KR100376506B1 - Method for agglomerating iron ore fines for coal based iron making using waste sludge - Google Patents

Method for agglomerating iron ore fines for coal based iron making using waste sludge Download PDF

Info

Publication number
KR100376506B1
KR100376506B1 KR10-1998-0054695A KR19980054695A KR100376506B1 KR 100376506 B1 KR100376506 B1 KR 100376506B1 KR 19980054695 A KR19980054695 A KR 19980054695A KR 100376506 B1 KR100376506 B1 KR 100376506B1
Authority
KR
South Korea
Prior art keywords
iron
reduced
sludge
finely
reduced iron
Prior art date
Application number
KR10-1998-0054695A
Other languages
Korean (ko)
Other versions
KR20000039376A (en
Inventor
정우창
최낙준
정선광
강흥원
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR10-1998-0054695A priority Critical patent/KR100376506B1/en
Publication of KR20000039376A publication Critical patent/KR20000039376A/en
Application granted granted Critical
Publication of KR100376506B1 publication Critical patent/KR100376506B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/06Conveyors on which slag is cooled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 유동층식 예비환원로와 용융가스화로로 구성되는 용선제조장치에서 용융선철을 제조함에 있어서 예비환원로에서 예비환원된 미립 환원철에 폐기물 슬러지(sludge)를 혼합하여 미분 환원철을 괴상화시키는 방법에 관한 것으로서, 고온에서 슬러지내의 탄재성분및 환원철의 점결력을 이용하여 미분 환원철을 괴상화시킴으로써, 공정이 단순할 뿐만 아니라 폐기물 슬러지를 유용하게 활용할 수 있고, 또한 슬러지에 함유된 철분 회수율을 향상시킬 수 있는 슬러지를 이용한 미분 환원철의 괴상화방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for agglomeration of finely reduced reduced iron by mixing waste sludge with finely reduced fine iron reduced in the preliminary reduction furnace in manufacturing molten pig iron in a molten iron production apparatus consisting of a fluidized bed preliminary reactor and a melt gasification furnace. The present invention relates to agglomeration of finely-reduced iron by using the coking force of carbonaceous material and reduced iron in the sludge at high temperature, which not only makes the process simple but also makes effective use of waste sludge and also improves the recovery rate of iron contained in the sludge. It is to provide a method of bulking finely reduced iron using sludge, which has its purpose.

본 발명은 유동층식 환원로에서 예비환원된 미분 환원철을 용융가스화로에 장입하여 용융선철을 제조하는 방법에 있어서, 상기 미분 환원철에 슬러지를 혼합하여 미분 환원철을 괴상화하여 용융가스화로에 장입하는 슬러지를 이용한 용철제조용 미분 환원철의 괴상화방법을 그 요지로 한다.The present invention is a method for producing molten pig iron by charging the finely reduced reduced iron pre-reduced in a fluidized bed reduction furnace in a molten gasifier, by mixing the sludge with the finely reduced iron, agglomerated the finely reduced reduced iron and charged into the molten gasifier. The grating method of finely-reduced iron for manufacturing molten iron using the main point is made.

Description

슬러지를 이용한 용철제조용 미분 환원철의 괴상화방법{METHOD FOR AGGLOMERATING IRON ORE FINES FOR COAL BASED IRON MAKING USING WASTE SLUDGE}Mass refinement method of finely-reduced iron for manufacturing molten iron using sludge {METHOD FOR AGGLOMERATING IRON ORE FINES FOR COAL BASED IRON MAKING USING WASTE SLUDGE}

본 발명은 유동층식 예비환원로와 용융가스화로로 구성되는 용선제조장치에서 분철광석을 이용하여 용융선철을 제조하는 방법에 관한 것으로서, 보다 상세하게는 유동층식 예비환원로와 용융가스화로로 구성되는 용선제조장치에서 용융선철을 제조함에 있어서 예비환원로에서 예비환원된 미립 환원철에 폐기물 슬러지(sludge)를 혼합하여 미분 환원철을 괴상화시키는 방법에 관한 것이다.The present invention relates to a method for producing molten pig iron by using a ferrous iron ore in the molten iron manufacturing apparatus consisting of a fluidized bed pre-reduction reactor and a melt gasification furnace, more specifically, consisting of a fluidized bed pre-reduction reactor and a melt gasification furnace In manufacturing molten pig iron in a molten iron manufacturing apparatus, the present invention relates to a method of massifying finely reduced iron by mixing waste sludge with the finely reduced fine iron reduced in a preliminary reduction furnace.

용철을 제조하는 방법으로는 고로(blast furnace)법과 샤프트로(shaft furnace)를 사용하여 환원한 철광석을 전기로에서 용해하는 방법이 종래부터 채용되고 있으며, 상기 고로공정에서는 열원 및 환원제로써 재분진방지 및 통기성 확보를 위하여 일정한 강도와 크기를 지닌 코크스 및 소결광의 형태로 고로에 장입하고 있다.As a method of manufacturing molten iron, a method of melting iron ore reduced by using a blast furnace method and a shaft furnace in an electric furnace has been conventionally employed. In the blast furnace process, re-dust prevention and To ensure breathability, it is charged into the blast furnace in the form of coke and sintered ore with a certain strength and size.

이 때문에 고로법은 강점결탄을 건류하기 위한 코크스로 설비 및 소결광제조설비 등의 전처리설비가 필요할 뿐만 아니라 소결시 많은 에너지가 소요된다.For this reason, the blast furnace method requires not only pre-treatment facilities such as coke oven facilities and sintering ore manufacturing facilities for carbonizing strong coking coal, but also requires a lot of energy during sintering.

따라서, 고로법은 막대한 설비투자비가 필요하고, 더우기 코크스 제조 원료인 강점결탄은 세계적으로 부존량이 적어 수급상의 문제가 심각하다.Therefore, the blast furnace method requires enormous equipment investment costs, and moreover, strong coking coal, a raw material for producing coke, has a small amount of coke in the world.

현재 철의 원료인 철광석은 매장량의 약 80%가 입경 8mm이하의 분철광석상태로 존재하며, 이러한 분철광석과 분탄을 전처리 없이 직접 사용할 수 있는 유동층을 이용한 용철환원제철법이 차세대 제철공정으로 크게 각광을 받고 있으며, 최근 구미, 일본 및 우리나라 등 전세계적으로 연구개발이 활발하게 진행되고 있다.Currently, about 80% of the reserves of iron ore are present in the form of iron ore with a particle size of 8mm or less, and the molten iron reduction iron method using the fluidized bed which can directly use the iron ore and coal powder without pretreatment is greatly highlighted as the next generation steelmaking process. In recent years, R & D is actively being carried out all over the world such as Europe, Japan and Korea.

용융환원법은 철광석을 괴상상태에서 천연가스 혹은 석탄가스화 성분인 CO + H2의 환원성가스로 환원하는 예비환원공정과 예비환원된 광석을 용융하여 최종환원하는 용융환원공정으로 구성된다.The melt reduction process consists of a preliminary reduction process for reducing iron ore to a reducing gas of CO + H 2 , which is a natural gas or coal gasification component, and a molten reduction process for melting and finally reducing the reduced ore.

이중 예비환원공정으로는 입도분포가 넓은 분철광석을 기존 고로공정에서 철의 원료로 사용하는 소결광 및 펠렛광등과 같이 사전처리 없이 직접사용하므로써 궁극적으로 소결공정의 생략이 가능토록 하기 위한 공정이 요구되어 진다.The preliminary reduction process requires a process to allow the omission of the sintering process by using the ferrite ore with a large particle size distribution directly without pretreatment such as sinter ore and pellet ore which are used as raw materials of iron in the existing blast furnace process. Lose.

따라서, 원료의 제약성을 극복하고 괴상화하는 중간공정단계의 부대설비를 생략하고 분철광석을 직접 사용함으로써 상당항 원가절감을 가져올수 있을 것으로 예상된다.Therefore, it is expected that significant cost savings can be achieved by eliminating the auxiliary facilities in the intermediate process step that overcomes the constraints of raw materials and directly using the iron ore.

이러한 분철광석의 가스환원에 있어서는 통기성의 확보, 반응기내의 균일한 온도분포 및 가스와 고체의 접촉면적을 크게 하여 반응성을 좋게하기 위하여 유동층법이 필수적이다.In gas reduction of such iron ore, the fluidized bed method is essential to ensure air permeability, uniform temperature distribution in the reactor, and to increase reactivity by increasing the contact area of gas and solid.

현재까지 상업화공정으로 개발중인 유동층을 이용하여 철광석을 환원하는 대표적인 공정으로는 일본의 DIOS, 호주의 HISMELT, 베네주엘라/오스트리아의 FIOR Process, 및 한국의 FINEX 법 등이 있다.Representative processes for reducing iron ore using a fluidized bed currently being developed as a commercialization process include DIOS in Japan, HISMELT in Australia, FIOR Process in Venezuela / Austria, and FINEX method in Korea.

이와 같은 용융환원법에 있어서는 유동층식 예비환원로에서 환원된 환원철을 용융가스화로로 장입하여 용융선철을 제조하는 방식이 채용되고 있다.In such a melt reduction method, a method of producing molten pig iron by charging reduced iron reduced in a fluidized bed preliminary reduction furnace into a melt gasifier is employed.

상기와 같이 분철광석을 용융환원함에 있어서, 유동층식환원로에서 배출된 환원철를 용융가스화로로 중력투입하는 경우, 용융가스화로의 상부에서 석탄의 가스화에 의해 발생, 배출되는 환원가스의 고속상승흐름과 함께 중/미립 환원철의 비산으로 인하여 배가스내 미립분철광석의 농도를 증가시켜 사이클론의 부하가 중대하고 결국 미분의 비산손실의 증대로 인하여 철분회수율이 떨어져 경제성이 저하하게 된다.In the melting reduction of the iron ore as described above, in the case of gravity input of the reduced iron discharged from the fluidized-bed reduction reactor to the melt gasifier, the high-speed rise flow of the reducing gas generated and discharged by the gasification of coal in the upper portion of the melt gasifier and At the same time, the concentration of fine iron ore in the flue-gas is increased due to the scattering of heavy and fine reduced iron, and the cyclone load is severe.

상기한 문제점을 해결하기 위하여, 미국특허제 4,978,387호와 대한민국 특허출원제87-12076호 및 일본특개소 62-224620호에서는 미립환원철을 용융로로 투입하는 방법으로 운송가스와 버너를 이용하고 있다.In order to solve the above problems, US Pat. No. 4,978,387, Korean Patent Application No. 87-12076, and Japanese Patent Laid-Open No. 62-224620 use a transport gas and a burner as a method of injecting fine reducing iron into a melting furnace.

그러나, 이러한 방법은 유동층에서 환원된 미분철광석을 배출구로부터 버너입구까지 운송하기 위한 막대한 양의 가스가 필요할 뿐만 아니라 미분철광석에 의해 버너 주위가 심하게 마모되어 버너가스를 자주 교체해야 하는 문제점이 있으며, 가스취입에 의한 분체의 재분진화현상이 일어나 분진이 예비환원로로 도입되어 환원로 분산판의 막힘현상이나 유동층 노벽에 부착되어 설비 및 조업시간에 막대한 지장을 초래하게 된다.However, this method requires not only a huge amount of gas for transporting the reduced fine iron ore from the fluidized bed from the outlet to the burner inlet, but also requires frequent replacement of the burner gas due to severe wear of the fine iron ore around the burner. Re-dusting of the powder by blowing causes dust to be introduced into the preliminary reduction reactor, which leads to blockage of the reduction plate distribution plate or adhesion to the fluidized bed furnace wall, which causes enormous disruption in equipment and operation time.

또한, 일본특개평1-116035호, 1-119631호, 1-188635호, 1-252714호에는 분철광석에 석탄을 혼합하고 이 혼합물을 냉간 혹은 열간성형을 통하여 제조한 괴상화 브리케트(briquette)를 용융가스화로로 투입하는 방법이 제안되어 있다.In addition, Japanese Patent Application Laid-Open Nos. 1-116035, 1-119631, 1-188635, and 1-252714 have a coal mixed briquette ore and the mixture is produced by cold or hot forming. Has been proposed to inject a gas into a melt gasifier.

이들 방법들은 혼합물을 괴상화하는 성형기 등의 부대설비가 별도로 설치되어야 하며, 또한 괴상화 과정없이 직접 중력투입이 가능한 대립철광석까지도 미립철광석과 함께 혼합괴상화되므로 입도분포가 넓은 성형물의 기공율이 증가하여 브리케트 압축강도가 저하한다. 이는 성형기의 용량이 커지고 탄재 소요량도 증가하는 문제점이 있다.In these methods, additional equipments such as molding machines to bulk the mixture should be separately installed, and even allergic ores that can be directly gravity-injected without bulking are mixed together with the fine iron ores so that the porosity of the molding having a wide particle size distribution increases. Briquette compressive strength decreases. This has a problem in that the capacity of the molding machine increases and the carbonaceous material requirements also increase.

한편, 오스트리아 특허 제AT 1234/95호는 유동층 예비환원로 배출구와 용융가스화로 내부에 연결한 장입관을 통하여 산소를 취입하면서 미분환원철을 중력장입하는 방법이 제안되어 있다.On the other hand, Austrian Patent No. 1234/95 proposes a method of gravity charging finely-reduced iron while blowing oxygen through a fluidized bed pre-reduction reactor outlet and a charging pipe connected inside the melt gasifier.

그러나, 이러한 방법은 고온의 산화성 분위기에서 장시간 조업에 사용할 수 있는 내구성소재 개발의 어려운점과 추가 산소로 인한 용융로의 환원가스 산화도가 높아예비원로로 가스가 유입되어 분철광석과 반응시 반응율 저하를 초래하는 문제점이 있다.However, this method has high difficulty in developing durable materials that can be used for long time operation in high temperature oxidizing atmosphere and high oxidation rate of reducing gas in the melting furnace due to additional oxygen. There is a problem that causes.

본 발명자들은 상기와 같은 종래방법의 제반 문제점을 해결하기 위하여 연구 및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게된 것으로서, 본 발명은 고온에서 슬러지내의 탄재성분 및 환원철의 점결력을 이용하여 미분 환원철을 괴상화시킴으로써, 공정이 단순할 뿐만 아니라 폐기물 슬러지를 유용하게 활용할 수 있고, 또한 슬러지에 함유된 철분 회수율을 향상시킬 수 있는 슬러지를 이용한 미분 환원철의 괴상화방법을 제공하고자 하는데, 그 목적이 있다.The present inventors have conducted research and experiments to solve all the problems of the conventional method as described above, and based on the results of the present invention, the present invention uses the coking force of carbonaceous material and reduced iron in the sludge at high temperature. By agglomerating finely-reduced iron, the process is not only simple, but it is possible to provide waste sludge usefully, and also to provide a method for agglomeration of finely-reduced iron using sludge which can improve the recovery rate of iron contained in the sludge. There is a purpose.

도 1은 통상적인 유동층식 예비환원장치를 사용하여 용선을 제조하는 용선제조장치 를 나타내는 구성도1 is a block diagram showing a molten iron manufacturing apparatus for producing molten iron using a conventional fluidized bed pre-reduction device

도 2는 본 발명에 부합되는 혼합기가 구비되어 있는 용선제조장치를 나타내는 구성도Figure 2 is a block diagram showing a molten iron manufacturing apparatus equipped with a mixer in accordance with the present invention

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

20... 예비환원로 32... 중/미립 환원철 배출관 40... 용융가스화로20 ... Preliminary reduction furnace 32 ... Medium and fine reduced iron discharge pipe 40 ... Melting gasifier

50... 혼합기 51... 배출 스크류 52... 진동기 53... 슬러지 공급관50 ... mixer 51 ... drain screw 52 ... vibrator 53 ... sludge supply line

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 유동층식 환원로에서 예비환원된 미분 환원철을 용융가스화로에 장입하여 용융선철을 제조하는 방법에 있어서, 상기 미분 환원철에 슬러지를 혼합하여 미분 환원철을 괴상화하여 용융가스화로에 장입하는 슬러지를 이용한 용철제조용 미분 환원철의 괴상화 방법에 관한 것이다.The present invention is a method for producing molten pig iron by charging the finely reduced reduced iron pre-reduced in a fluidized bed reduction furnace in a molten gasifier, by mixing the sludge with the finely reduced iron, agglomerated the finely reduced reduced iron and charged into the molten gasifier. The present invention relates to a method for massifying finely-reduced iron for manufacturing molten iron.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

분철광석을 이용하여 용철을 제조하는 방법에 있어서는 통상, 도 1에 나타나 있는바와 같이, 분철광석을 예비환원로(20)에서 입도별즉, 대립이 존재하는 로 하부(21)와 중/미립(미분)이 존재하는 로 상부(22)에서 각각 예비환원시킨후, 예비환원한 분철광석중 대립 환원철은 중력낙하에 의해 대립환원철 배출관(31)을 통해 용융가스화로(40)에 장입되고, 중/미립 환원철은 중/미립 환원철 배출관(32)을 통해 용융가스화로(40)에 장입되어 용융환원되므로서 용철이 제조된다.In the method of manufacturing molten iron using the iron-iron ore, as shown in FIG. 1, the iron-iron ore is preliminarily reduced in the preliminary reduction furnace 20, that is, the lower part 21 and the medium / fine grain (fine powder) in which alleles exist. After the preliminary reduction in each of the upper portion 22 of the furnace), the reduced iron in the pre-reduced iron ore is charged into the molten gasifier 40 through the allele reduction iron discharge pipe 31 by gravity drop, Reduced iron is charged into the melt gasifier (40) through the medium / fine reduced iron discharge pipe (32) is melt-reduced molten iron is produced.

즉, 용융가스화로(40)에서 발생한 환원가스에 의해 예비환원로(20)내에서 분철광석을 환원시킬 경우, 유속에 따라 분철광석의 입경 500㎛를 기준으로 로 상부(22)에는 500㎛이하의 미분(중/미립)이 존재하고, 로 하부(21)에는 500㎛이상의 대립이 존재하게 된다.That is, when reducing the iron ore in the preliminary reduction furnace 20 by the reducing gas generated in the molten gasifier 40, 500 μm or less in the upper part of the furnace 22 based on the particle diameter of 500 μm of the iron ore according to the flow rate Differentials (medium / fine) exist, and in the lower part of the furnace 21, opposition of 500 micrometers or more exists.

이때, 500㎛이상의 대립은 대립환원철 배출관(31)을 통해 용융가스화로(40)에 중력 장입되고, 로 상부(22)에 존재하는 500㎛이하의 미분은 괴상화 없이 용융가스화로(40)로 장입할 경우, 용융가스화로(40)의 상부의 석탄가스화에 의해 발생, 배출되는 환원가스의 고속 상승 흐름과 함께 환원철의 재비산으로 인하여 배가스내 미립 환원철의 농도를 증가시켜 사이클론이 부하가 증대하고 결국 미분의 비산손실의 증대로 인하여 철분회수율이 떨어져 경제성이 저하하게 된다.At this time, the opposition of 500㎛ or more is gravity-charged into the molten gasifier 40 through the allele reduction iron discharge pipe 31, the fine powder of 500㎛ or less present in the upper portion of the furnace 22 to the molten gasifier 40 without bulking When charged, the cyclone increases the load by increasing the concentration of the fine reduced iron in the exhaust gas due to the re-flying of the reduced iron along with the high-speed ascending flow of the reducing gas generated and discharged by the coal gasification of the upper portion of the melt gasifier (40). As a result, the iron recovery rate is lowered due to an increase in the scattering loss of fines, which lowers the economic efficiency.

따라서, 본 발명은 슬러지중의 탄재성분 및 미분 환원철의 고온에서의 점결성을 이용하여 미분 환원철을 슬러지와 혼합 괴상화하여 용융가스화로(40)로 장입하므로서, 상기한 문제점을 해결하고자 하는 것이다.Accordingly, the present invention is intended to solve the above problems by charging the finely-distilled reduced iron mixed with the sludge and charging the molten gasifier 40 by using the coking property at the high temperature of the carbonaceous material component and finely-reduced iron in the sludge.

본 발명에 부합되는 혼합기의 일례가 구비되어 있는 용선제조장치가 도 2에 나타나 있다.The molten iron manufacturing apparatus provided with an example of the mixer which concerns on this invention is shown in FIG.

도 2에 나타나 있는 바와 같이, 본 발명의 혼합기(50)는 예비환원로(20)에서 예비환원된 중/미립 환원철을 용융가스화로(40)에 공급하는 중/미립 환원철 배출관(32)에 설치된다.As shown in FIG. 2, the mixer 50 of the present invention is installed in the medium / fine reduced iron discharge pipe 32 for supplying the reduced / reduced iron pre-reduced iron in the preliminary reduction furnace 20 to the molten gasifier 40. do.

상기 혼합기(50)는 그 상부가 상기 예비환원로(20)에서 배출되는 중/미립 환원철을 공급 받도록 중/미립 환원철 배출관(32)에 연결되어 있으며, 그 저부에는 하나 또는 복수개의 배출 스크류(51) 및 진동기(52)가 각각 구비되어 있다.The mixer 50 is connected to the medium / fine reduced iron discharge pipe 32 so that the upper portion thereof receives the medium / fine reduced iron discharged from the preliminary reduction path 20, one or a plurality of discharge screws 51 at the bottom thereof. And a vibrator 52 are respectively provided.

그리고, 상기 혼합기(50)의 상부에는 슬러지 공급관(53)이 연결되어 있다.The sludge supply pipe 53 is connected to the upper portion of the mixer 50.

상기 진동기(52)는 장입되는 액상의 슬러지의 원활한 건조 및 슬러지와 미분환원철의 혼합을 적절히 하도록 구성된다.The vibrator 52 is configured to smoothly dry the charged liquid sludge and to mix the sludge with finely divided iron.

즉, 상기 진동기(52)는 슬러지와 미분 환원철을 원활히 혼합되게 하여 미분 환원철의 괴상화가 원활히 이루어지도록 구성된다.That is, the vibrator 52 is configured to smoothly mix the sludge and finely-reduced iron, so that the agglomeration of finely-reduced iron is smoothly performed.

상기 스크류(51)는 슬러지와 미분 환원철의 혼합물을 상기 중/미립 환원철 배출관(32)으로 배출하도록 구성되며, 이렇게 하므로서 슬러지와 미분 환원철의 혼합물은 상기 중/미립 환원철 배출관(32)을 통해 용융가스화로(40)에 공급된다.The screw 51 is configured to discharge the mixture of sludge and finely-reduced iron to the heavy / fine reduced iron discharge pipe 32, so that the mixture of sludge and finely-reduced iron is melted through the medium / finely reduced iron discharge pipe (32) It is supplied to the furnace 40.

상기와 같이, 슬러지와 미분 환원철의 혼합물이 상기 중/미립 환원철 배출관(32)을 통해 용융가스화로(40)에 공급될 때, 즉, 상기 중/미립 환원철 배출관(32)을 이동하면서 미분 환원철은 슬러지에 의해 괴상화된 후 용융가스화로(40)에 공급된다.As described above, when the mixture of sludge and finely-reduced iron is supplied to the molten gasifier 40 through the medium / fine reduced iron discharge pipe 32, that is, finely reduced iron while moving the heavy / fine reduced iron discharge pipe 32 After being massed by sludge, it is supplied to the molten gasifier 40.

본 발명에 따라 괴상화되는 미분 환원철은 상기 중/미립 환원철 배출관(32)을 통해 용융가스화로(40)에 장입되는 미분 환원철로서, 그 입경은 대략 500㎛이하정도 이다.The finely-reduced iron which is agglomerated according to the present invention is finely-reduced iron that is charged into the molten gasifier 40 through the medium / fine particulate iron discharge pipe 32, and the particle size thereof is about 500 μm or less.

그러나, 본 발명은 이에 한정되는 것은 아니다.However, the present invention is not limited to this.

또한, 본 발명은 도 2에 나타나 있는 일단 방식의 유동층식 예비환원로에만 한정되는 것은 아니며, 다단식 유동층식 예비환원로에서 예비환원되어 용융가스화로에 장입되는 미분환원철의 괴상화에도 적용됨은 물론이다.In addition, the present invention is not limited to the one-bed fluidized bed preliminary reactor shown in FIG. 2, but is also applied to the bulking of the finely-reduced iron which is pre-reduced in the multistage fluidized bed preliminary reactor and charged into the melt gasifier. .

본 발명에 적용될 수 있는 슬러지로는 예비환원 후 용융환원하는 용철제조공정에 있어서, 용융가스화로에서 발생하는 더스트와 예비환원로에서 발생되는 최종 더스트를 침적하여 생성된 슬러지를 들 수 있다.Examples of the sludge that can be applied to the present invention include sludge produced by depositing dust generated in a molten gasifier and final dust generated in a preliminary reduction furnace in a molten iron manufacturing process after preliminary reduction.

대표적인 공정으로는 코렉스(COREX)공정과 FINEX 공정이 있다.Representative processes include the COREX process and the FINEX process.

본 발명에 바람직하게 적용될 수 있는 슬러지로는 중량%로 T.Fe:5-50%, SiO2:2-20%, CaO:3-30%, Al2O3: 2.0-11.5%, MgO: 1.0-3.5%, C: 2-87%, TiO2: 1%이하, P2O5: 1%이하, K2O: 1.5%이하, Na2O: 1%이하, S: 1%이하로 조성되는 슬러지를 들 수 있다.Sludge which can be preferably applied to the present invention is T. Fe: 5-50%, SiO 2 : 2-20%, CaO: 3-30%, Al 2 O 3 : 2.0-11.5%, MgO: 1.0-3.5%, C: 2-87%, TiO 2 : 1% or less, P 2 O 5 : 1% or less, K 2 O: 1.5% or less, Na 2 O: 1% or less, S: 1% or less Sludge to be prepared.

상기 슬러지중의 C은 열분해될 때 자체점결성을 가지며, 그 양이 많을수록 효과가 크고, 환원가스 발생으로 인한 환원력 증대 및 환원철을 용융가스화로에서 용해시 열원및 환원가스로 작용하여 여분의 석탄양을 줄일 수 있다.C in the sludge has self-adhesiveness when thermally decomposed, and the greater the amount, the greater the effect. The increase in reducing power due to reducing gas generation and the reduction of the reduced iron in the melt gasifier act as a heat source and reducing gas to reduce the amount of extra coal. Can be reduced.

상기 미분 환원철에 대한 슬러지의 혼합량은 중량%로 10-90%가 바람직하다.The amount of sludge mixed with the finely reduced iron is preferably 10-90% by weight.

상기 슬러지의 혼합량이 10%이하인 경우에는 괴상화된 혼합물의 점결성이 떨어져 낙하에 필요한 압축강도의 확보가 곤란하고,When the amount of the sludge is less than 10%, it is difficult to secure the compressive strength necessary for falling, because the cohesiveness of the massed mixture is poor.

또한, 상기 슬러지의 혼합량이 90%이상인 경우에는 예비환원로의 상부에서 배출되는 700-900℃의 고온의 환원철이 다량의 상온 슬러지와 혼합되게 되어 혼합기(50)내의 온도가 600℃이하로 낮아져 미분 환원철의 괴상화 강도가 저하되어 용융가스화로에 장입시 분화되어 재 분진화될 우려가 있다.In addition, when the mixing amount of the sludge is 90% or more, 700-900 ° C. high temperature reduced iron discharged from the upper part of the preliminary reduction furnace is mixed with a large amount of room temperature sludge so that the temperature in the mixer 50 is lowered below 600 ° C. There is a fear that the bulking strength of the reduced iron is lowered, and when it is charged into the molten gasifier, it is re-dusted.

상기 혼합기(50)에서 미분 환원철과 슬러지를 혼합한 후 600-900℃의 온도범위에서 2분이상 유지되도록 하는 것이 바람직하다.After mixing the finely reduced iron and sludge in the mixer 50, it is preferable to maintain at least 2 minutes in the temperature range of 600-900 ℃.

즉, 600-900℃의 온도로 유지되는 혼합기(50)에서 진동기(52)를 진동시키면서 미분 환원철과 슬러지를 혼합한 후 2분이상 유지하므로서, 미분 환원철은 슬러지에 의해 대략 500㎛이상의 입경을 갖도록 괴상화 된다.That is, by mixing the finely reduced iron and sludge while vibrating the vibrator 52 in the mixer 50, which is maintained at a temperature of 600-900 ℃, and maintained for at least 2 minutes, the finely reduced iron has a particle size of approximately 500㎛ or more by the sludge Is agglomerated.

상기 유지 온도가 600℃이하이거나 유지시간이 2분미만인 경우에는 미분탄의 응집이 잘 이루어지지 않아서 혼합물의 압축강도가 저하한다.When the holding temperature is 600 ° C. or less or the holding time is less than 2 minutes, the powdered coal is not aggregated well, and thus the compressive strength of the mixture is lowered.

한편, 예비환원된 미분 환원철을 괴상화하여 이를 용융가스화로에 중력장입함에 있어서 낙하거리와 용융가스화로의 가스 상승에 따라 달라질 수 있지만, 일반적인 용융가스화로에 있어서 낙하 높이가 10m인 것을 상정할 때, 괴상화된 분체의 바람직한 압축강도는 약 5kg/㎠이상이어야 한다.On the other hand, the mass of pre-reduced finely-reduced reduced iron may vary depending on the drop distance and the rise of the gas to the melt gasifier when gravity is charged into the melt gasifier, but it is assumed that the drop height is 10 m in a typical melt gasifier. The preferred compressive strength of the agglomerated powder should be at least about 5kg / cm2.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예1Example 1

하기 표1과 같은 성분을 가진 슬러지와 하기 표 2에 나타낸 분철광석 1mm이하인 환원철을 시료로 하여 전기로를 사용하여 실험을 수행하였다.Experiments were performed using an electric furnace using sludge having a component as shown in Table 1 below and reduced iron having a powder of iron ore 1 mm or less shown in Table 2 as a sample.

실험동안 환원철의 재산화 및 일반탄의 연소를 방지하기 위하여 미량의 질소(10ml/min)를 공급하였다.Traces of nitrogen (10 ml / min) were fed to prevent reoxidation of reduced iron and combustion of coal.

슬러지 조성Sludge composition (단위 : 중량%)(Unit: weight%) T.Fe:25.3%, SiO2:8.7%, CaO:8.4%, Al2O3: 5.5%, MgO: 4.1%, C: 43.2%,TiO2: 0.4%, P2O5: 0.3%, K2O: 0.9%, Na2O: 0.5%, S: 0.7%이하, 기타:2%T.Fe: 25.3%, SiO 2 : 8.7%, CaO: 8.4%, Al 2 O 3 : 5.5%, MgO: 4.1%, C: 43.2%, TiO 2 : 0.4%, P 2 O 5 : 0.3%, K 2 O: 0.9%, Na 2 O: 0.5%, S: 0.7% or less, other: 2%

분철광석의 입도분포Particle Size Distribution of Iron Iron Ore 0-106㎛:16%. 106-250㎛: 34%, 250-500㎛: 31%, 500-1000㎛: 19%0-106 μm: 16%. 106-250 μm: 34%, 250-500 μm: 31%, 500-1000 μm: 19%

실험에 사용한 시료는 85% 예비환원된 환원철로서 슬러지와 혼합비는 중량%로 8:2로 하였다.The sample used in the experiment was 85% pre-reduced reduced iron, and the sludge and mixing ratio was set to 8: 2 by weight.

이와 같은 혼합시료를 도가니에 담아 800℃로 미리 가열된 전기로에 넣은 후 반응시간을 각각 30초, 1분, 2분, 5분, 10분, 15분, 20분, 25분으로 하여 반응시킨 후, 압축강도를 측정하였으며, 이때, 측정된 시료의 압축강도는 하기 표 3과 같다.After putting the mixed sample in the crucible and putting it in an electric furnace preheated to 800 ° C., the reaction time was 30 seconds, 1 minute, 2 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 25 minutes. , The compressive strength was measured, and the compressive strength of the measured sample is shown in Table 3 below.

시간에 따른 압축강도 변화Compressive Strength Change with Time 반응시간 (분)Response time (minutes) 0.50.5 1One 22 55 1010 1515 2020 압축강도(kg/㎠)Compressive strength (kg / ㎠) 22 33 5.55.5 1818 1414 1111 1111

상기 표3에 나타난 바와 같이, 반응시간이 2분이하 일때에는 장입 최소 압축강도인 5 kg/㎠에 달하였으며, 반응시간이 5분이었을때 최대 압축강도를 나타내었고, 5분을 초과하였을 때에는 반대로 압축강도가 줄어 들었다.As shown in Table 3 above, when the reaction time was less than 2 minutes, the charging minimum compressive strength reached 5 kg / cm 2, and when the reaction time was 5 minutes, the maximum compressive strength was reached. The compressive strength was reduced.

실시예2Example 2

상기 실시예 1과 동일한 조건하에서 반응시간을 5분으로 고정하고 반응온도를 400-900℃로 변화시켜 실험을 수행하고 반응후 온도변화에 따른 압축강도의 영향을 나타내었다.Under the same conditions as in Example 1, the reaction time was fixed at 5 minutes and the reaction temperature was changed to 400-900 ° C. to perform the experiment and showed the effect of compressive strength according to the temperature change after the reaction.

이때 측정된 시료의 압축강도는 하기 표 4와 같다.The compressive strength of the sample measured at this time is shown in Table 4 below.

온도에 따른 압축강도 변화Compressive Strength Change with Temperature 반응온도(℃)Reaction temperature (℃) 400400 500500 600600 700700 800800 850850 900900 압축강도(kg/㎠)Compressive strength (kg / ㎠) 5.55.5 77 1212 1616 1818 2020 2424

상기 표4에 나타난 바와 같이 반응온도가 상승될수록 반응후 시료의 압축강도는 증가하였으나, 열손실및 실제 유동층식 예비환원로에서 반응온도는 850℃이하에서 행해지므로 700-850℃가 가장 바람직함을 알 수 있다.As shown in Table 4, as the reaction temperature increases, the compressive strength of the sample after the reaction increases, but the heat loss and the reaction temperature in the real fluidized bed preliminary reactor are performed below 850 ° C. Therefore, 700-850 ° C is most preferable. Able to know.

실시예 3Example 3

실시예1과 동일한 조건하에서 반응온도 800℃, 반응시간을 5분으로 고정하고 슬러지 배합비를 5-20중량%로 변화시켜 실험을 수행하고 반응후 슬러지 배합비에 따른 압축강도의 영향을 나타내었다.Under the same conditions as in Example 1, the reaction temperature was 800 ° C., the reaction time was fixed at 5 minutes, and the sludge blending ratio was changed to 5-20% by weight.

이때 측정된 시료의 압축강도는 하기 표 5와 같다.The compressive strength of the measured sample is shown in Table 5 below.

슬러지 배합비에 따른 압축강도 변화Compressive Strength Variation According to Sludge Mixing Ratio 배합비(중량%)Compounding ratio (% by weight) 55 1010 1515 2020 2525 3030 4040 압축강도(kg/㎠)Compressive strength (kg / ㎠) 44 1212 1515 1818 2525 3838 5656

상기 표5에 나타난 바와 같이, 슬러지 배합비가 증가할 수록 반응후 시료의 압축강도는 증가하였으며, 배합비가 10%이상이 되면 용융가스화로 장입에 필요한 강도를 얻을 수 있었으며, 배합비 20%이상에서는 압축강도가 급격히 증가함을 알 수 있다.As shown in Table 5, as the sludge blending ratio increased, the compressive strength of the sample after the reaction increased, and when the blending ratio was 10% or more, the strength required for charging by melting gasification was obtained, and the compressive strength was above 20%. It can be seen that increases rapidly.

상술한 바와 같이, 본 발명은 폐기물 슬러지를 유동층식 예비환원로에서 환원된 분철광석과 함께 고온에서 혼합,괴상화하여 용융가스화로내로 연속적으로 중력낙하방식에 의해 장입하므로서 공정이 단순할 뿐만 아니라 용융가스화로내에서의 미분 환원철의 비산을 억제할 수 있고 슬러지내에 함유된 철분을 환원함으로서 철분 회수율을 향상시킬 수 있는 효과가 있는 것이다.As described above, the present invention not only simplifies the process but also melts the waste sludge by mixing with a reduced iron ore reduced in the fluidized bed pre-reduction furnace at high temperature and charging it into the melt gasifier by the continuous gravity drop method. It is possible to suppress the scattering of the finely-reduced iron in the gasifier and to reduce the iron content contained in the sludge, thereby improving the iron recovery rate.

Claims (2)

유동층식 예비환원로(20)에서 예비환원된 미분 환원철을 중/미립(미분) 환원철 배출관(32)을 통해 용융가스화로(40)에 장입하여 용융선철을 제조하는 방법에 있어서,In the method for manufacturing molten pig iron by charging the finely reduced reduced iron pre-reduced in the fluidized bed pre-reduction furnace 20 into the molten gasifier 40 through the medium / fine (fine) reduced iron discharge pipe (32), 그 상부에 상기 중/미립 환원철 배출관(32) 및 슬러지 공급관(53)이 연결되고, 그 저부에는 미분 환원철과 슬러지의 혼합물을 상기 중/미립 환원철 배출관(32)으로 배출하도록 구성되는 하나 또는 복수개의 배출 스크류(51) 및 하나 또는 복수개의 진동기(52)가 각각 구비되는 혼합기(50)를 설치하는 단계;One or a plurality of medium / fine reduced iron discharge pipes 32 and a sludge supply pipe 53 are connected to an upper portion thereof, and a lower portion thereof is configured to discharge a mixture of finely reduced iron and sludge into the medium / fine reduced iron discharge pipes 32. Installing a mixer 50 each having an exhaust screw 51 and one or a plurality of vibrators 52; 상기 중/미립 환원철 배출관(32)을 통해 공급되는 미분 환원철에 10-90중량%의 슬러지를 상기 혼합기(50)에 공급하는 단계;Supplying 10-90% by weight of sludge to the mixer 50 in the finely reduced iron which is supplied through the medium / fine reduced iron discharge pipe 32; 상기 혼합기(50)내의 온도를 600-900℃로 유지하고 상기 진동기(52)를 진동하면서 미분 환원철과 슬러지를 혼합한 후, 2분이상 유지하여 미분 환원철을 괴상화하는 단계;및Maintaining the temperature in the mixer 50 at 600-900 ° C. and mixing the finely divided reduced iron and sludge while vibrating the vibrator 52, and maintaining at least 2 minutes to bulk the finely reduced reduced iron; and 상기와 같이 슬러지에 의해 괴상화된 미분 환원철을 상기 배출 스크류(51)를 통해 상기 중/미립 환원철 배출관(32)으로 배출하여 용융가스화로(40)에 공급하는 단계를 포함하여 구성되는 슬러지를 이용한 용철제조용 미분 환원철의 괴상화 방법Using the sludge composed of the fine iron reduced by the sludge as described above discharged to the medium / fine reduced iron discharge pipe 32 through the discharge screw 51 and supplied to the molten gasifier (40) Bulking method of finely-reduced iron for manufacturing molten iron 제1항에 있어서, 상기 슬러지가 중량%로 T.Fe:5-50%, SiO2:2-20%, CaO:3-30%,Al2O3: 2.0-11.5%, MgO: 1.0-3.5%, C: 2-43.2%, TiO2: 1%이하, P2O5: 1%이하, K2O: 1.5%이하, Na2O: 1%이하, 및 S: 1%이하로 조성되는 것을 특징으로 하는 슬러지를 이용한 용철제조용 미분 환원철의 괴상화 방법.The method according to claim 1, wherein the sludge is T.Fe: 5-50%, SiO 2 : 2-20%, CaO: 3-30%, Al 2 O 3 : 2.0-11.5%, MgO: 1.0- 3.5%, C: 2-43.2%, TiO 2 : 1% or less, P 2 O 5 : 1% or less, K 2 O: 1.5% or less, Na 2 O: 1% or less, and S: 1% or less A method of massifying finely-reduced iron for manufacturing molten iron using sludge, which is characterized by the above-mentioned.
KR10-1998-0054695A 1998-12-12 1998-12-12 Method for agglomerating iron ore fines for coal based iron making using waste sludge KR100376506B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0054695A KR100376506B1 (en) 1998-12-12 1998-12-12 Method for agglomerating iron ore fines for coal based iron making using waste sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0054695A KR100376506B1 (en) 1998-12-12 1998-12-12 Method for agglomerating iron ore fines for coal based iron making using waste sludge

Publications (2)

Publication Number Publication Date
KR20000039376A KR20000039376A (en) 2000-07-05
KR100376506B1 true KR100376506B1 (en) 2003-05-17

Family

ID=19562598

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0054695A KR100376506B1 (en) 1998-12-12 1998-12-12 Method for agglomerating iron ore fines for coal based iron making using waste sludge

Country Status (1)

Country Link
KR (1) KR100376506B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101118302B1 (en) * 2004-12-29 2012-03-20 주식회사 포스코 An apparatus for separating fine direct reduced irons, an apparatus for manufacturing molten irons provided with the same and method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100376540B1 (en) * 1999-12-24 2003-03-17 재단법인 포항산업과학연구원 A method for manufacturing reduced ore by solid phase direct reduction process
AU2002304694B2 (en) * 2001-05-08 2007-07-05 Primetals Technologies Austria GmbH Method and installation for utilizing waste products, which contain hydrocarbons and iron oxide, particularly mill scale sludges and coal fines
KR100944129B1 (en) * 2008-05-23 2010-02-24 (주)부국테크 Balance Weight and Ingot for making Balance Weight and Method of the same
KR101406622B1 (en) * 2012-12-21 2014-06-12 주식회사 포스코 Method for recycling iron-bearing byproduct and device used for the same
EP2980232B1 (en) * 2013-03-26 2018-11-14 Posco Method for recycling iron-containing by-products discharged from coal-based ironmaking process, system used therefor, and direct-reduced iron agglomeration system
KR102045597B1 (en) * 2015-10-30 2019-11-18 주식회사 포스코 The method for recycling by-product emitted from coal-based iron making process and equipment for hot compacting iron
KR101677409B1 (en) * 2016-01-22 2016-11-18 주식회사 포스코 Method and equipment for hot compacting iron recycling by-product emitted from coal-based iron making process
KR102083539B1 (en) 2017-08-23 2020-04-23 주식회사 포스코 Apparatus for manufacturing pig iron and method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101118302B1 (en) * 2004-12-29 2012-03-20 주식회사 포스코 An apparatus for separating fine direct reduced irons, an apparatus for manufacturing molten irons provided with the same and method thereof

Also Published As

Publication number Publication date
KR20000039376A (en) 2000-07-05

Similar Documents

Publication Publication Date Title
US4701214A (en) Method of producing iron using rotary hearth and apparatus
KR101158883B1 (en) Self-reducing, cold-bonded pellets
KR100939268B1 (en) Apparatus for manufacturing molten irons and method for manufacturing molten irons using the same
KR100584745B1 (en) An apparatus and method for recycling dust and sludge containing iron ironmaking process using coal and fine ore
RU2194771C2 (en) Method of metallic iron production and device for method embodiment
US2805929A (en) Process for obtaining iron from material containing iron oxides
KR100376506B1 (en) Method for agglomerating iron ore fines for coal based iron making using waste sludge
KR100276344B1 (en) Smelting reduction process
KR100864458B1 (en) Apparatus and method for manufacturing molten irons
JPS6164807A (en) Melt reduction method of iron ore
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
KR100498100B1 (en) A method for making molten iron by using hot compaction of fine dri and calcined additives in non-coking coal based iron making process
US3585023A (en) Method and apparatus for reduction of iron ore
KR20000064874A (en) Production method of molten pig iron or molten iron
JPH06271919A (en) Method for pre-treating coal and ore for smelting reduction furnace
JP3379360B2 (en) Hot metal production method
KR100276346B1 (en) A method for reducing the fine iron ore utilizing the device of fluidized bed type
KR100840250B1 (en) Method for manufacturing molten irons
KR100376540B1 (en) A method for manufacturing reduced ore by solid phase direct reduction process
KR100864459B1 (en) Apparatus and method for manufacturing molten irons
JPH04285106A (en) Pretreatment of coal and iron ore in smelting reduction method
JPH03287708A (en) Smelting reduction iron making method
JPH01319620A (en) Method of operating smelting reduction furnace
JP2003183714A (en) Method for operating melting/reducing furnace
KR20020074160A (en) Method for producing pig iron

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130305

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140305

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170213

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee