JPH0432505A - Iron-making method with smelting reduction - Google Patents

Iron-making method with smelting reduction

Info

Publication number
JPH0432505A
JPH0432505A JP13919490A JP13919490A JPH0432505A JP H0432505 A JPH0432505 A JP H0432505A JP 13919490 A JP13919490 A JP 13919490A JP 13919490 A JP13919490 A JP 13919490A JP H0432505 A JPH0432505 A JP H0432505A
Authority
JP
Japan
Prior art keywords
powdery
furnace
iron ore
coal
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13919490A
Other languages
Japanese (ja)
Inventor
Masatoshi Kuwabara
桑原 正年
Hiroyuki Katayama
裕之 片山
Katsuaki Kobayashi
小林 勝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13919490A priority Critical patent/JPH0432505A/en
Publication of JPH0432505A publication Critical patent/JPH0432505A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce molten iron from powdery iron ore with simple process without needing expensive heavy caking coal by using compacted powdery coal as reducing agent at the time of producing the molten iron by using powdery iron ore as raw material in a top-bottom combined blowing converter type metallurgical furnace. CONSTITUTION:Into the converter type metallurgical furnace providing a top blowing lance 3 and bottom blowing tuyeres 2, the powdery iron ore as the raw material is charged from a charging hole 4 arranged at the top part of furnace and also carbonaceous material pressurizing and compacting the powdery coal is charged from opening part 7 at the upper part of furnace as the reducing agent, and O2 gas is blown from the top blowing lance 3 and also inert gas of N2 gas, etc., is blown from the bottom blowing tuyeres 2. The powdery iron ore is heated and reduced to form the molten iron and molten slag. Without needing to make bulky state by sintering the powdery iron ore and without using bulky coke made of the expensive heavy caking coal for blast furnace as the raw material, the molten iron can be produced from the powdery iron ore at a low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄鉱石あるいはその予備還元物から溶融還元に
よって溶融鉄合金を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a molten iron alloy from iron ore or its pre-reduced product by melt reduction.

〔従来の技術] 大量製鉄法としては現在、高炉法が用いられている。高
炉法は生産性、熱効率などの点で優れたプロセスである
が、問題は、鉱石に対して焼結のような塊成化工程が必
要なこと、また、石炭に対してコークス化工程が必要で
、かつ強度の大きいコークスを製造するために、原料炭
と呼ばれる特定の石炭を使用することである。
[Prior Art] A blast furnace method is currently used as a mass iron manufacturing method. The blast furnace method is an excellent process in terms of productivity and thermal efficiency, but the problem is that the ore requires an agglomeration process such as sintering, and the coal requires a coking process. In order to produce high-strength coke, a specific type of coal called coking coal is used.

これに対して溶融還元法は、上記のような現行高炉法に
内在する問題点を解決するために開発されている新プロ
セスである。
On the other hand, the smelting reduction method is a new process that has been developed to solve the problems inherent in the current blast furnace method as described above.

熔融還元法の一つとして、ガスを上底吹き可能な冶金炉
を使用し、存在する多量のスラグを利用する方法が開発
されつつあり、すでにいくつかの問題点は解決されて、
石炭に関する問題のみが残されていた。
As one of the smelting reduction methods, a method is being developed that uses a metallurgical furnace that can blow gas from the top and bottom and utilizes the large amount of slag that exists, and some problems have already been solved.
Only the issue of coal remained.

すなわち、高炉法に内在する石炭の問題を解決するため
には、安価な一般炭を使用してコークス化工程を必要と
しないプロセスを開発することが望まれているが、これ
までは次のような理由でこの問題の解決が困難であった
In other words, in order to solve the coal problem inherent in the blast furnace method, it is desired to develop a process that uses inexpensive steam coal and does not require a coking process. This problem was difficult to solve for several reasons.

まず、石炭をふるい分けて塊のもの(約1011III
1以上)を選び出し、これを溶融還元炉に上投入すると
、栄、速加熱によって揮発分が急激に気化するため熱割
れし、平均粒径が3mm程度のものに割れてしまう。そ
の結果、次の2つの問題を生じる。
First, the coal is sifted to form lumps (approximately 1011III
1 or more) and put it into a smelting reduction furnace, the volatile matter rapidly vaporizes due to rapid heating, resulting in thermal cracking and cracking into particles with an average particle size of about 3 mm. As a result, the following two problems arise.

■ 炭材の飛散率が10%あるいはそれ以上となること
(炭材のうち2III11以下のものはある比率で飛散
する(例えば2IIIIfi以下のものの15%))。
■ The scattering rate of carbonaceous materials is 10% or more (of the carbonaceous materials, carbonaceous materials of 2III11 or less are scattered at a certain rate (for example, 15% of carbonaceous materials of 2IIIfi or less).

■ 炭材が細かくなると、比表面積が大きくなるのでス
ラグに巻き込まれにくくなり、メタルへの加炭が遅れる
ことになって、安定操業できなくなる。
■ As the carbon material becomes finer, its specific surface area becomes larger, making it less likely to get caught up in the slag, which delays carburization into the metal, making stable operation impossible.

一方、粉石灰を上から添加すると飛散率が30%近い値
となること、粉石灰をメタルに吹き込む方法だと、吹き
込みに伴ってメタルの撹拌が強くなり過ぎる結果、鉄系
ダスト発生量が増えること、粉石灰に粘結剤を添加して
成型(例えばブリケット化)したものでは炉内で急速加
熱されるため粘結剤がガス発生材となって細かく壊れて
しまうこと、など粉石灰の使用にも問題が多い。
On the other hand, if powdered lime is added from above, the scattering rate will be close to 30%, and if powdered lime is blown into the metal, the agitation of the metal will become too strong as a result of the blowing, resulting in an increase in the amount of iron-based dust generated. In addition, if powdered lime is molded (for example, into briquettes) by adding a binder to it, the binder becomes a gas-generating material and breaks into small pieces because it is rapidly heated in the furnace. There are also many problems.

以上のように、従来の方法では石炭の粉化は避けて通れ
ない問題で、そのために安定した溶融還元操業を行うこ
とができなかった。
As described above, in the conventional method, coal pulverization is an unavoidable problem, and as a result, stable melting and reduction operations cannot be performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記のような知見に基ずき、溶融還元炉内で急
速加熱された時に炭材が粉化することがなく、安定した
溶融還元操業を行うことのできる製鉄方法を提供するこ
とを目的とする。
The present invention is based on the above findings, and aims to provide a method for producing iron that can perform stable smelting and reduction operations without pulverizing carbonaceous materials when rapidly heated in a smelting and reduction furnace. purpose.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、例えば第1図のような、ガスを上底吹きでき
る冶金炉に鉄酸化物を含む原料および炭材を添加しなが
ら酸素ガスを供給し、酸化鉄の溶融、還元を行なって溶
融鉄合金を製造する方法において、炭材として粘結剤を
加えることなく粉石灰を圧縮成型したものを使用するこ
とを特徴とする溶融還元による製鉄法を要旨とするもの
である。
In the present invention, for example, as shown in FIG. A method for manufacturing iron alloys, the gist of which is an iron manufacturing method by smelting reduction, which is characterized by using compression-molded powdered lime without adding a binder as a carbonaceous material.

〔作 用] まず、第2図は、粉石灰に粘結剤を配合して成型した場
合について、加えた粘結剤(糖蜜)の配合(添加)量の
影響を示す。一般に糖蜜に限らず、いずれの粘結剤の場
合にも、配合量の増加とともに冷間の強度は増加するが
、溶融還元炉に投入した場合のような急速加熱条件では
逆に粉化を促進することがわかる。一方、粘結剤を配合
しない場合が最も粉化しにくい。なお粉の定義としては
2mm以下のふるい下の重量比率としている(前述のよ
うにこの2111m以下のものがある確率で飛散する)
[Effect] First, Fig. 2 shows the influence of the amount of the added binder (molasses) in the case where powdered lime is mixed with a binder and molded. In general, in the case of any binder, not just molasses, the cold strength increases as the blending amount increases, but rapid heating conditions such as when put into a smelting reduction furnace actually promote powdering. I understand that. On the other hand, it is most difficult to powder when no binder is added. The definition of powder is the weight ratio under the sieve with a diameter of 2 mm or less (as mentioned above, there is a probability that some powder with a diameter of 2111 m or less will be scattered).
.

次に第3図は、種々の銘柄の石炭をロールで加圧圧縮成
型したものを溶融還元炉に投入して急速加熱したときの
粉発生率に及ぼす石炭の揮発分(V、 M、 )含有量
の影響を示す。揮発分含有量が23%以上の場合及び3
8%以下の場合には急速加熱時の粉発生率が低く抑えら
れることがわかる。これは、揮発分が加熱過程で溶融し
て粘結剤の役割を果たし、一方、多量のガス発生によっ
て成型物を壊すという2つの機能、影響の組み合わせに
よって決まるものである。
Next, Figure 3 shows the effect of the volatile content (V, M, Showing the effect of quantity. When the volatile content is 23% or more and 3
It can be seen that when it is 8% or less, the powder generation rate during rapid heating can be suppressed to a low level. This is determined by the combination of two functions: the volatile content melts during the heating process and plays the role of a binder, and on the other hand, a large amount of gas is generated which destroys the molded product.

第4図は成型物の厚みと急速加熱時の粉発生率(粉化率
)の関係を示す。厚みが3〜81Il11の時に最も粉
発生率を小さくできることがわかる。
FIG. 4 shows the relationship between the thickness of the molded product and the powder generation rate (powderization rate) during rapid heating. It can be seen that the powder generation rate can be minimized when the thickness is 3 to 81Il11.

第5図は粉石灰の水分含有率と急速加熱時の粉発生率の
関係を示す。粉発生率を低く抑えるためには水分が3%
以下であることが望ましいことがわかる。
FIG. 5 shows the relationship between the moisture content of powdered lime and the powder generation rate during rapid heating. In order to keep the powder generation rate low, the moisture content is 3%.
It can be seen that the following is desirable.

第6図はロールによる成型圧力(圧縮強さ)と、急速加
熱した時の成型物の粉発生率の関係を示す。急速加熱時
の粉化を抑制するための成型圧力は、成型物厚み1mm
当たり0.3 t/af1以上必要なことがわかる。
FIG. 6 shows the relationship between the molding pressure (compressive strength) by the rolls and the powder generation rate of the molded product when rapidly heated. The molding pressure to suppress powdering during rapid heating is 1 mm thick.
It can be seen that 0.3 t/af1 or more is required per unit.

第7図は粉石灰に配合した酸化鉄の比率(濃度)が成型
物を急速加熱した時の粉化挙動に及ぼす影響を示す。酸
化鉄の配合量が10ivt、χを越えると粉化の程度が
激増するようになることがわかる。
FIG. 7 shows the influence of the ratio (concentration) of iron oxide added to powdered lime on the pulverization behavior when a molded product is rapidly heated. It can be seen that when the amount of iron oxide blended exceeds 10 ivt, χ, the degree of powdering increases dramatically.

したがって、ダストについては必要により粉石灰に混ぜ
て本発明の方法で成型することができるが、この場合、
配合量は酸化鉄として10wt、χを越えてはならない
。なお、本発明においては、主原料である鉄鉱石あるい
はその予備還元物は、粉石灰と別のルートで溶融還元炉
に装入されるため、鉱石が空間を飛散することなく溶融
スラグ層にまで移行すれば、溶融スラグに濡れる性質が
あるので以後の飛散は起こらない。
Therefore, if necessary, dust can be mixed with powdered lime and molded by the method of the present invention, but in this case,
The blending amount must not exceed 10 wt (χ) as iron oxide. In addition, in the present invention, the main raw material, iron ore or its pre-reduced product, is charged into the smelting reduction furnace through a route different from that of powdered lime, so the ore does not scatter through the space and reaches the molten slag layer. Once transferred, the molten slag has the property of getting wet, so no further scattering occurs.

以上述べてきたような適正条件で粉石炭を成型したもの
は、溶融還元炉に投入されて象、速加熱を受けても粉化
しにくいことから、本発明の実施により、これまでの溶
融還元法の開発で問題とされていた石炭の問題、すなわ
ち、飛散とメタル加炭遅れの問題を解決することができ
るようになった。
Powdered coal formed under the appropriate conditions as described above is difficult to turn into powder even if it is put into a smelting reduction furnace and subjected to rapid heating. It has now become possible to solve the coal problems that were considered to be problems in the development of , namely the problems of scattering and delays in metal carburization.

〔実施例〕〔Example〕

第1図に本発明を実施するのに用いる溶融還元炉の設備
の一例を示す。耐火物1を内張すした容器において、底
には溶融メタルに窒素などのガスを吹き込んで攪拌する
ための底吹き羽口2が設けられている。上吹きランス3
は酸素ガスを炉内に供給するためのものである。鉱石は
炉層に設けられた粉鉱石投入口4から炉内に供給される
。炉内には多量の溶融スラグ5が存在しており、底吹き
攪拌されているメタル6浴を上吹き酸素ジェットから遮
断していることが必要である。必要スラグ量は350 
kg/lメタル以上で、生成したメタル6とスラグ5を
炉を傾動して排出する際に残しメタル、残しスラグ量を
調整する。
FIG. 1 shows an example of equipment for a melting reduction furnace used to carry out the present invention. In a container lined with a refractory 1, a bottom blowing tuyere 2 is provided at the bottom for blowing a gas such as nitrogen into the molten metal to stir it. Top blow lance 3
is for supplying oxygen gas into the furnace. Ore is supplied into the furnace from a fine ore input port 4 provided in the furnace layer. There is a large amount of molten slag 5 in the furnace, and it is necessary to isolate the bottom-blown, agitated metal 6 bath from the top-blown oxygen jet. The required amount of slag is 350
kg/l metal or more, the amount of remaining metal and remaining slag is adjusted when the generated metal 6 and slag 5 are discharged by tilting the furnace.

溶融還元炉の主要操業条件を表1に示す。Table 1 shows the main operating conditions of the smelting reduction furnace.

鉱石は予備還元鉱石を使用した。その成分条件は表2の
通りである。これを溶融還元炉の炉層にある粉鉱石投入
口4から炉内に窒素ガスで搬送した。
The ore used was pre-reduced ore. The component conditions are shown in Table 2. This was transported into the furnace using nitrogen gas from the fine ore input port 4 in the furnace layer of the smelting reduction furnace.

表2 一方、本実施例の試験操業には表3に示すような各種処
理を施した炭材を使用した。いずれの場合も炉ロアから
炉内へ投入した。
Table 2 On the other hand, carbon materials subjected to various treatments as shown in Table 3 were used in the test operation of this example. In both cases, the material was introduced into the furnace from the furnace lower.

その結果、炭材の種類を変えた時の操業成績は表4に示
す通りとなった。
As a result, the operational results when changing the type of carbon material were as shown in Table 4.

したがって、本発明により、すなわち、粘結剤配合なし
で成型した炭材を使用した場合に好ましい結果が得られ
た。
Therefore, favorable results were obtained according to the present invention, that is, when a molded carbonaceous material without the addition of a binder was used.

〔発明の効果] 以上のように本発明は最も安価な原料である粉鉱石と一
般粉石炭を用いて鉄を製造する熔融還元工程で、高価な
粘結剤を用いずに、石炭に起因する2、速加熱時の割れ
の問題を解決したもので、工業的、経済的な効果が大き
い。
[Effects of the Invention] As described above, the present invention is a smelting and reduction process for manufacturing iron using powdered ore and general coal powder, which are the cheapest raw materials, without using an expensive binder. 2. It solves the problem of cracking during rapid heating, and has great industrial and economical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するのに用いる溶融還元炉設備の
一例を示す説明図、第2図は粉石炭を成型する時に配合
する粘結剤が、成型物を急速加熱した時の粉化挙動に及
ぼす影響を示す図、第3図は成型物を急速加熱した時の
粉化挙動に及ぼす粉石炭の揮発分含有量の影響を示す図
、第4図は成型物を急速加熱した時の粉化挙動に及ぼす
成型物の厚みの影響を示す図、第5図は成型物を急速加
熱した時の粉化挙動に及ぼす粉石炭の水分含有率の影響
を示す図、第6図は成型物を急速加熱した時の粉化挙動
に及ぼす成型圧力の影響を示す図、第7図は成型物を急
速加熱した時の粉化挙動に及ぼす粉石炭中への酸化鉄配
合比率の影響を示す図である。 第 図 車会ジョ犬、 Vたヂ、叡量(94) 第 2図 2     I3    4 粘結ネj配否量(%り 第 図 虞型吻っ1み(駒り 第5図 紛石未。水分含有帯(%ジ 第6図 Q、/      0.2     Q3    0.
4、成型圧力(必−式型勿浬みV− O,s
Figure 1 is an explanatory diagram showing an example of the smelting reduction furnace equipment used to carry out the present invention, and Figure 2 shows how the binder blended when molding powdered coal becomes powder when the molded product is rapidly heated. Figure 3 shows the effect of the volatile content of powdered coal on the pulverization behavior when the molded product is rapidly heated. Figure 4 shows the effect of the volatile content of powdered coal on the pulverization behavior when the molded product is rapidly heated. A diagram showing the effect of the thickness of the molded product on the pulverization behavior. Figure 5 is a diagram showing the effect of the water content of powdered coal on the pulverization behavior when the molded product is rapidly heated. Fig. 7 is a diagram showing the effect of the blending ratio of iron oxide in powdered coal on the powdering behavior when a molded product is rapidly heated. It is. Fig. 2. I3 4. Figure 2. I3 4. Cohesion. Moisture content zone (% di Figure 6 Q, / 0.2 Q3 0.
4. Molding pressure (required type molding V-O,s

Claims (1)

【特許請求の範囲】[Claims] ガスを上底吹きできる冶金炉に鉄酸化物を含む原料およ
び炭材を添加しながら酸素ガスを供給し、酸化鉄の溶融
、還元を行なって溶融鉄合金を製造する方法において、
炭材として粘結剤を加えることなく粉石炭を圧縮成型し
たものを使用することを特徴とする溶融還元による製鉄
法。
In a method of manufacturing a molten iron alloy by supplying oxygen gas while adding a raw material containing iron oxide and carbonaceous material to a metallurgical furnace that can blow gas from the top and bottom, and melting and reducing the iron oxide,
A method of making iron by smelting and reduction, characterized by the use of compression molded powdered coal without adding a binder as the carbon material.
JP13919490A 1990-05-29 1990-05-29 Iron-making method with smelting reduction Pending JPH0432505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13919490A JPH0432505A (en) 1990-05-29 1990-05-29 Iron-making method with smelting reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13919490A JPH0432505A (en) 1990-05-29 1990-05-29 Iron-making method with smelting reduction

Publications (1)

Publication Number Publication Date
JPH0432505A true JPH0432505A (en) 1992-02-04

Family

ID=15239747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13919490A Pending JPH0432505A (en) 1990-05-29 1990-05-29 Iron-making method with smelting reduction

Country Status (1)

Country Link
JP (1) JPH0432505A (en)

Similar Documents

Publication Publication Date Title
JP3162706B2 (en) Ferroalloy production using a molten bath reactor.
JPH0360883B2 (en)
US3374085A (en) Process for producing aggregate containing oxygen steel process dust
WO2009123115A1 (en) Process for production of reduced iron
KR100376506B1 (en) Method for agglomerating iron ore fines for coal based iron making using waste sludge
JPH06172916A (en) Manufacturing of stainless steel
US6689189B1 (en) Metallurgical product
JPS6164807A (en) Melt reduction method of iron ore
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JPH0432505A (en) Iron-making method with smelting reduction
US2674531A (en) Iron recovery
AU723294B1 (en) Method for hot agglomeration of solid metallized iron particles to produce alloyed briquettes
JPH04318109A (en) Method for improving strength in powdery coal pressurized compact
JPH03183719A (en) Method for accelerating reduction of manganese ore in steel making stage
JPH03287708A (en) Smelting reduction iron making method
JP2001348609A (en) Foaming restraining agent
JPH01247513A (en) Method for charging ore into smelting reduction furnace
JP3522553B2 (en) Blast furnace raw material charging method
JP3718945B2 (en) Method for smelting reduction of chromium ore
JPH0483815A (en) Melting-reduction iron manufacturing method
JPH03287709A (en) Smelting reduction iron making method
JPS62167809A (en) Production of molten chromium iron
CN112011721A (en) Pig iron for directly producing low-silicon low-titanium low-trace-element nodular cast iron and preparation method thereof
JPH01252719A (en) Method for utilizing dust in converter steelmaking
US20030164062A1 (en) Method relating to manufacturing of steel