JPS6337173B2 - - Google Patents

Info

Publication number
JPS6337173B2
JPS6337173B2 JP15140083A JP15140083A JPS6337173B2 JP S6337173 B2 JPS6337173 B2 JP S6337173B2 JP 15140083 A JP15140083 A JP 15140083A JP 15140083 A JP15140083 A JP 15140083A JP S6337173 B2 JPS6337173 B2 JP S6337173B2
Authority
JP
Japan
Prior art keywords
slag
sludge
reducing agent
dust
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15140083A
Other languages
Japanese (ja)
Other versions
JPS6043444A (en
Inventor
Kazuaki Tanigawa
Takashi Oshiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Jiryoku Senko Co Ltd
Original Assignee
Nippon Jiryoku Senko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Jiryoku Senko Co Ltd filed Critical Nippon Jiryoku Senko Co Ltd
Priority to JP58151400A priority Critical patent/JPS6043444A/en
Publication of JPS6043444A publication Critical patent/JPS6043444A/en
Publication of JPS6337173B2 publication Critical patent/JPS6337173B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は反応熱源として各種金属製練炉や溶解
炉から排出される高温の溶滓が持つ顕熱を用い、
ステンレス鋼等の特殊鋼のダスト、スラツジ類中
に含有されている有価金属、特にNi、次いでFe
を濃縮回収する方法に関するものである。 特殊鋼製造に際して発生するダスト、スラツジ
類は酸化鉄を主成分とするが、数パーセントの
Niを含みながら低品位であり、しかもCr、Pb、
Zn、Cu、Cd、S、Fなどの有害成分も含むため
に、Ni原料としての活用も出来ずに産業廃棄物
として多額の費用をかけて処分されている。 一方製鉄業において発生する高炉、転炉、電気
炉、合金鉄用電気炉などの各種炉から排出される
溶滓は高温のまま排出されておりその莫大な熱エ
ネルギーは未利用のまま無駄に放冷されているの
が現状である。 そこで本願は上記の未利用熱エネルギーの利用
に着目し、特殊鋼ダスト、スラツジ類をこれらの
高温溶滓中に投入して、そのエネルギーにより有
用成分主としてNiをメタル再生回収すると共に、
他の成分は完全に滓化せしめて無公害化処理する
ことを目的としたものである。 この種の研究としては本願出願人が以前に研究
出願した特願昭48−111306(特開昭50−61304)
(溶滓を利用した製鋼ダスト、スラツジからの有
価金属回収方法)があり、この方法は還元剤を内
装したダスト、スラツジのブリケツトまたはペレ
ツトを作り、転炉や電気炉の溶滓鍋底にあらかじ
め入れておいて、その上から高温の溶滓を流入す
る方法であるが、この方法によると製鋼操業の変
化に対応したブリケツトまたはペレツトの装入適
正量の調節が出来ず、時として未反応ダスト、ス
ラツジのブリケツトまたはペレツトの残る欠点を
有していることが確認出来た。 そこで本願発明方法では上記の欠点を解消し、
さらに有価金属の回収を容易として有害成分の無
公害化処理をより完全ならしめようとする方法を
提供するものであり、その要旨とするところは、 第1工程:特殊鋼ダスト、スラツジ類と、該ダス
ト、スラツジ類中の金属化合物と反応するに必
要な量の還元剤と塩化剤とを混合塊成化する。 第2工程:第1工程で得られた塊成化物を乾燥予
熱する。 第3工程:第2工程で得られた乾燥塊成化物を高
温溶滓と共に溶滓鍋内に装入し、該溶滓の持つ
顕熱により塩化還元反応を生起せしめ、主とし
てNi、Feの有価金属をメタル化させる。 第4工程:溶滓鍋内の物を冷却凝固し、次いで破
砕した後通常の選鉱手段でメタル化したNi、
Feを回収する 上記の各工程より成る溶滓顕熱を利用した特殊
鋼ダスト、スラツジ類からの有価金属回収方法で
ありこの際に用いる還元剤としてアルミ粉やフエ
リシリコンでも支障はないが通常はコークス粉や
木炭粉等の炭素質還元剤を用い、又塩化剤として
は通常安価なCaCl2やNaClを用いる。 なお第1工程ではダスト、スラツジ類に還元剤
と塩化剤を共に添加混練して、ブリケツトまたは
ペレツト状に塊成化するが、炭素質還元剤を用い
る場合その添加量はNi還元に必要な理論量の1
〜5倍、塩化剤の添加量はCaCl2やNaClを用い
る場合Niを塩化するに必要な理論量の0.5〜1.5倍
とすることが好ましく、又炭素質還元剤の粒度は
約5m/m以下が好ましい。 次に第2工程は第1工程で得られた塊成化物に
含まれる水分を乾燥除去する工程で、過剰の水分
が存在すると、NiCl2+H2O→NiO+2HCl又は、
FeCl2+H2O→FeO+2HCl等で示される加水分解
をおこし、NiやFeの塩化反応が阻害されること
を防止する為に必要であり、また水分による溶滓
顕熱の熱損失を防止する為にも重要である。更に
溶滓中に投入された塊成化物の破裂粉化を防止す
る上からも効果を有する。 第3工程は高温の溶滓中に第2工程よりの塊成
化物を投入する工程で、溶滓鍋への落下乱流また
は高圧気体吹き込みや機械的撹拌による人工乱流
によつて塊成化物を溶滓中に投入せしめ顕熱によ
るNi、Feの塩化還元反応を促進する工程である
が、Ni、Fe化合物は先ずNiCl2、FeCl2となつて
気体化し、次いで炭素質還元剤上にメタルに還元
されて析出するために反応の進行と共にNi、Fe
メタルの成長が見られ後工程での物理選鉱を容易
とする特徴がある。しかしながら塊成化物の投入
量は溶滓顕熱に応じた量が大切で、通常溶滓量の
約30%以下である。 次に本発明を合金鉄溶滓に応用した場合を第1
図を参酌し乍ら詳述する。 図中1は合金鉄用電気炉、2は合金鉄メタル用
の取鍋、3は溶滓鍋、4は溶滓、5は乾燥予熱さ
れたブリケツト、6はブリケツト投入用フイダ
ー、7はブリケツト乾燥予熱装置、8は製団機、
9は処理を完了した溶滓、10は選鉱装置を示
す。 合金鉄用電気炉1から出湯されたメタルと溶滓
はメタル用の取鍋2内で比重分離されて、溶滓4
のみが次の溶滓鍋3中に溢流落下して貯留され
る。一方ダスト、スラツジ類と炭素質還元剤、塩
化剤とを混合して、また必要によつては製団用の
バインダーを加えて、製団機8でブリケツトを作
り、乾燥予熱装置7によつて乾燥予熱されたブリ
ケツト5はフイダー6に準備する。 しかし溶滓4が溶滓鍋3に落下する時に乾燥予
熱ブリケツト5をフイダー6から同時に落下せし
めて溶滓鍋3内で良く混合し溶滓4の顕熱を充分
にブリケツトに伝達せしめて、ブリケツト中Ni
やFeの塩化還元反応を促進する。ブリケツト内
の温度が約800℃以上となると、あたかも密閉容
器に類似したブリケツト内で塩化還元反応が起こ
り主としてメタルNiの生成を見るものであるが、
Feの一部も同様の反応によつてメタル化するの
で実際にはFe―Ni合金の生成となる。 次いで処理を完了した溶滓9は放流または溶滓
鍋3内で冷却凝固された後に、選鉱工程10に送
つて破砕、磁力選鉱、比重選鉱などによつてNi
を主体とした還元メタル粒を回収する。 以下本発明の試験実施例を示す。 試験実施例 エルー式電気炉1tでフエロクロムスラグを再
溶解して作つた約500Kgの溶滓を第2図にて示す
ごとく鉄製の溶滓鍋3に流入して、次いで溶滓中
にランスパイプ11を挿入、高圧空気にて溶滓を
バブリングさせながら、あらかじめステンレス製
鋼ダストに外割りで粉コークス15重量部と塩化カ
ルシユーム5重量部を内装して製団し充分に乾燥
したブリケツト50Kgを1分間に5Kgの投入速度で
溶滓中に挿入した後に約3時間放置し転倒凝固せ
しめて、常温に冷却後−3m/m以下に粉砕して
磁力選鉱を行つた結果は下記のごとくであつた。 ※電気炉から出湯時の溶滓温度 1630℃ ※ブリケツト投入完了時の溶滓温度 1410℃ ※磁力選鉱結果
The present invention uses sensible heat possessed by high-temperature slag discharged from various metal smelting furnaces and melting furnaces as a reaction heat source,
Valuable metals contained in dust and sludge of special steel such as stainless steel, especially Ni, followed by Fe.
The present invention relates to a method for concentrating and recovering . The dust and sludge generated during the manufacture of special steel are mainly composed of iron oxide, but a few percent of the dust and sludge are
Although it contains Ni, it is of low quality, and it also contains Cr, Pb,
Because it contains harmful components such as Zn, Cu, Cd, S, and F, it cannot be used as a Ni raw material and is disposed of as industrial waste at great expense. On the other hand, the slag discharged from various furnaces such as blast furnaces, converters, electric furnaces, and electric furnaces for ferroalloys generated in the steel industry remains at a high temperature, and a huge amount of thermal energy is wasted unused. The current situation is that it is cold. Therefore, this application focuses on the use of the above-mentioned unused thermal energy, and puts special steel dust and sludge into these high-temperature slags, and uses the energy to regenerate and recover Ni as a useful component as a metal.
The purpose of the other components is to completely turn them into slag and make them non-polluting. As for this type of research, the applicant of this application previously applied for research in Japanese Patent Application No. 48-111306 (Japanese Unexamined Patent Publication No. 50-61304).
There is a method for recovering valuable metals from steelmaking dust and sludge using molten slag.This method involves making briquettes or pellets of dust and sludge containing a reducing agent and placing them in the bottom of the slag pot of a converter or electric furnace in advance. However, with this method, it is not possible to adjust the appropriate amount of briquettes or pellets to be charged in response to changes in steelmaking operations, and sometimes unreacted dust, It was confirmed that the sludge had residual defects of briquettes or pellets. Therefore, the method of the present invention solves the above drawbacks,
Furthermore, the present invention provides a method that facilitates the recovery of valuable metals and makes the pollution-free treatment of harmful components more complete. A reducing agent and a chlorinating agent in an amount necessary to react with the metal compound in the dust or sludge are mixed and agglomerated. Second step: Dry and preheat the agglomerated product obtained in the first step. 3rd step: The dried agglomerates obtained in the 2nd step are charged into a slag pot together with high-temperature slag, and the sensible heat of the slag causes a chloride-reduction reaction, mainly containing valuable Ni and Fe. Metalizes metal. 4th step: The material in the slag pot is cooled and solidified, then crushed and then metalized using normal beneficiation methods.
Recovering Fe This is a method of recovering valuable metals from special steel dust and sludge using the sensible heat of the molten slag, which consists of each of the above steps.Aluminum powder or ferrisilicon can be used as the reducing agent at this time, but there is no problem, but usually A carbonaceous reducing agent such as coke powder or charcoal powder is used, and cheap CaCl 2 or NaCl is usually used as a chlorinating agent. In the first step, a reducing agent and a chlorinating agent are added to the dust and sludge and kneaded together to agglomerate them into briquettes or pellets.If a carbonaceous reducing agent is used, the amount added depends on the theory required for Ni reduction. quantity 1
When using CaCl 2 or NaCl, the amount of chlorinating agent added is preferably 0.5 to 1.5 times the theoretical amount required to chlorinate Ni, and the particle size of the carbonaceous reducing agent is approximately 5 m/m or less. is preferred. Next, the second step is a step of drying and removing the moisture contained in the agglomerated product obtained in the first step. If excess moisture is present, NiCl 2 + H 2 O → NiO + 2HCl or
It is necessary to prevent the chlorination reaction of Ni and Fe from being inhibited by causing the hydrolysis shown by FeCl 2 + H 2 O → FeO + 2HCl, etc., and to prevent the heat loss of sensible heat of the slag due to moisture. It is also important. Furthermore, it is also effective in preventing the agglomerated material introduced into the slag from bursting into powder. The third step is a step in which the agglomerates from the second step are introduced into the high-temperature slag, and the agglomerates are removed by turbulence falling into the slag pot or by artificial turbulence caused by high-pressure gas blowing or mechanical stirring. In this process, Ni and Fe are injected into the slag to promote the chloride-reduction reaction of Ni and Fe due to sensible heat.The Ni and Fe compounds first become NiCl 2 and FeCl 2 and gasify, and then the metal is deposited on the carbonaceous reducing agent. As the reaction progresses, Ni and Fe are reduced and precipitated.
It has the characteristic that metal growth can be observed, making physical beneficiation easier in the subsequent process. However, it is important that the amount of agglomerate added is in accordance with the sensible heat of the slag, and is usually about 30% or less of the amount of slag. Next, the first case where the present invention is applied to ferroalloy slag will be described.
The details will be explained with reference to the figure. In the figure, 1 is an electric furnace for ferroalloy metal, 2 is a ladle for ferroalloy metal, 3 is a slag ladle, 4 is slag, 5 is a dry and preheated briquette, 6 is a feeder for charging briquettes, and 7 is a drying briquette. Preheating device, 8 is a dough making machine,
9 shows the slag that has been processed, and 10 shows the ore processing device. The metal and molten slag tapped from the electric furnace 1 for ferroalloy are separated by specific gravity in the metal ladle 2, and the molten slag 4
Only the slag overflows and falls into the next slag pot 3 and is stored there. On the other hand, dust and sludge are mixed with a carbonaceous reducing agent and a chlorinating agent, and if necessary, a binder for briquetting is added to make briquettes using a briquetting machine 8, and then briquettes are made using a drying preheating device 7. The dry and preheated briquettes 5 are placed in a feeder 6. However, when the molten slag 4 falls into the slag ladle 3, the dry preheated briquettes 5 are simultaneously dropped from the feeder 6 and are mixed well in the slag ladle 3, so that the sensible heat of the slag 4 is sufficiently transferred to the briquettes. Medium Ni
Promotes the chloride-reduction reaction of Fe and Fe. When the temperature inside the briquette reaches approximately 800℃ or higher, a chloride-reduction reaction occurs within the briquette, which is similar to a closed container, and mainly produces metal Ni.
Since a portion of Fe is also metalized by a similar reaction, an Fe--Ni alloy is actually formed. Next, the treated slag 9 is discharged or cooled and solidified in the slag ladle 3, and then sent to the beneficiation step 10 where Ni is removed by crushing, magnetic beneficiation, specific gravity beneficiation, etc.
Collect reduced metal grains mainly composed of Test examples of the present invention will be shown below. Test Example Approximately 500 kg of slag made by remelting ferrochrome slag in a 1 ton electric furnace flows into an iron slag ladle 3 as shown in Figure 2, and then into the slag. Insert the lance pipe 11, and while bubbling the slag with high-pressure air, mix 15 parts by weight of coke powder and 5 parts by weight of calcium chloride inside the stainless steel dust, and add 50 kg of briquettes that have been thoroughly dried. After inserting it into the slag at a rate of 5 kg per minute, it was allowed to stand for about 3 hours to solidify by falling over, and after cooling to room temperature, it was crushed to less than -3 m/m and subjected to magnetic beneficiation. The results are as follows. Ta. *Temperature of slag at the time of tapping from the electric furnace 1630℃ *Temperature of slag at the time of completion of charging the briquette 1410℃ *Results of magnetic beneficiation

【表】 * %は全て重量%である。
上記の結果より溶滓中に投入されたブリケツト
主成分の磁着メタルの回収率を計算してみると、 Ni回収率=6.7Kg×0.1249/50Kg×0.0186×100=89.98
(%) Fe回収率=6.7Kg×0.7552/50Kg×0.2532×100=40.07
(%) Cr回収率=6.7Kg×0.0250/50Kg×0.0603×100=5.55(
%) となり、特にNiの回収率が高く次いでFeと続き、
Crの回収は極めて低く、本発明は塩化容易なNi
の回収に有利な塩化還元反応の特長を良く表して
いる。 以上の試験実施例のごとく、これらの特殊鋼ダ
スト、スラツジ類に含有されているNiは低品位
であり、しかもFe、Crなどの他成分も共存する
ためにその活用が困難であつたが、本発明によれ
ばNiの選択濃縮回収が可能であり極めて有利で
ある。 しかも従来無駄にされていた溶滓顕熱を有効に
活用すると共に、公害問題上深刻化しているダス
ト、スラツジ類の無公害化処理がNi、Feの回収
と同時に実施し得ることは産業上極めて意義が大
きい。
[Table] * All percentages are by weight.
Based on the above results, the recovery rate of the magnetic metal, which is the main component of the briquettes, put into the slag is calculated as follows: Ni recovery rate = 6.7Kg x 0.1249/50Kg x 0.0186 x 100 = 89.98
(%) Fe recovery rate = 6.7Kg×0.7552/50Kg×0.2532×100=40.07
(%) Cr recovery rate = 6.7Kg x 0.0250/50Kg x 0.0603 x 100 = 5.55 (
%), with the recovery rate of Ni being particularly high, followed by Fe.
The recovery of Cr is extremely low, and the present invention is suitable for Ni, which is easily chlorinated.
The characteristics of the chloride-reduction reaction, which is advantageous for the recovery of As shown in the above test examples, the Ni contained in these special steel dusts and sludges is of low grade and also contains other components such as Fe and Cr, making it difficult to utilize it. According to the present invention, it is possible to selectively concentrate and recover Ni, which is extremely advantageous. In addition, it is extremely industrially possible to make effective use of the sensible heat of the slag, which was previously wasted, and to decontaminate dust and sludge, which are becoming increasingly serious pollution problems, at the same time as recovering Ni and Fe. It has great significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願方法の工程説明図、第2図は本発
明を開発した試験実施例の説明図。 図中、1:電気炉、2:メタル用取鍋、3:溶
滓鍋、4:溶滓、5:乾燥ブリケツト、6:ブリ
ケツト投入フイダー、7:ブリケツト乾燥予熱装
置、8:製団機、9:処理後の溶滓、10:選鉱
工程、11:高圧空気ランスパイプ。
FIG. 1 is an explanatory diagram of the process of the present method, and FIG. 2 is an explanatory diagram of a test example in which the present invention was developed. In the figure, 1: electric furnace, 2: metal ladle, 3: slag ladle, 4: slag, 5: dry briquette, 6: briquette feeder, 7: briquette drying preheater, 8: briquetting machine, 9: Slag after treatment, 10: Mineral beneficiation process, 11: High pressure air lance pipe.

Claims (1)

【特許請求の範囲】 1 下記の各工程より成る溶滓顕熱を利用した特
殊鋼ダスト、スラツジ類からの有価金属回収方
法。 第1工程:特殊鋼ダスト、スラツジ類と、該ダス
ト、スラツジ類中の金属化合物と反応するに必
要な量の還元剤と塩化剤とを混合塊成化する。 第2工程:第1工程で得られた塊成化物を乾燥予
熱する。 第3工程:第2工程で得られた乾燥塊成化物を高
温溶滓と共に溶滓鍋内に装入し、該溶滓の持つ
顕熱により塩化還元反応を生起せしめ、主とし
てNi、Feの有価金属をメタル化させる。 第4工程:溶滓鍋内の物を冷却凝固し、次いで破
砕した後通常の選鉱手段でメタル化したNi、
Feを回収する。 2 第1工程で用いる還元剤が炭素質還元剤であ
ることを特徴とする特許請求の範囲第1項記載の
方法。 3 第1工程で用いる塩化剤が、CaCl2あるいは
NaClであることを特徴とする特許請求の範囲第
1項若しくは第2項記載の方法。 4 第3工程で溶滓鍋内に、乾燥塊成化物と高温
溶滓とを装入するに際しそれらを同時に装入する
ことを特徴とする特許請求の範囲第1項〜第3項
のいずれかに記載の方法。
[Claims] 1. A method for recovering valuable metals from special steel dust and sludge using the sensible heat of slag, which comprises the following steps. First step: Special steel dust and sludge are mixed and agglomerated with a reducing agent and a chlorinating agent in amounts necessary to react with the metal compounds in the dust and sludge. Second step: Dry and preheat the agglomerated product obtained in the first step. 3rd step: The dried agglomerates obtained in the 2nd step are charged into a slag pot together with high-temperature slag, and the sensible heat of the slag causes a chloride-reduction reaction, mainly containing valuable Ni and Fe. Metalizes metal. 4th step: The material in the slag pot is cooled and solidified, then crushed and then metalized using normal beneficiation methods.
Collect Fe. 2. The method according to claim 1, wherein the reducing agent used in the first step is a carbonaceous reducing agent. 3 The chlorinating agent used in the first step is CaCl 2 or
3. The method according to claim 1 or 2, wherein NaCl is used. 4. Any one of claims 1 to 3, characterized in that in the third step, the dry agglomerated material and the high-temperature slag are charged at the same time into the slag pot. The method described in.
JP58151400A 1983-08-18 1983-08-18 Method for recovering valuable metal from special steel dust and sludge Granted JPS6043444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58151400A JPS6043444A (en) 1983-08-18 1983-08-18 Method for recovering valuable metal from special steel dust and sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58151400A JPS6043444A (en) 1983-08-18 1983-08-18 Method for recovering valuable metal from special steel dust and sludge

Publications (2)

Publication Number Publication Date
JPS6043444A JPS6043444A (en) 1985-03-08
JPS6337173B2 true JPS6337173B2 (en) 1988-07-25

Family

ID=15517758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58151400A Granted JPS6043444A (en) 1983-08-18 1983-08-18 Method for recovering valuable metal from special steel dust and sludge

Country Status (1)

Country Link
JP (1) JPS6043444A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122667U (en) * 1989-03-20 1990-10-08

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665868A (en) * 1992-08-19 1994-03-08 Toyobo Co Ltd Dyed material of interknitted fabric
WO1998036112A1 (en) 1997-02-13 1998-08-20 Asahi Kasei Kogyo Kabushiki Kaisha Elastic polyurethane fiber and process for producing the same
EP1123994B1 (en) 1998-08-10 2008-02-13 Asahi Kasei Kabushiki Kaisha Elastomeric polyurethane fiber
JP5688601B2 (en) 2011-06-23 2015-03-25 東レ・オペロンテックス株式会社 Polyurethane yarn and fabric and swimsuit using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169417A (en) * 1974-12-12 1976-06-16 Kobe Steel Ltd Tetsuganjudasutono shorihoho
JPS53122604A (en) * 1977-03-31 1978-10-26 Nippon Jiriyoku Senkou Kk Treatment of melted slag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169417A (en) * 1974-12-12 1976-06-16 Kobe Steel Ltd Tetsuganjudasutono shorihoho
JPS53122604A (en) * 1977-03-31 1978-10-26 Nippon Jiriyoku Senkou Kk Treatment of melted slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122667U (en) * 1989-03-20 1990-10-08

Also Published As

Publication number Publication date
JPS6043444A (en) 1985-03-08

Similar Documents

Publication Publication Date Title
CN108676942A (en) The materials such as a kind of iron content and/or zinc lead bronze tin cooperate with processing recovery method with molten steel slag
CN112063834B (en) Method for returning stainless steel pickling sludge to rotary kiln-submerged arc furnace process for utilization
CN1036798A (en) Zinciferous metallurgical dust and slag utilize method
US5582631A (en) Method for the production of a feedstock containing usable iron constituents from industrial waste streams
CN100529110C (en) Ironmaking and steelmaking
KR19980041966A (en) Electric steelworks dust reduction method and apparatus
JPS6337173B2 (en)
JP3516854B2 (en) Steelmaking furnace dust treatment method and dust pellets
US3947267A (en) Process for making stainless steel
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
US2674531A (en) Iron recovery
JPH0375615B2 (en)
JPS6318650B2 (en)
JPH01228586A (en) Treatment of ni-cd battery waste
JP2001181719A (en) Method of manufacturing reduced metal from metal- containing material
JP4767611B2 (en) Reduction method of iron oxide
JPH08225816A (en) Method of briquetting pre-reduced high-temperature iron ore particle for producing iron ingot
JPH0128820B2 (en)
JPH10158718A (en) Method for recycling dust in electric furnace
JPS60159129A (en) Method for recovering valuable metal from special steel dust, sludge or the like
JP2000119722A (en) Production of reduced iron pellet
JP4295557B2 (en) Stainless Steel Manufacturing Process Recycling Method of Stainless Steel Manufacturing Waste
JPH0237411B2 (en)
JPS60159133A (en) Method for recovering valuable metal from special steel dust, sludge or the like
EP0409853A1 (en) Production of manganese carbide and ferrous alloys.