and expansion of its volatile matter, causing it to become powder. There is a tendency to become Therefore, coarse grained coal is difficult to remain, making it difficult to form a sufficient packed bed, making it difficult to maintain the high temperature necessary for melting and reducing metals, and making it difficult to improve productivity. be.

本発明は以上の問題点を解決するためになされたもので
、設薗費が安く、かつ粗粒の炭素系固体還元剤の充填層
を積極的に形成して溶融金属の生産性を上りることかで
きる粉状鉱石からの溶融還元炉の操業方法を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and has a method of reducing the installation cost and actively forming a packed bed of coarse-grained carbon-based solid reducing agent to increase the productivity of molten metal. The purpose of this invention is to provide a method for operating a smelting reduction furnace from powdered ore that can be processed.

また、この溶融還元炉の操業方法は竪型還元炉の発生ガ
スから回収したダストを他の粉状石炭と混合することに
より炉内充填層用の炭素系固体還元剤として役立てるこ
とができる。
Further, in this method of operating a smelting reduction furnace, the dust recovered from the gas generated in the vertical reduction furnace can be mixed with other powdered coal to be used as a carbon-based solid reducing agent for the packed bed in the furnace.

[課題を解決するための手段] 上記目的を達成するための本発明方法を図面を参昭しな
がら説明する。第1図は溶融還元炉を模式的に示したも
のである。竪型還元炉1内の下方に炭素系固体還元剤の
充填層2を形成し、その上方に炭素系固体還元剤の流動
層3を形成し、竪型還元炉1の側壁の外周に沿って設け
られた羽口4から粉状鉱石5を竪型還元炉1内に吹込み
金属酸化物を溶融還元する。
[Means for Solving the Problems] A method of the present invention for achieving the above object will be explained with reference to the drawings. FIG. 1 schematically shows a melting reduction furnace. A packed bed 2 of a carbon-based solid reducing agent is formed in the lower part of the vertical reduction furnace 1, a fluidized bed 3 of a carbon-based solid reducing agent is formed above it, and Powdered ore 5 is blown into the vertical reduction furnace 1 through the provided tuyere 4 to melt and reduce metal oxides.

本発明は、竪型還元炉の炉頂装入口と羽目との間の側壁
に炉壁装入口を設け、該炉壁装入口から炭素系固体還元
剤となるべき粉炭を、500℃〜1200℃に加熱しつ
つ塊状化して竪型還元炉内に装入することを特徴とする
In the present invention, a furnace wall charging port is provided on the side wall between the furnace top charging port and the siding of a vertical reduction furnace, and powdered coal to be a carbon-based solid reducing agent is supplied from the furnace wall charging port to a temperature of 500°C to 1200°C. It is characterized by being turned into lumps while being heated, and then charged into a vertical reduction furnace.

この場合、炉壁装入口から装入する粉炭の加熱に炉壁装
入口に流入する炉内ガスの顕熱おJ:び/または潜熱を
利用することができる。また、強枯結性の粉炭と弱粘結
性の粉炭を混合した粉炭を炉壁装入口から装入すること
によって適切な充填層を形成する。さらに、竪型還元炉
の排ガスから捕集したダストを炉壁装入口から装入する
粉炭に混入することによってタス1〜を有効利用するこ
とができる。
In this case, sensible heat and/or latent heat of the furnace gas flowing into the furnace wall charging port can be used to heat the powdered coal charged from the furnace wall charging port. In addition, a suitable packed bed is formed by charging powdered coal, which is a mixture of strongly coagulated powdered coal and weakly coagulated powdered coal, from the furnace wall charging port. Furthermore, by mixing the dust collected from the exhaust gas of the vertical reduction furnace with the powdered coal charged from the furnace wall charging port, it is possible to make effective use of Tus 1 to 1.

なお、ここていう粉炭とは粒径が50mm未満のものを
いう。
Note that the term pulverized coal here refers to coal with a particle size of less than 50 mm.

第1区は炭素系固体還元剤となるべき粉炭6(6b、6
c)の竪型炉1への装入位置の例を示したものである。
The first section is pulverized coal 6 (6b, 6
This figure shows an example of the charging position to the vertical furnace 1 in c).

竪型炉1の炉内は、比較的粒径の大きい炭素系固体還元
剤によって下部に充填層2が形成され、比較的粒径の小
さい炭素系固体還元剤によって上部に流動層3が形成さ
れている。粉鉱石5は、羽口4から炉内に吹込まれて炉
内の高温の炭素系固体還元剤やガスにより溶融還元され
、炉の下部に溶融金属11および溶融スラグ12になっ
て溜る。溶融金属や溶融スラグは竪型炉の操業に応して
連続的あるいは間歇的に炉外に排出される。
Inside the vertical furnace 1, a packed bed 2 is formed at the bottom by a carbon-based solid reducing agent with a relatively large particle size, and a fluidized bed 3 is formed at the top by a carbon-based solid reducing agent with a relatively small particle size. ing. The fine ore 5 is blown into the furnace through the tuyere 4, melted and reduced by the high-temperature carbon-based solid reducing agent and gas in the furnace, and accumulates as molten metal 11 and molten slag 12 in the lower part of the furnace. Molten metal and molten slag are discharged out of the furnace continuously or intermittently depending on the operation of the vertical furnace.

竪型炉1の最上部にはフリーボード9が形成されており
、流動層3を形成する比較的粒径の小さい炭素系固体還
元剤の竪型炉外への飛出しを抑制しているが、ある量の
炭素系固体還元剤は発生ガス10と共に竪型炉1外に排
出さね、図示しないサイクロン等によってダス1へとし
て捕集される。
A free board 9 is formed at the top of the vertical furnace 1 to prevent the carbon-based solid reducing agent having a relatively small particle size forming the fluidized bed 3 from flying out of the vertical furnace. A certain amount of the carbon-based solid reducing agent is not discharged to the outside of the vertical furnace 1 together with the generated gas 10, but is collected as a dust 1 by a cyclone or the like (not shown).

粉炭6 (6a、6b、6c)はその粒径、組成などの
性状や炉内状況、ダストの発生量などに応して、各装入
位置の選択と装入量の管理が行われる。炉頂画人ロアや
炉壁装入口8からは比較的粒径の大きい石炭が装入され
、羽口4からは比較的粒径の小さい石炭が装入あるいは
吹込まれる。総して粒径の小さい捕集ダストは羽口4か
ら炉内に装入あるいは吹込まれる。このように粒径の大
きさにより装入位置を選択するのは、粒径の小さい炭素
系固体還元剤は、炉内に装入しても炉内の上昇ガス流に
よって再び竪型炉の外部へ排出されがちなためであり、
羽口4から装入する場合は、同時に羽口に吹込まれる空
気および/または酸素によって燃焼するので、燃オ」と
して有効に利用され易いからである。
The charging position of the powdered coal 6 (6a, 6b, 6c) is selected and the charging amount is controlled depending on its particle size, properties such as composition, furnace internal conditions, amount of dust generated, and the like. Coal with a relatively large particle size is charged through the furnace top lower and furnace wall charging port 8, and coal with a relatively small particle size is charged or injected through the tuyere 4. The collected dust, which has a generally small particle size, is charged or blown into the furnace through the tuyere 4. The reason why the charging position is selected based on the particle size is that even if a carbon-based solid reducing agent with a small particle size is charged into the furnace, the rising gas flow inside the furnace will cause it to be returned to the outside of the vertical furnace. This is because they tend to be discharged into
This is because when charging from the tuyere 4, the fuel is combusted by the air and/or oxygen blown into the tuyere at the same time, so it can be effectively used as fuel.

粒径の比較的小さい例えば3mm以下の石炭や、竪型還
元炉の発生ガスから捕集されたダスト(粒径の細かい炭
素系固体還元剤を含んでいる)を羽口4以ダの炉頂装入
ロアや炉壁装入口8から装入し、有効利用する場合は工
夫が必要である6つまり、石炭はある温度範囲で軟化し
、溶融したり粘結したりする。この特性を利用して、粒
径の小さな炭素系固体還元剤や捕集ダス1〜を塊状化(
粗粒化)して炉内に装入すれば、それだけ炭素系固体還
元剤の充填層を拡大できるので、溶融還元が促進され、
(6融金属の増産が期待される。
Coal with a relatively small particle size, e.g. 3 mm or less, and dust collected from the gas generated in a vertical reduction furnace (containing a carbon-based solid reducing agent with a fine particle size) are collected at the top of the furnace with four or more tuyeres. When charging coal from the charging lower or furnace wall charging port 8 and making effective use of it, it is necessary to be creative.6 In other words, coal softens, melts, or cakes within a certain temperature range. Utilizing this property, we can agglomerate carbon-based solid reducing agents and collection dust 1~ with small particle size (
By charging the carbonaceous solid reducing agent into the furnace, the packed layer of carbon-based solid reducing agent can be enlarged, which promotes melting and reduction.
(6) Increased production of molten metals is expected.

この粒径の小さな粉炭を粗粒化するために、本発明にお
いては予備処理炉などを用いずに、炉壁に粉炭の炉壁装
入口8を形成し、この炉壁装入口の装入通路を予備処理
通路とし、ここて粉炭を炉内ガスの顕熱によって加熱し
つつ、ブツシャ15等で移動させながら塊状化するもの
である。
In order to coarsen this pulverized coal having a small particle size, in the present invention, a furnace wall charging port 8 for pulverized coal is formed in the furnace wall without using a pretreatment furnace, and a charging passage of this furnace wall charging port is formed. is used as a pre-processing passage, where the powdered coal is heated by the sensible heat of the gas in the furnace and is agglomerated while being moved by a busher 15 or the like.

炉壁装入口8から装入する石炭の加熱源としては、炉内
ガスの顕熱を使用するのが賢明である。
As a heating source for the coal charged through the furnace wall charging port 8, it is wise to use the sensible heat of the gas in the furnace.

温度、特に500℃前後の温度の調整は、炉壁装入口8
に流入する炉内ガス量と石炭の装入速度によって管理す
ることができる。より柔軟に対処するには炉外からの冷
却剤(ガス、液体、固体など)を使用しても良い。
The temperature, especially around 500°C, can be adjusted through the furnace wall charging port 8.
It can be controlled by the amount of gas flowing into the furnace and the coal charging speed. For more flexibility, coolant from outside the furnace (gas, liquid, solid, etc.) may be used.

炉壁装入口から石炭を加熱して装入する場合に、比較的
強度の大きい炭素系固体還元剤を作るには、昇温中に石
炭に適当な機械的荷重を与えることが好ましい。これに
より、石炭粒子の充填密度が高まり空隙は少なくなり粒
子相互の結合が促進される。機械的荷重としては、石炭
層の単位乎面積当り、50−200 k g/ crn
’がよい。通常の石炭成型の場合には、バインダを添加
するが、本方法の場合、加熱によって石炭から生じる軟
化・溶融物が石炭粒子自身や他の石炭との融着に機能す
るため、バインダを用いることなく本プロセスに使用で
きる適切な強度の炭素系固体還元剤を製造することがで
きる。もちろん、より強度の高い炭素系固体還元剤を必
要とする時は、少量のバインダを添加しても良い。
When heating and charging coal from the furnace wall charging port, it is preferable to apply an appropriate mechanical load to the coal during temperature rise in order to produce a relatively strong carbon-based solid reducing agent. This increases the packing density of coal particles, reduces voids, and promotes bonding between particles. The mechanical load is 50-200 kg/crn per unit area of coal seam.
' is better. In the case of normal coal molding, a binder is added, but in the case of this method, the softened and molten material generated from the coal by heating functions to fuse the coal particles themselves and other coal, so a binder cannot be used. It is possible to produce a carbon-based solid reducing agent of suitable strength that can be used in this process. Of course, if a stronger carbon-based solid reducing agent is required, a small amount of binder may be added.

[作用] 粒径の大きい石炭を竪型炉内に装入する場合、大気温度
の石炭を高温の炉内に直接装入すると、炉内の調度が高
いので急熱によって熱割れを生し、比較的小さな粒径の
炭素系固体還元剤となり、炉下部の充填層の形成が困難
になる場合がある。
[Function] When charging coal with large particle size into a vertical furnace, if atmospheric temperature coal is directly charged into a high temperature furnace, the temperature inside the furnace is high, so rapid heating will cause thermal cracking. The carbon-based solid reducing agent has a relatively small particle size, which may make it difficult to form a packed bed in the lower part of the furnace.

第2図は石炭を急熱処理し、その温度で揮発分が発生し
終って生成したものの粒径を示すグラフである。第2図
から粉化をまぬがれる急熱温度は500℃〜1.200
″Cの範囲が適当であるのが分る。また強粘結炭の場合
には、500℃で比較的粒径が小さくなっているので、
石炭の粘結性(銘柄)によって適切な急!!J!温度が
異なるのが分る。
FIG. 2 is a graph showing the particle size of coal produced after the volatile matter has been generated at that temperature when coal is subjected to rapid heat treatment. From Figure 2, the rapid heating temperature that can avoid powdering is 500℃~1.200℃.
It can be seen that the range of ``C'' is appropriate.Also, in the case of strongly caking coal, the particle size is relatively small at 500℃, so
Appropriate steepness depending on the viscosity (brand) of the coal! ! J! I can see that the temperature is different.

500℃よりlB度が低ずぎる場合には、強粘結炭も弱
粘結炭も軟化溶融気味であり、形状の維持が困難であっ
た。
When the IB degree is too low than 500° C., both the strongly coking coal and the weakly coking coal tend to soften and melt, making it difficult to maintain their shape.

逆に急熱温度を1250℃〜1400℃にすると、あま
りの急熱のため、石炭に多数のクラックが入り、殆どが
細粒化した。
On the other hand, when the rapid heating temperature was set to 1250° C. to 1400° C., many cracks appeared in the coal due to the rapid heating, and most of the coal became fine particles.

従って、各種の石炭に対するこのようなデータから、石
炭を炉内に装入する場合、上記した炉壁装入口8の予備
処理通路で500℃〜1200℃の範囲て加熱しながら
塊状化しつつ装入すれば、急熱による粉化を防止し、粗
粒の炭素系固体環元剤の充填層を形成するのに有効であ
ることが分った。
Therefore, based on such data regarding various types of coal, when charging coal into a furnace, it is necessary to heat it in the pre-treatment passage of the furnace wall charging port 8 at a temperature in the range of 500°C to 1200°C and to lump it while charging. It was found that this method is effective in preventing powdering due to rapid heating and forming a packed bed of coarse carbon-based solid cyclic agent.

次に使用する石炭の粘結性について述べる。高炉製銑法
に使用するコークスを製造する場合、高強度のコークス
を製造するために王として強粘結性の配合石炭を全量3
mm以下に粉砕し、これをコークス炉で乾留し焼き固め
ている。本発明のプロセス、すなわち竪型還元炉の上方
に炭素系固体還元剤の流動層を形成し、下方に炭素系固
体還元剤の充填層を形成するプロセスの場合、充填層を
形成する炭素系固体還元剤は高炉製銑法の場合より、強
度の弱いものを使用することができる。
Next, we will discuss the caking properties of the coal used. When producing coke for use in the blast furnace ironmaking process, a total amount of 33
It is crushed into pieces smaller than mm, which are then carbonized and baked in a coke oven. In the case of the process of the present invention, that is, a process in which a fluidized bed of a carbon-based solid reducing agent is formed above a vertical reduction furnace and a packed bed of a carbon-based solid reducing agent is formed below, the carbon-based solids forming the packed bed are A reducing agent with lower strength than in the case of blast furnace iron making can be used.

(例えば粒径3mm以上)の石炭をコークス化すること
なくそのまま使うことができるが、その場合、弱粘結性
の石炭だけを用いると生成した炭素系固体還元剤の強度
は弱く、強粘結性の石炭だけを使用すると生成した炭素
系固体還元剤が弱くなる場合がある。そこで例えば粘結
性の弱い粉状の石炭6 bと粘結性の強い石炭6cとを
組合せると、強度と粒径が安定した炭素系固体還元剤を
製造することかできる。なお分級装置14を設Gづ、こ
こで1mm以下の石炭を分離して羽口に輸送するように
しても良い。
Coal (for example, with a particle size of 3 mm or more) can be used as it is without coking, but in that case, if only weakly caking coal is used, the strength of the carbon-based solid reducing agent produced will be weak, and it will not cause strong caking. If only carbonaceous coal is used, the resulting carbon-based solid reducing agent may be weakened. Therefore, for example, by combining powdered coal 6b with weak caking property and coal 6c with strong caking property, it is possible to produce a carbon-based solid reducing agent with stable strength and particle size. Note that a classification device 14 may be provided to separate coal of 1 mm or less and transport it to the tuyere.

竪型炉の上方に流動層を形成すると、ある程度のダスト
(王に炭素質)が発生ずるので、サイクロン等の分離装
置によって生成したタストを分離捕集し、再使用するこ
とが考えられる。このようなタス1〜は一般には羽口4
から炉内に吹込んで再使用するが、吹込量に制約がある
場合などには、炉壁装入口8から、石炭と混合して使用
する。石炭と混合することにより石炭の粘結性を利用す
ることがてき、粗粒の炭素系固体還元剤を生成する。こ
の際、タス1−の割合が多ずぎると、第3図に例示した
ように、粘結分の不足により粗粒化が十分てなくなるの
で汀意がl・要である。
When a fluidized bed is formed above a vertical furnace, a certain amount of dust (mostly carbonaceous) is generated, so it is possible to separate and collect the generated dust using a separation device such as a cyclone and reuse it. Such tasses 1~ are generally tuyeres 4
It is reused by being blown into the furnace, but if there is a restriction on the amount of blown coal, it is mixed with coal from the furnace wall charging port 8 and used. By mixing with coal, the caking properties of coal can be utilized and a coarse carbon-based solid reducing agent is produced. At this time, if the ratio of TAS1- is too high, as illustrated in FIG. 3, the coarse grains will not be sufficiently coarsened due to the lack of caking content, so it is important to adjust the ratio.

〔実施例1 第1図に示ずような構成の竪型試験炉(炉床径1.2m
φ)で鉄鉱石と石炭を使用して銑鉄を製造した。実施例
は炉壁装入口8から石炭を加熱しつつ装入した。比較例
は炉壁装入口を使用しなかった。
[Example 1 A vertical test furnace with a configuration as shown in Fig. 1 (hearth diameter 1.2 m)
φ) produced pig iron using iron ore and coal. In the example, coal was charged from the furnace wall charging port 8 while being heated. The comparative example did not use a furnace wall charging port.

実施例 1)粉状鉄鉱石 MBR鉱石二粒径2mm以下 予備還元率=51% 供給量  607 k g/H 2)石炭 ウィツトバンク°弱粘結性、粒径30mm以下、800
 k g / I−1 ザウスヤクート・強粘結性、粒径20mm以下、40 
k g / H 炉頂装入ロアよりは10mm以上の石炭150k g 
/ +(を装入した。2箇所の炉壁装入口8からは1.
0mm未満の石炭658 k g / Hな炉内ガスの
顕熱によって500℃〜1100℃に約6分間]3 加熱しつつ装入した。
Example 1) Powdered iron ore MBR ore 2 particle size 2 mm or less Preliminary reduction rate = 51% Supply amount 607 kg/H 2) Coal Witbank ° weak caking, particle size 30 mm or less, 800
kg / I-1 Saus Yakut, strong caking, particle size 20 mm or less, 40
kg / H 150 kg of coal with a diameter of 10 mm or more from the furnace top charging lower
/ +( was charged. From the two furnace wall charging ports 8, 1.
658 kg/H of coal of less than 0 mm was heated to 500° C. to 1100° C. for about 6 minutes by the sensible heat of the gas in the furnace.

羽口からは32 k g / Hを吹込んだ。32 kg/H was blown into the tuyere.

3)送風量 流量  1.4.80 N m’ / HO2a度 3
0% 温度  580℃ 4)羽口吹込(上段利口より吹込) 石炭吹込量 粒径1.mm以下32kg/Hダスト吹込
量 59 k g/H 粒径:2mm以下 主成分 C72% 5)銑鉄生産量:10.4t/d 6)スラグ発生量 4.9t/d 比較例 従来のように全部の石炭を炉頂画人ロアから装入した。
3) Air flow rate 1.4.80 N m' / HO2a degree 3
0% Temperature 580°C 4) Tuyere injection (injection from the upper opening) Coal injection amount Particle size 1. mm or less 32 kg/H Dust injection amount 59 kg/H Particle size: 2 mm or less Main component C72% 5) Pig iron production: 10.4 t/d 6) Slag generation amount 4.9 t/d Comparative example All as before of coal was charged from the top of the furnace.

1)粉状鉄鉱石 MBR鉱石二粒径2mm以下 予備還元率=50% 供給量   558 k、 g / +(2)石炭 ウイットバンク二粒径30mm1u下 980kg/l−1 ザウスヤクート・粒径20 m m以下50 k g 
/ H 3)送風量 流  量    148ONnず/トIO2濃度、30
% 温  度   585℃ 4)ダメ1−吹込(上段羽口より吹込)吹込量 :95
kg/l( 粒径・2 m m以下 主成分 C71% 5)銑鉄生産量:9.5t/d 6)スラグ発生量:4.8t/d 実施例は比較例に比べて、装入石炭の粗粒化率が増加し
て、微粉化炭材が減少し、溶融還元炉外に排出される割
合が減少するため、その分、装入石炭量が減少した。ま
た、石炭装入量が減少した分、石炭中揮発分の分解のた
めの熱量やゲス1〜増加により顕熱となって侍史られる
熱量も減少し、銑鉄生産量が増加した。
1) Powdered iron ore MBR ore 2 grain size 2 mm or less Preliminary reduction rate = 50% Supply amount 558 k, g / + (2) Coal Witbank 2 grain size 30 mm 1u 980 kg/l-1 Sausyakut, grain size 20 m m or less 50 kg
/ H 3) Air flow rate 148 ONn/t IO2 concentration, 30
% Temperature 585℃ 4) Damage 1-Blowing (Blowing from the upper tuyere) Blow rate: 95
kg/l (particle size: 2 mm or less, main component C: 71%) 5) Pig iron production: 9.5 t/d 6) Slag generation: 4.8 t/d The coarsening rate increased, the pulverized carbonaceous material decreased, and the proportion discharged outside the smelting reduction furnace decreased, so the amount of charged coal decreased accordingly. In addition, as the amount of coal charged decreased, the amount of heat for the decomposition of volatile matter in the coal and the amount of heat that became sensible heat due to an increase in heat content also decreased, and the amount of pig iron produced increased.

[発明の効果] 以上述べた如く本発明によれば、竪型還元炉と別個に炭
材予備処理炉を設置することなく、炉壁装入口から炉内
に装入する粉炭を加熱しつつ塊状化することができるの
で、金属の溶融還元に必要な高温を十分確保することが
できる。この結果溶融金属の生産性が上がるので製造コ
ストを低減できる優れた効果を奏する。
[Effects of the Invention] As described above, according to the present invention, powdered coal charged into the furnace from the furnace wall charging port is heated and lumped without installing a carbon material pretreatment furnace separately from the vertical reduction furnace. Therefore, it is possible to secure a sufficient high temperature necessary for melting and reducing the metal. As a result, the productivity of molten metal increases, resulting in an excellent effect of reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施例を説明する溶融還元炉のフ
ローシート、第2図は急熱温度と生成した炭素系固体還
元剤の粒径10mm以上の重量分率を示すグラフ、第3
図はダストの混合率の影響を示すグラフである。 1−・・竪型落融還元炉 2・・・炭素系固体還元剤の充填層 3・・・炭素系固体還元剤の流動層 4・・・羽口 5・・・粉鉱石 6・・・炭素系固体還元剤 7・・・炉頂装入口 8・・・炉壁装入口 9・・・フリーボード 10・・・発生ガス 11・・・溶融金属 12・・・溶融スラグ 13・・・空気および/または酸素 14・・・分級装置 15・・・ブツシャ
Fig. 1 is a flow sheet of a melting reduction furnace explaining an example of the method of the present invention, Fig. 2 is a graph showing the rapid heating temperature and the weight fraction of the produced carbon-based solid reducing agent with a particle size of 10 mm or more, and Fig. 3
The figure is a graph showing the influence of the dust mixing ratio. 1- Vertical falling smelting reduction furnace 2... Packed bed of carbon-based solid reducing agent 3... Fluidized bed of carbon-based solid reducing agent 4... Tuyere 5... Fine ore 6... Carbon-based solid reducing agent 7 Furnace top charging inlet 8 Furnace wall charging inlet 9 Free board 10 Generated gas 11 Molten metal 12 Molten slag 13 Air and/or oxygen 14...classifier 15...butsusha

Claims (1)

【特許請求の範囲】 1 竪型還元炉内の下方に炭素系固体還元剤の充填層を
形成し、その上方に炭素系固体還元剤の流動層を形成し
、竪型還元炉の側壁の外周に沿って設けられた羽口から
粉状鉱石を竪型還元炉内に吹込み金属酸化物を溶融還元
する方法において、竪型還元炉の炉頂装入口と羽口との
間の側壁に炉壁装入口を設け、該炉壁装入口から炭素系
固体還元剤となるべき粉炭を、500℃〜1200℃に
加熱しつつ塊状化して竪型還元炉内に装入することを特
徴とする溶融還元炉の操業方法。 2 炉壁装入口から装入する粉炭の加熱に炉壁装入口に
流入する炉内ガスの顕熱および/または潜熱を利用する
ことを特徴とする請求項1記載の溶融還元炉の操業方法
。 3 強粘結性の粉炭と弱粘結性の粉炭を混合した粉炭を
炉壁装入口から装入することを特徴とする請求項1また
は2記載の溶融還元炉の操業方法。 4 竪型還元炉の排ガスから捕集したダストを炉壁装入
口から装入する粉炭に混入することを特徴とする請求項
1〜3のいずれかに記載の溶融還元炉の操業方法。
[Claims] 1. A packed bed of a carbon-based solid reducing agent is formed in the lower part of the vertical reduction furnace, a fluidized bed of the carbon-based solid reducing agent is formed above it, and the outer periphery of the side wall of the vertical reduction furnace is In a method for melting and reducing metal oxides by blowing powdered ore into a vertical reduction furnace through a tuyere installed along the A melting process characterized in that a wall charging inlet is provided, and from the wall charging inlet, powdered coal to be used as a carbon-based solid reducing agent is lumped while being heated to 500°C to 1200°C and charged into a vertical reduction furnace. How to operate a reduction furnace. 2. The method of operating a smelting reduction furnace according to claim 1, wherein sensible heat and/or latent heat of furnace gas flowing into the furnace wall charging port is used to heat the powdered coal charged from the furnace wall charging port. 3. The method of operating a smelting reduction furnace according to claim 1 or 2, characterized in that powdered coal, which is a mixture of strongly caking powdered coal and weakly caking powdered coal, is charged from a furnace wall charging port. 4. The method for operating a smelting reduction furnace according to any one of claims 1 to 3, characterized in that dust collected from the exhaust gas of the vertical reduction furnace is mixed into powdered coal charged from a furnace wall charging port.
JP15239688A 1988-06-22 1988-06-22 Method of operating smelting reduction furnace Pending JPH01319620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15239688A JPH01319620A (en) 1988-06-22 1988-06-22 Method of operating smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15239688A JPH01319620A (en) 1988-06-22 1988-06-22 Method of operating smelting reduction furnace

Publications (1)

Publication Number Publication Date
JPH01319620A true JPH01319620A (en) 1989-12-25

Family

ID=15539600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15239688A Pending JPH01319620A (en) 1988-06-22 1988-06-22 Method of operating smelting reduction furnace

Country Status (1)

Country Link
JP (1) JPH01319620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508423A (en) * 2004-07-30 2008-03-21 ポスコ Pig iron manufacturing apparatus for blowing pulverized carbonaceous material into molten gasification furnace and pig iron manufacturing method
US7662210B2 (en) 2004-07-30 2010-02-16 Posco Apparatus for manufacturing molten irons by injecting fine coals into a melter-gasifier and the method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508423A (en) * 2004-07-30 2008-03-21 ポスコ Pig iron manufacturing apparatus for blowing pulverized carbonaceous material into molten gasification furnace and pig iron manufacturing method
US7662210B2 (en) 2004-07-30 2010-02-16 Posco Apparatus for manufacturing molten irons by injecting fine coals into a melter-gasifier and the method using the same
JP2011047053A (en) * 2004-07-30 2011-03-10 Posco Apparatus and method for producing molten iron including blowing fine carbonaceous material into melting gasifier

Similar Documents

Publication Publication Date Title
US6210462B1 (en) Method and apparatus for making metallic iron
KR900004107B1 (en) Process for the production of pig iron
JPH0360883B2 (en)
JPS6029430A (en) Method for recovering zn and pb from iron and steel dust
JPS6169910A (en) Fluidized bed reducing method of iron ore
EP1766099B1 (en) A direct reduction apparatus and process
JP3057576B2 (en) Method and apparatus for heat treatment of particulate material
US5201940A (en) Pre-heating and pre-reduction of a metal oxide
KR100376506B1 (en) Method for agglomerating iron ore fines for coal based iron making using waste sludge
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
JP4120230B2 (en) Operation method of mobile hearth furnace
JPH01319620A (en) Method of operating smelting reduction furnace
JPH079015B2 (en) Smelting reduction method for iron ore
CA2566318C (en) A direct reduction process
US3196000A (en) Process for the direct reduction of iron ores in rotating cylindrical furnaces
JPH0784624B2 (en) Method for producing molten metal from powdered ore containing metal oxide
JP2011179090A (en) Method for producing granulated iron
JPH0130888B2 (en)
JPH02141516A (en) Method for melt-reduction refining of iron
JP2502976B2 (en) Iron ore preliminary reduction device
JPS62227022A (en) Preheating and reducing device for iron ore
JPH1129807A (en) Production of molten iron
JPS5980705A (en) Melt reduction method of powder and granular ore by vertical type furnace
JPS62228882A (en) Iron ore spare reducing device
JPS6311610A (en) Prereduction device for iron ore