JPH03287708A - Smelting reduction iron making method - Google Patents

Smelting reduction iron making method

Info

Publication number
JPH03287708A
JPH03287708A JP8849990A JP8849990A JPH03287708A JP H03287708 A JPH03287708 A JP H03287708A JP 8849990 A JP8849990 A JP 8849990A JP 8849990 A JP8849990 A JP 8849990A JP H03287708 A JPH03287708 A JP H03287708A
Authority
JP
Japan
Prior art keywords
iron
coal
smelting reduction
raw material
briquettes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8849990A
Other languages
Japanese (ja)
Inventor
Katsuaki Kobayashi
小林 勝明
Katsuaki Okuhara
奥原 捷晃
Masatoshi Kuwabara
桑原 正年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8849990A priority Critical patent/JPH03287708A/en
Publication of JPH03287708A publication Critical patent/JPH03287708A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the powdering of briquettes and to increase the efficiency of utilization of coal and fine raw material for iron by mixing fine coal of a specified grain size with fine iron-contg. raw material of a specified grain size, briquetting this mixture and charging the resulting briquettes of a specified diameter as carbon material into a molten layer in a furnace from the upper part of the furnace. CONSTITUTION:Briquettes of >=2mm diameter obtd. by briquetting a mixture of fine coal of <=1mm grain size with fine iron-contg. raw material of <=0.6mm grain size are used as carbon material in smelting reduction by top blowing of oxygen. The briquettes are charged into a molten layer of raw material for iron in a smelting reduction furnace from the upper part of the furnace. The degree of powdering of the briquettes is lower than that of conventional lump coke and the amt. of the carbon material scattered is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉によることなく溶銑のような鉄−炭素合
金を製造するための方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing iron-carbon alloys such as hot metal without using a blast furnace.

(従来の技術) 鉄鉱石から溶銑を製造する方法としては、現在、高炉法
か用いられている。それは量産法としては優れた方法で
あるが、炭材として、資源的に制約のあるいわゆる原料
炭と呼ばれる粘結性の優れた石炭を用い、それを室式コ
ークス炉で乾留して得られる強度の大きいコークスを必
要とする。コークス炉は非常に高価な設備で、今後、そ
れの更新には美大な費用が必要である。そのため、今後
は室式コークス炉からのコークスを使用しないで銑鉄を
製造する方法の開発が必要である。
(Prior Art) Currently, a blast furnace method is used to produce hot metal from iron ore. Although this is an excellent method for mass production, it uses coal with excellent caking properties called coking coal, which has limited resources, and carbonizes it in a chamber coke oven. Requires a large coke. Coke ovens are very expensive equipment, and updating them in the future will require enormous costs. Therefore, in the future, it is necessary to develop a method for producing pig iron without using coke from a chamber coke oven.

このような問題点を解決するために、溶融還元法という
名称で呼はれる新製鉄性の研究か行なわれている。その
中で、ガスを上吹きできる、たとえば転炉のような反応
容器を用い、鉄鉱石あるいはその予備還元物と炭材を投
入しながら酸素を上吹きする方法は、生産性の大きな点
から、現行高炉性にとって代わる可能性の大きいものの
一つにあげられている。この方?去においては炭材とし
て石炭を直接使用する場合は、大量に産出するいわゆる
一般炭と称する石炭が使用で鮒、また、室式コークス炉
のような高価な設備を必要としない利点がある。
In order to solve these problems, research is being carried out on a new method of making iron called the smelting reduction method. Among these methods, the method of using a reaction vessel such as a converter that can blow gas upward and blowing oxygen upward while charging iron ore or its pre-reduced product and carbonaceous material is highly effective from the viewpoint of productivity. It is said to be one of the products that has a high possibility of replacing the current blast furnace. This one? In the case of directly using coal as a carbon material, it is possible to use coal called steam coal, which is produced in large quantities, and has the advantage of not requiring expensive equipment such as a chamber coke oven.

(発明が解決しようとする課題) 第3図に本発明法による溶融還元製鉄法の実施に用いる
設備の一例を示す。ガスを上吹き可能な、例えば転炉状
の容器で、酸素は上吹きランス1を通して吹き付けられ
る。底吹き羽口2からのガス底吹きは溶融物の攪拌のた
めに行なわれる。通常、窒素ガスが用いられる。この底
吹きが無ければ、高い酸化鉄の還元反応速度および伝熱
速度が得られず、本発明が必要とされる高い生産性を得
ることができない。一方、この攪拌が強くなり過ぎると
、酸素を吹いて炭材3を燃焼しつつスラグ4の中に含有
されている酸化鉄の還元を行なうと言う本発明対象プロ
セスの特徴である酸化性雰囲気とメタル5の接触を抑制
するという条件が乱されるので、例えば酸素ジェットと
メタルの接触反応のため、酸化鉄ヒユームによるダスト
発生量が増加するなどの悪影響が現われる。従って、酸
素ガスの少なくとも大半は上のランスから炉内に供給さ
れることになる。そのため大量のガスを上部より吹き込
む事が必要である。
(Problems to be Solved by the Invention) FIG. 3 shows an example of equipment used to carry out the smelting reduction iron manufacturing method according to the method of the present invention. Oxygen is blown through a top-blowing lance 1 in a container, for example, a converter, in which gas can be blown upward. Gas bottom blowing from the bottom blowing tuyeres 2 is carried out to stir the melt. Nitrogen gas is usually used. Without this bottom blowing, a high iron oxide reduction reaction rate and a high heat transfer rate cannot be obtained, and the high productivity required by the present invention cannot be obtained. On the other hand, if this stirring becomes too strong, an oxidizing atmosphere, which is a characteristic of the process of the present invention, in which iron oxide contained in the slag 4 is reduced while blowing oxygen to burn the carbonaceous material 3, is generated. Since the conditions for suppressing the contact of the metal 5 are disturbed, adverse effects such as an increase in the amount of dust generated by iron oxide fume appear due to the contact reaction between the oxygen jet and the metal. Therefore, at least the majority of the oxygen gas will be supplied into the furnace from the upper lance. Therefore, it is necessary to blow in a large amount of gas from the top.

図中6は気泡、7は耐火ライニングを示す。In the figure, 6 indicates air bubbles and 7 indicates refractory lining.

鉄原料は、鉄鉱石あるいはその予備還元物などの酸化鉄
を含有するものである。上で述べたと同じ理由で、鉄原
料は例えば粉状のものであっても、溶融層へは下部から
のインジェクションではなく上部からの投入が望まれる
。この場合微粉状の鉄含有原料は飛散しゃすし1ので粗
粒原料が望ましい。フラックスとしては生石炭などが添
加される。
The iron raw material contains iron oxide such as iron ore or its preliminary reduction product. For the same reason as stated above, even if the iron raw material is, for example, in powder form, it is desirable to inject it into the molten layer from the top rather than from the bottom. In this case, since fine powder iron-containing raw materials are easily scattered, coarse grain raw materials are desirable. Raw coal or the like is added as a flux.

炭材としては通常、塊成あるいは塊コークスを直接溶′
fJ&層に投入する方法が取られている。
The carbonaceous material is usually agglomerated or lump coke, which is directly melted.
The method used is to put it into the fJ& layer.

炭材として塊コークスを使用することは別にコークス製
造設備を必要とし炭材コストが高くなる。また、炭材と
して石炭を使用する場合は溶融層内に投入された塊成は
そこで急激な揮発分の発生に伴う粉化がおこり、一部の
粉化した石炭はガスに随伴して上部の空間から系外へ排
出される。そのため炭材の使用量が増大する現象がみら
れた。
Using lump coke as the carbon material requires separate coke production equipment, which increases the cost of the carbon material. In addition, when coal is used as a carbon material, the agglomerates introduced into the molten layer are pulverized due to the rapid generation of volatile matter, and some of the pulverized coal accompanies the gas and rises to the top. It is discharged from the space to the outside of the system. As a result, a phenomenon was observed in which the amount of carbonaceous material used increased.

一方、粉状石炭の使用は吹き込みガスによる系外への飛
散量か増加し炭材の利用効率は更に低下し、使用は困難
である。
On the other hand, the use of powdered coal increases the amount of blown gas that scatters out of the system, further reducing the utilization efficiency of the carbon material, making it difficult to use.

以上、ガスを上吹きしている反応容器を用い、鉄鉱石あ
るいはその予備還元物と炭材を投入しながら酸素を上吹
きする溶融還元製鉄法において、従来法の原材料に関す
る課題を整理すると以下のごとくである。
In the smelting reduction ironmaking process, which uses a top-blown gas reaction vessel and top-blows oxygen while charging iron ore or its pre-reduced product and carbonaceous material, the issues related to raw materials in the conventional method can be summarized as follows. That's it.

(1)粉状石炭の使用は吹き込みガスに随伴して石炭が
系外に排出してしまう割合が高くなる。そのため粉状石
炭の使用は困難である。
(1) When powdered coal is used, there is a high rate of coal being discharged out of the system along with the blown gas. Therefore, it is difficult to use powdered coal.

(2)塊状炭材ても塊石炭の使用は反応容器の中で粉化
し、その一部が吹き込みガスに随伴して上部の空間に巻
き上げられて系外に排土される。そのため炭材の原単位
の増加をひきおこす。
(2) When using lump coal, lump coal is pulverized in the reaction vessel, and a part of it is blown up into the upper space along with the blown gas and discharged out of the system. This causes an increase in the unit consumption of carbonaceous materials.

(3)また、微粉鉄含有原料も石炭に比べて程度は低い
が粗粒鉄含有原料に比べて吹き込みガスに随伴して系外
に飛散する量が多く原単位が上昇する。
(3) In addition, although the degree of fine iron-containing raw materials is lower than that of coal, compared to coarse iron-containing raw materials, the amount of raw materials containing pulverized iron is scattered out of the system along with the blown gas, and the unit consumption rate increases.

般に石炭および鉱石類は粉塊混合物の形で購入される。Coal and ores are generally purchased in the form of a powder mixture.

そのため上記の理由から粉状物の有効利用が問題となる
Therefore, for the above-mentioned reasons, effective utilization of powdered materials becomes a problem.

従って、溶融還元製鉄法の原材料の問題として塊成の溶
融層内での粉化防止と、粉状石炭および微粉鉄含有原料
を末法にいかに使用するかが大きなn題である。
Therefore, major issues regarding the raw materials for the smelting reduction iron manufacturing process are how to prevent pulverization within the molten layer of agglomeration, and how to use raw materials containing powdered coal and fine iron in the final process.

本発明は、これらの課題を解決するための方ン去である
The present invention is an alternative to solving these problems.

(課題を解決するための手段) 本発明の要旨は、ガスを上吹きしている反応容器を用い
、鉄酸化物を含む鉄原料と、炭材を添加しながら酸素を
上吹して溶融還元を行なって炭素含有合金を製造する方
法において、炭材として1mm以下の粉状石炭および0
.6m+++以下の粉状鉄含有原料の混合物を成形して
得た2mm以上の塊成物を溶融還元炉の上部より溶融層
に投入することを特徴とする溶融還元製鉄法である。
(Means for Solving the Problems) The gist of the present invention is to melt and reduce iron raw materials containing iron oxide and oxygen by top-blowing oxygen while adding carbonaceous materials using a reaction vessel in which gas is top-blown. In the method of manufacturing a carbon-containing alloy by performing
.. This is a smelting reduction iron manufacturing method characterized in that an agglomerate of 2 mm or more obtained by molding a mixture of powdered iron-containing raw materials of 6 m+++ or less is charged into a molten layer from the upper part of a smelting reduction furnace.

(作 用〕 以下に本発明法による溶融還元製鉄法について作用とと
もに詳細に述べる。本発明の方法に用いられる溶融還元
設備として、前述の第3図に示した設備を用いることが
できる。
(Function) The smelting reduction iron manufacturing method according to the present invention will be described in detail below along with its functions.As the smelting reduction equipment used in the method of the present invention, the equipment shown in FIG. 3 described above can be used.

本発明法に用いる炭材は気乾状態に乾燥した原料として
石炭は1mm以下に、粉状鉄含有原料は0.6mm以下
に調整する。両者を所定の割合に混ぜてた粉状原料をロ
ールコンパクターのような高圧成形機で成形する。そし
て、2mm未満の粉状物を除いた塊成物を溶融還元製鉄
法の炭材および鉄原料の一部とする。成形時の2mm未
満の粉状物は再度成形機に戻して再利用する。
The carbon material used in the method of the present invention is an air-dried raw material, and the coal is adjusted to a thickness of 1 mm or less, and the powdered iron-containing raw material is adjusted to a thickness of 0.6 mm or less. The powdered raw materials are mixed in a predetermined ratio and then molded using a high-pressure molding machine such as a roll compactor. Then, the agglomerates from which powdery materials of less than 2 mm are removed are used as part of the carbon material and iron raw material in the smelting reduction iron manufacturing process. Powdered matter less than 2 mm during molding is returned to the molding machine and reused.

ここで粉状石炭の粒度を1 mm以下にしたのはロール
コンパクタ−のような高圧成形機では1mm超の石炭粒
子は成形時の圧力で粒子内に微小クラックが発生し、第
1図に示したように塊成物の強度が低下するためである
The particle size of the pulverized coal was set to 1 mm or less because in high-pressure molding machines such as roll compactors, coal particles larger than 1 mm will generate microcracks within the particles due to the pressure during molding, as shown in Figure 1. This is because the strength of the agglomerates decreases as described above.

微粉鉄含有原料の粒度を0.6mm以下にしたのはロー
ルコンパクターのような高圧成形機では0、[1mm超
の鉄含有原料粒子は成形時に粒子の破壊が顕著なため第
2図に示すように塊成物の強度が低下するためである。
The particle size of the fine iron-containing raw material was reduced to 0.6 mm or less using a high-pressure molding machine such as a roll compactor. This is because the strength of the agglomerates decreases.

また、塊成物の粒度を2mm以上に規定したのは2mm
未満の粉状物は溶融層内に投入時に容易に吹き込みガス
に随伴して系外に排出されるためである。
In addition, the particle size of the agglomerates is defined as 2 mm or more.
This is because when the powder is introduced into the molten layer, it easily accompanies the blown gas and is discharged out of the system.

なお、粉状原料の成形時には通常はピッチ等のバインダ
ーは使用しないが、必要に応じて使用してもかまわない
。例えば厚い塊成物を製造するときは塊成物的部への圧
力の伝達が低下するために塊成物の強度が低下する。そ
のため小量のバインダーを使用して塊成物の強度低下を
防止する。
Incidentally, a binder such as pitch is not normally used when molding the powdered raw material, but it may be used if necessary. For example, when producing thick agglomerates, the strength of the agglomerates is reduced because the transmission of pressure to the agglomerate portions is reduced. Therefore, a small amount of binder is used to prevent the strength of the agglomerate from decreasing.

このようにして製造した塊成物を1350’C〜145
0℃の溶融層の中に上部より投入した場合、塊成に比べ
て粉化の程度が著しく低下した。その結果、炭材の飛散
量が著しく低下した。
The agglomerate thus produced was heated to 1350'C to 145°C.
When the material was poured into the 0.degree. C. molten layer from above, the degree of powdering was significantly lower than that of agglomeration. As a result, the amount of carbon material scattered was significantly reduced.

このように粉状石炭を成形した塊成物は高温急速加熱時
の粉化が塊成に比べて小さくなる理由は明確ではないが
次のように考えられる。塊成は外観上は均一な成分であ
るように見えるが、顕微鏡等で詳細に観察すると種々の
成分、例えばエクジニット、ビトリニット、およびイナ
ーチニット等の成分が不均質に分布している。それらの
成分はそれぞれ加熱時に発生する揮発成分の量および時
期が異なる。そのために塊状石炭を溶融層等の高温状態
におくと局部的に揮発成分の発生が異なり、それが、内
部歪の原因となる。これに対して塊成物は原炭が微細粒
化しているために塊成物中の各成分は相対的に均質に分
布している。そのために高温加熱時の揮発分の発生が塊
成物中の位置的に均等化される。それが塊成物の内部歪
を小さくし、溶融層のような高温状態での粉化を小さく
していると考えられた。
The reason why agglomerates formed from powdered coal are less likely to be powdered during high-temperature rapid heating than agglomerates is not clear, but it is thought to be as follows. Although agglomerates appear to be homogeneous components, detailed observation using a microscope reveals that various components, such as exdinite, vitrinite, and inertinite, are distributed non-uniformly. These components differ in the amount and timing of volatile components generated during heating. For this reason, when lump coal is placed in a high-temperature state such as a molten layer, the generation of volatile components differs locally, which causes internal strain. On the other hand, in agglomerates, the raw coal is finely granulated, so each component in the agglomerates is relatively homogeneously distributed. For this reason, the generation of volatile matter during high-temperature heating is evened out positionally within the agglomerate. This was thought to reduce the internal strain of the agglomerate and reduce its pulverization in high-temperature conditions such as in a molten layer.

このように本発明法によれば炭材の高温溶融層内ての粉
化の減少および粉状原料の活用等、原材料使用上の総合
的効率を高めることができる。
As described above, according to the method of the present invention, it is possible to improve the overall efficiency of raw material use, such as reducing the pulverization of carbonaceous materials in the high-temperature molten layer and utilizing powdered raw materials.

施  例) 以下に実施例に基づいて説明する。表1に示す成分の一
般炭および表2に示す鉄鉱石を使用して表3の条件で塊
成物を製造した。
Example) The following is a description based on an example. An agglomerate was produced under the conditions shown in Table 3 using steam coal having the components shown in Table 1 and iron ore shown in Table 2.

このように製造した塊成物600gを溶鉄量か750k
gの溶融還元炉を用いて1350℃の溶融層の中に上部
より投入し5分後に炭材を回収した。
600g of the agglomerate produced in this way is molten iron or 750k.
The carbonaceous material was poured into the molten layer at 1350° C. from the top using a melting reduction furnace of 1.1 g, and the carbonaceous material was recovered after 5 minutes.

そして炭材の粒度分布を測定し、粉化状況を調べた。比
較のために5〜10mmの塊石炭について同し処理を実
施した。
Then, the particle size distribution of the carbonaceous material was measured and the pulverization status was investigated. For comparison, lump coal of 5 to 10 mm was subjected to the same treatment.

表1 使用石炭の分析性状(vit、%;)(実 表2 使用鉄鉱石の分析性状(Wt、X) 表4に急速加熱後の炭材の粒度分布を示す。Table 1 Analytical properties of coal used (vit, %;) (actual Table 2 Analytical properties of iron ore used (Wt, X) Table 4 shows the particle size distribution of the carbon material after rapid heating.

これから本発明法では炭材は従来法に比べて2mm以下
の比率が小さくなっており炭材の粉化が少ないことがわ
かる。このことは炭材の飛散量が小さいことを示すもの
である。また本発明法では最初から粉状の原料が有効活
用できることが明らかである。
From this, it can be seen that in the method of the present invention, the ratio of carbonaceous materials with a diameter of 2 mm or less is smaller than in the conventional method, and there is less pulverization of the carbonaceous materials. This indicates that the amount of carbon material scattered is small. Furthermore, it is clear that the method of the present invention can effectively utilize powdered raw materials from the beginning.

表3 塊成物の製造条件 表4 急熱処理後の炭材粒度分布 (発明の効果) 本発明を実施することにより、溶融還元法において石炭
および微粉鉄原料の利用効率を向上させることができ、
経済的な面でも実用化を可能にするという点で工業的な
意義が大きい。
Table 3 Conditions for producing agglomerates Table 4 Particle size distribution of carbonaceous material after rapid heat treatment (effects of the invention) By implementing the present invention, it is possible to improve the utilization efficiency of coal and fine iron raw materials in the smelting reduction method,
It is of great industrial significance in terms of economics as well as the fact that it enables practical application.

【図面の簡単な説明】[Brief explanation of the drawing]

′s1図は粉状石炭の成形時に塊成物の強度におよぼす
石炭粒度の影響を示す図、第2図は粉状石炭に混合する
微粉鉄含有原料粒度の塊成物の強度におよぼす影響を示
す図、第3図は溶融還元製鉄法で使用する設備の1例を
示す図である。 1・・・上吹きランス   2・・・底吹き羽口3・・
・炭材       4・・・スラグ5・・・メタル 
     6・・・気泡7・・・耐火ライニング 化4名 第1図 第3図 上吹きランス 第2図 0.0 42−
Figure 's1 is a diagram showing the influence of coal particle size on the strength of agglomerates during molding of powdered coal, and Figure 2 is a diagram showing the influence of particle size of fine iron-containing raw material mixed into powdered coal on strength of agglomerates. The figure shown in FIG. 3 is a diagram showing an example of equipment used in the smelting reduction iron manufacturing method. 1... Top blowing lance 2... Bottom blowing tuyere 3...
・Charcoal material 4...Slag 5...Metal
6... Bubbles 7... Refractory lining 4 people Figure 1 Figure 3 Top-blown lance Figure 2 0.0 42-

Claims (1)

【特許請求の範囲】[Claims] 1 ガスを上吹きしている反応容器を用い、鉄酸化物を
含む鉄原料と、炭材を添加しながら酸素を上吹して溶融
還元を行なって炭素含有合金を製造する方法において、
炭材として1mm以下の粉状石炭と0.6mm以下の粉
状鉄含有原料の混合物を成形して得た2mm以上の塊成
物を溶融還元炉の上部より溶融層に投入することを特徴
とする溶融還元製鉄法。
1. A method for producing a carbon-containing alloy by melting and reducing an iron raw material containing iron oxide and adding carbonaceous material while top-blowing oxygen using a reaction vessel in which gas is blown upward.
Agglomerates of 2 mm or more obtained by molding a mixture of powdered coal of 1 mm or less and powdered iron-containing raw material of 0.6 mm or less as carbon material are charged into the molten layer from the upper part of the smelting reduction furnace. Smelting reduction iron manufacturing method.
JP8849990A 1990-04-03 1990-04-03 Smelting reduction iron making method Pending JPH03287708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8849990A JPH03287708A (en) 1990-04-03 1990-04-03 Smelting reduction iron making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8849990A JPH03287708A (en) 1990-04-03 1990-04-03 Smelting reduction iron making method

Publications (1)

Publication Number Publication Date
JPH03287708A true JPH03287708A (en) 1991-12-18

Family

ID=13944516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8849990A Pending JPH03287708A (en) 1990-04-03 1990-04-03 Smelting reduction iron making method

Country Status (1)

Country Link
JP (1) JPH03287708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743368A1 (en) * 1995-05-18 1996-11-20 Technological Resources Pty. Ltd. A smelting reduction method with increased effectiveness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743368A1 (en) * 1995-05-18 1996-11-20 Technological Resources Pty. Ltd. A smelting reduction method with increased effectiveness
JPH093514A (en) * 1995-05-18 1997-01-07 Technological Resources Pty Ltd Method for promoting effectiveness of melt reduction
CN1053222C (en) * 1995-05-18 2000-06-07 技术资源有限公司 Smelting reduction method with increased effectiveness

Similar Documents

Publication Publication Date Title
KR100470089B1 (en) Method for producing metallic iron
JPH0360883B2 (en)
JP2012007225A (en) Method for producing molten steel using particulate metallic iron
CN105063266B (en) A kind of converter steel making method
JPS6164807A (en) Melt reduction method of iron ore
KR100376506B1 (en) Method for agglomerating iron ore fines for coal based iron making using waste sludge
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP4060986B2 (en) How to use dust in converter steelmaking.
JPH03287708A (en) Smelting reduction iron making method
JP2000045007A (en) Production of metallic iron and device therefor
JPH03287709A (en) Smelting reduction iron making method
JP2011179090A (en) Method for producing granulated iron
JPH0583620B2 (en)
JPS6337173B2 (en)
JPH0428810A (en) Smelting reduction iron-making method
WO1997012066A1 (en) Chromium ore smelting reduction process
JPH0483815A (en) Melting-reduction iron manufacturing method
JPH0432505A (en) Iron-making method with smelting reduction
JPS62167809A (en) Production of molten chromium iron
JPH1129807A (en) Production of molten iron
CN113736991A (en) Self-fluxing cold-pressing composite furnace charge for blast furnace ironmaking and preparation method thereof
JPH03257109A (en) Method for treating by-product produced in smelting reduction process
JPH01319620A (en) Method of operating smelting reduction furnace
Ray et al. Production of liquid iron using coal