JPH03287709A - Smelting reduction iron making method - Google Patents

Smelting reduction iron making method

Info

Publication number
JPH03287709A
JPH03287709A JP8850090A JP8850090A JPH03287709A JP H03287709 A JPH03287709 A JP H03287709A JP 8850090 A JP8850090 A JP 8850090A JP 8850090 A JP8850090 A JP 8850090A JP H03287709 A JPH03287709 A JP H03287709A
Authority
JP
Japan
Prior art keywords
coal
smelting reduction
carbon material
briquettes
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8850090A
Other languages
Japanese (ja)
Inventor
Katsuaki Kobayashi
小林 勝明
Katsuaki Okuhara
奥原 捷晃
Masatoshi Kuwabara
桑原 正年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8850090A priority Critical patent/JPH03287709A/en
Publication of JPH03287709A publication Critical patent/JPH03287709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the powdering of carbon material and to effectively utilize fine coal by using briquettes of a specified diameter obtd. by briquetting the fine coal of a specified grain size as the carbon material and charging the briquettes into a molten layer in a furnace from the upper part of the furnace. CONSTITUTION:Briquettes of >=2mm diameter obtd. by briquetting fine coal of <=1mm grain size are used as carbon material in smelting reduction by top blowing of oxygen. The briquettes are charged into a molten layer of raw material for iron in a smelting reduction furnace from the upper part of the furnace. The degree of powdering of the briquettes is lower than that of conventional lump coke and the amt. of the carbon material scattered is reduced, accordingly the efficiency of utilization of the coal can be increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉によることなく溶銑のような鉄−炭素合
金を製造するための方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing iron-carbon alloys such as hot metal without using a blast furnace.

(従来の技術) 鉄鉱石から溶銑を製造する方法としては、現在、高炉法
が用いられている。それは量産法としては優れた方法で
あるが、炭材として、資源的に制約のあるいわゆる原料
炭と呼ばれる粘結性の優れた石炭を用い、それを室式コ
ークス炉で乾留して得られる強度の大きいコークスを必
要とする。コークス炉は非常に高価な設備で、今後、そ
れの更新には美大な費用が必要である。そのため、今後
は室式コークス炉からのコークスを使用しないで銑鉄を
製造する方法のり発が必要である。
(Prior Art) A blast furnace method is currently used as a method for producing hot metal from iron ore. Although this is an excellent method for mass production, it uses coal with excellent caking properties called coking coal, which has limited resources, and carbonizes it in a chamber coke oven. Requires a large coke. Coke ovens are very expensive equipment, and updating them in the future will require enormous costs. Therefore, in the future, it is necessary to develop a method for manufacturing pig iron without using coke from a chamber coke oven.

このような問題点を解決するために、熔融還元法という
名称で呼ばれる新製鉄性の研究が行なわれている。その
中て、ガスを上吹性てきる、たとえば転炉のような反応
容器を用い、鉄鉱石あるいはその予備還元物と炭材を投
入しながら酸素を上吹きする方法は、生産性の大きな点
から、現行高炉法にとって代わる可能性の大きいものの
一つにあげられている。この方7去においては炭材とし
て石炭を直接使用する場合は、大量に産出するいわゆる
一般炭と称する石炭が使用でき、また、室式コークス炉
のような高価な設備を必要としない利点がある。
In order to solve these problems, research is being carried out on a new method of producing iron called the smelting reduction method. Among these methods, a method in which the gas is blown upward, for example, using a reaction vessel such as a converter and blowing oxygen upward while charging iron ore or its pre-reduced product and carbonaceous material, has a major point in productivity. Therefore, it has been cited as one of the methods that has a high possibility of replacing the current blast furnace method. In this method, when coal is directly used as the carbon material, coal called steam coal, which is produced in large quantities, can be used, and there is an advantage that expensive equipment such as a chamber coke oven is not required.

(発明が解決しようとする課題) 第2図に本発明法による溶融還元製鉄法の実施に用いる
設備の一例を示す。ガスを上吹き可能な、例えば転炉状
の容器で、酸素は上吹きランス1を通して吹き付けられ
る。底吹き羽口2からのガス底吹きは溶融物の攪拌のた
めに行なわれる。通常、窒素ガスが用いられる。この底
吹診が無ければ、高い酸化鉄の還元反応速度および伝熱
速度が得られず、本発明が必要とされる高い生産性を得
ることがで籾ない。一方、この攪拌が強くなり過ぎると
、酸素を吹いて炭材3を燃焼しつつスラグ4の中に含有
されている酸化鉄の還元を行なうと言う本発明対象プロ
セスの特徴である酸化性雰囲気とメタル5の接触を抑制
するという条件が乱されるので、例えば酸素ジェットと
メタルの接触反応のため、酸化鉄ヒユームによるダスト
発生量が増加するなどの悪影響が現われる。従って、酸
素ガスの少なくとも大半は上のランスから炉内に供給さ
れることになる。そのため大量のガスを上部より吹き込
む事が必要である。
(Problems to be Solved by the Invention) FIG. 2 shows an example of equipment used to carry out the smelting reduction iron manufacturing method according to the method of the present invention. Oxygen is blown through a top-blowing lance 1 in a container, for example, a converter, in which gas can be blown upward. Gas bottom blowing from the bottom blowing tuyeres 2 is carried out to stir the melt. Nitrogen gas is usually used. Without this bottom blowing, high reduction reaction rate and heat transfer rate of iron oxide cannot be obtained, and the high productivity required by the present invention cannot be obtained. On the other hand, if this stirring becomes too strong, an oxidizing atmosphere, which is a characteristic of the process of the present invention in which iron oxide contained in the slag 4 is reduced while blowing oxygen and burning the carbon material 3, is created. Since the conditions for suppressing the contact of the metal 5 are disturbed, adverse effects such as an increase in the amount of dust generated by iron oxide fume appear due to the contact reaction between the oxygen jet and the metal. Therefore, at least the majority of the oxygen gas will be supplied into the furnace from the upper lance. Therefore, it is necessary to blow in a large amount of gas from the top.

図中6は気泡、7は耐火ライニングを示す。In the figure, 6 indicates air bubbles and 7 indicates a refractory lining.

鉄原料は、鉄鉱石あるいはその予備還元物などの酸化鉄
を含有するものである。上で述べたと同じ理由で、鉄原
料は例えば粉状のものであフても、溶融層へは下部から
のインジェクションではなく上部からの投入が望まれる
。フラックスとしては生石炭などが添加される。
The iron raw material contains iron oxide such as iron ore or its preliminary reduction product. For the same reason as stated above, even if the iron raw material is in the form of powder, it is preferable to inject it into the molten layer from the top rather than from the bottom. Raw coal or the like is added as a flux.

炭材としては通常、塊成あるいは塊コークスを直接溶融
層に投入する方法が取られている。
As the carbonaceous material, a method is usually used in which agglomerated coke or lump coke is directly introduced into the molten layer.

炭材としてコークスを使用する場合、別にコークス製造
設備を必要とし炭材コストが高くなる。また、炭材とし
て塊成を使用する場合は、溶融層内に投入された塊成は
そこで急激な揮発分の発生に伴う粉化がおこり、一部の
粉化した石炭はガスに随伴して上部の空間から系外へ排
出される。そのため炭材の使用量が増大する現象がみら
れた。
When coke is used as the carbonaceous material, separate coke production equipment is required, which increases the cost of the carbonaceous material. In addition, when agglomerates are used as carbon material, the agglomerates introduced into the molten layer are pulverized due to the rapid generation of volatile matter, and some of the pulverized coal is accompanied by gas. It is discharged from the system through the upper space. As a result, a phenomenon was observed in which the amount of carbonaceous material used increased.

一方、粉状石炭の使用は吹き込みガスによる系外への飛
散量が増加し炭材の利用効率は更に低下し、その使用は
困難である。
On the other hand, when using pulverized coal, the amount of blown gas scattering out of the system increases, further reducing the utilization efficiency of the carbon material, making it difficult to use.

以上、ガスを上吹鮒している反応容器を用い、鉄鉱石あ
るいはその予備還元物と炭材を投入しながら酸素を上吹
きする溶融還元製鉄法において、従来法の炭材に関する
課題を整理すると以下のごとくである。
The above is a summary of the issues related to carbonaceous materials in the conventional smelting reduction ironmaking method, which uses a reaction vessel in which gas is blown over, and top-blows oxygen while charging iron ore or its pre-reduced product and carbonaceous materials. It is as follows.

(1)粉状石炭の使用は吹き込みガスに随伴して石炭が
系外に排出してしまう割合が高くなる。そのため粉状石
炭の使用は困難である。
(1) When powdered coal is used, there is a high rate of coal being discharged out of the system along with the blown gas. Therefore, it is difficult to use powdered coal.

(2)塊状炭材でも塊石炭の使用は反応容器の中で粉化
し、その一部が吹き込みガスに随伴して上部の空間に巻
き上げられて系外に排出される。そのために炭材の原単
位の増加を弓き起こす。
(2) Even in the case of lump carbonaceous material, when lump coal is used, it is pulverized in the reaction vessel, and a part of it is blown up into the upper space along with the blown gas and discharged out of the system. This causes an increase in the unit consumption of carbonaceous materials.

般に石炭は粉塊混合物の形で購入される。Coal is generally purchased in the form of a powder mixture.

そのため上記の理由から粉状石炭の有効利用が問題とな
る。
Therefore, for the above reasons, effective utilization of powdered coal becomes a problem.

従フて、溶融還元製鉄法の炭材の問題として塊成の溶融
層内での粉化防止と、粉状石炭を末法にいかに使用する
かが大きな課題である。
Therefore, major issues regarding carbonaceous materials in the smelting reduction ironmaking process include preventing pulverization within the molten layer of agglomeration and how to use pulverized coal in the final process.

本発明は、これらの課題を解決するための方法である。The present invention is a method for solving these problems.

(課題を解決するための手段) 本発明の要旨は、ガスを上吹きしている反応容器を用い
、鉄酸化物を含む鉄原料と、炭材を添加しながら酸素を
上吹して溶融還元を行なって炭素含有合金を製造する方
法において、炭材として1mm以下の粉状石炭を成形し
て得た2mm以上の塊成物を溶融還元炉の上部より溶融
層に投入することを特徴とする溶融還元製鉄法である。
(Means for Solving the Problems) The gist of the present invention is to melt and reduce iron raw materials containing iron oxide and oxygen by top-blowing oxygen while adding carbonaceous materials using a reaction vessel in which gas is top-blown. A method for manufacturing a carbon-containing alloy by carrying out the following steps, characterized in that an agglomerate of 2 mm or more obtained by molding pulverized coal of 1 mm or less as a carbon material is charged into a molten layer from the upper part of a smelting reduction furnace. It is a smelting reduction iron manufacturing method.

(作   用) 以下に本発明法による溶融還元製鉄法について作用とと
もに詳細にのべる。本発明の方法に用いられる溶融還元
設備として、例えば、前述の第2図に示した設備を用い
ることができる。
(Function) The smelting reduction iron manufacturing method according to the method of the present invention will be described in detail below along with its function. As the melting reduction equipment used in the method of the present invention, for example, the equipment shown in FIG. 2 described above can be used.

本発明法に用いる炭材は気乾状態に乾燥した石炭を1 
mm以下に粉砕する。そして、この粉状石炭をロールコ
ンバクターのような高圧成形機で成形する。モして2)
未満の粉状物を除いた塊成物を溶融還元法の炭材として
使用する。成形後の2mm未満の粉状物は再度成形機に
戻して再利用する。
The carbon material used in the method of the present invention is 1 piece of air-dried coal.
Grind into pieces smaller than mm. This powdered coal is then molded using a high-pressure molding machine such as a roll converter. 2)
The agglomerates from which powdery substances have been removed are used as carbon material in the smelting reduction method. After molding, the powdered material less than 2 mm is returned to the molding machine and reused.

ここで粉状石炭の粒度を1mm以下にしたのはロールコ
ンバクターのような高圧成形機では1ωm超の石炭では
成形時の圧力で粒子内に微小クラックが発生しやすく、
第1図に示すように塊成物の強度が低下するためである
The particle size of the powdered coal was set to 1 mm or less because in high-pressure molding machines such as roll converters, coal with a particle size of more than 1 ωm tends to cause microcracks within the particles due to the pressure during molding.
This is because the strength of the agglomerated product decreases as shown in FIG.

また、塊成物の粒度を2mm以上に規定したのは2mm
未満の粉状物は溶融層内に投入時に容易に吹き込みガス
に随伴して系外に排出されるためである。
In addition, the particle size of the agglomerates is defined as 2 mm or more.
This is because when the powder is introduced into the molten layer, it easily accompanies the blown gas and is discharged out of the system.

なお、粉状石炭の成形時には通常ピッチ等のバインダー
は必要ないが、必要に応じて使用してもかまわない。例
えば厚い塊成物を製造するときは塊成物的部への圧力の
伝達が低下するため塊成物の強度が低下する。そのため
小量のバインダーを使用して塊成物の強度低下を防止す
る。
Note that a binder such as pitch is not normally required when molding powdered coal, but it may be used if necessary. For example, when producing a thick agglomerate, the strength of the agglomerate is reduced because the transmission of pressure to the agglomerate body is reduced. Therefore, a small amount of binder is used to prevent the strength of the agglomerate from decreasing.

このようにして製造した塊成物を熔融還元炉の1350
℃〜1450℃の溶融層の中に上部より投入した場合、
塊成に比べて粉化の程度が著しく低下した。その結果、
炭材の飛散量が著しく低下した。
The agglomerate produced in this way was heated to 1350 in a melt reduction furnace.
When poured from above into a molten layer at a temperature of ℃ to 1450℃,
The degree of powdering was significantly lower than that of agglomeration. the result,
The amount of carbon material scattering was significantly reduced.

このように粉状石炭を成形した塊成物は高温急速加熱時
の粉化が塊成に比べて小さくなる理由は明確ではないが
次のように考えられる。塊成は外観上は均一な成分であ
るように見えるが、顕微鏡等で詳細に観察すると種々の
成分、例えばエクジニット、ビトリニット、およびイナ
ーチニット等の成分が不均質に分布している。これらの
成分はそれぞれ加熱時に発生する揮発成分の量および時
期が異なる。そのために塊成を溶融層等の高温状態にお
くと局部的に揮発成分の発生速度が異なり、それが内部
歪の原因となる。これに対して塊成物は原炭が微粒化し
ているために塊成物中の各成分は相対的に均質に分布し
ている。そのために高温加熱時の揮発分の発生が塊成物
中の位置的に均等化される。それが塊成物の内部歪を小
さくし、高温加熱時の粉化を小さくしていると考えられ
た。
The reason why agglomerates formed from powdered coal are less likely to be powdered during high-temperature rapid heating than agglomerates is not clear, but it is thought to be as follows. Although agglomerates appear to be homogeneous components, detailed observation using a microscope reveals that various components, such as exdinite, vitrinite, and inertinite, are distributed non-uniformly. These components differ in the amount and timing of volatile components generated during heating. For this reason, when agglomerates are placed in a high temperature state such as a molten layer, the rate of generation of volatile components differs locally, which causes internal strain. On the other hand, in agglomerates, the raw coal is finely granulated, so each component in the agglomerates is relatively homogeneously distributed. For this reason, the generation of volatile matter during high-temperature heating is evened out positionally within the agglomerate. It was thought that this reduced the internal strain of the agglomerate and reduced the possibility of pulverization during high-temperature heating.

このように本発明法によれば炭材の高温?8融層内での
粉化の減少および粉状石炭の活用等、石炭使用上の総合
効率を高めることができる。
In this way, according to the method of the present invention, the high temperature of carbonaceous material? It is possible to improve the overall efficiency of coal usage by reducing pulverization within the melting layer and utilizing pulverized coal.

(実 施 例) 以下に実施例に基づいて説明する。表1に示す成分の一
般炭を使用して表2の条件で塊成物を製造した。
(Example) A description will be given below based on an example. An agglomerate was produced using steam coal having the components shown in Table 1 under the conditions shown in Table 2.

このように製造した塊成物6t)Ogを溶銑量が750
kgの溶融還元炉で1350℃の溶融層の中に投入し、
5分後に炭材を回収した。そして炭材粒度分布を測定し
、粉化状況を調べた。
The agglomerates produced in this way (6t)
kg into a molten layer at 1350℃ in a smelting reduction furnace,
The carbonaceous material was collected after 5 minutes. Then, the particle size distribution of the carbonaceous material was measured and the pulverization status was investigated.

表1 使用石炭の分析性状(wt、U 表2 塊成物の製造条件 比較のために5〜10mmの塊石炭について同し処理を
実施した。
Table 1 Analytical properties of the coal used (wt, U) Table 2 The same treatment was carried out on lump coal of 5 to 10 mm in order to compare the manufacturing conditions of the agglomerates.

表3に急速加熱後の炭材の粒度分布を示す。Table 3 shows the particle size distribution of the carbon material after rapid heating.

これかられかるように本発明法は従来法に比べて211
+m以下の比率か小さくなっており高温溶融層内での粉
化か少なくなっている。このことは粉化した炭材の系外
への飛散量が少なくなることを示すものである。
As will be seen, the method of the present invention is 211 times more expensive than the conventional method.
The ratio of +m or less is smaller, and powdering within the high-temperature molten layer is reduced. This indicates that the amount of powdered carbonaceous material scattered outside the system is reduced.

表3 、急熱処理後の炭材粒度分布 また本発明法では最初から粉状の石炭を有効活用できる
ことが明らかである。
Table 3: Particle size distribution of carbonaceous material after rapid heat treatment It is also clear that the method of the present invention can effectively utilize powdered coal from the beginning.

(発明の効果) 本発明を実施することにより、溶融還元法において石炭
の利用効率を向上させることができ、経済的な面でも実
用化を可能にするという点で工業的な意義が大きい。
(Effects of the Invention) By carrying out the present invention, it is possible to improve the utilization efficiency of coal in the smelting reduction method, and it has great industrial significance in that it can be put to practical use economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は塊成物の強度におよぼす一粉状石炭の粒度の影
響を示す図、′s2図は溶融還元製鉄法の設備の一例を
示す図である。 1・・・上吹きランス   2・・・底吹き羽口3・・
・炭材       4・・・スラグ5・・・メタル 
     6・・・気泡7・・・耐火ライニング 化4名 第 図 成形前石炭の粒度(u)
Figure 1 is a diagram showing the influence of the particle size of pulverized coal on the strength of agglomerates, and Figure 's2 is a diagram showing an example of equipment for the smelting reduction iron manufacturing process. 1... Top blowing lance 2... Bottom blowing tuyere 3...
・Charcoal material 4...Slag 5...Metal
6... Bubbles 7... Refractory lining 4 people Figure Particle size of coal before forming (u)

Claims (1)

【特許請求の範囲】[Claims] 1 ガスを上吹きしている反応容器を用い、鉄酸化物を
含む鉄原料と、炭材を添加しながら酸素を上吹して溶融
還元を行なって炭素含有合金を製造する方法において、
炭材として1mm以下の粉状石炭を成形して得た2mm
以上の塊成物を溶融還元炉の上部より溶融層に投入する
ことを特徴とする溶融還元製鉄法
1. A method for producing a carbon-containing alloy by melting and reducing an iron raw material containing iron oxide and adding carbonaceous material while top-blowing oxygen using a reaction vessel in which gas is blown upward.
2 mm obtained by molding powdered coal of 1 mm or less as a carbon material
A smelting reduction iron manufacturing method characterized by introducing the above agglomerates into a molten layer from the upper part of a smelting reduction furnace.
JP8850090A 1990-04-03 1990-04-03 Smelting reduction iron making method Pending JPH03287709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8850090A JPH03287709A (en) 1990-04-03 1990-04-03 Smelting reduction iron making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8850090A JPH03287709A (en) 1990-04-03 1990-04-03 Smelting reduction iron making method

Publications (1)

Publication Number Publication Date
JPH03287709A true JPH03287709A (en) 1991-12-18

Family

ID=13944547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8850090A Pending JPH03287709A (en) 1990-04-03 1990-04-03 Smelting reduction iron making method

Country Status (1)

Country Link
JP (1) JPH03287709A (en)

Similar Documents

Publication Publication Date Title
JPH02228411A (en) Manufacture of iron
JP2012007225A (en) Method for producing molten steel using particulate metallic iron
JPS6164807A (en) Melt reduction method of iron ore
KR100376506B1 (en) Method for agglomerating iron ore fines for coal based iron making using waste sludge
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
JP4060986B2 (en) How to use dust in converter steelmaking.
JPH06271919A (en) Method for pre-treating coal and ore for smelting reduction furnace
JPH03287708A (en) Smelting reduction iron making method
JPH03287709A (en) Smelting reduction iron making method
JPH0428810A (en) Smelting reduction iron-making method
JPS6337173B2 (en)
JP2011179090A (en) Method for producing granulated iron
WO1997012066A1 (en) Chromium ore smelting reduction process
JP2691744B2 (en) Iron melting reduction smelting operation method
JP2000119722A (en) Production of reduced iron pellet
JPS6248749B2 (en)
JPH10168508A (en) Production of molten iron
JPH0483815A (en) Melting-reduction iron manufacturing method
JPH03257109A (en) Method for treating by-product produced in smelting reduction process
JPH0432505A (en) Iron-making method with smelting reduction
JPH01319620A (en) Method of operating smelting reduction furnace
JPS6242020B2 (en)
JPS62188714A (en) Production of molten iron
JPH032922B2 (en)
Ray et al. Production of liquid iron using coal