JP4767611B2 - Reduction method of iron oxide - Google Patents

Reduction method of iron oxide Download PDF

Info

Publication number
JP4767611B2
JP4767611B2 JP2005216638A JP2005216638A JP4767611B2 JP 4767611 B2 JP4767611 B2 JP 4767611B2 JP 2005216638 A JP2005216638 A JP 2005216638A JP 2005216638 A JP2005216638 A JP 2005216638A JP 4767611 B2 JP4767611 B2 JP 4767611B2
Authority
JP
Japan
Prior art keywords
iron oxide
iron
temperature
mixture
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005216638A
Other languages
Japanese (ja)
Other versions
JP2007031774A (en
Inventor
康介 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005216638A priority Critical patent/JP4767611B2/en
Publication of JP2007031774A publication Critical patent/JP2007031774A/en
Application granted granted Critical
Publication of JP4767611B2 publication Critical patent/JP4767611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

本発明は、製鉄工場の主に製鋼工程において発生する、高温溶融物の顕熱を効率的に利用することで、ダスト・スラッジ・鉄鉱石等の酸化鉄を還元する方法に関する。   The present invention relates to a method for reducing iron oxide such as dust, sludge, iron ore, etc. by efficiently utilizing the sensible heat of a high-temperature melt generated mainly in a steelmaking process of an iron factory.

従来、製鋼工場内で発生する製鋼ダスト等の酸化鉄から、還元鉄を製造する金属還元プロセスとしては各種のものがある。
その中で、粉体の酸化鉄を原料として、ペレット化し、これを高温で還元するプロセスとしては、シャフト式還元炉、ロータリーキルン式還元炉、回転炉床式還元炉等が実用化されている。
シャフト式還元炉は、天然ガスを使用して鉄鉱石や酸化鉄ペレットから還元鉄を製造し、この還元鉄を電気炉で溶解して鋼を製造する。
しかし、天然ガスを改質して還元ガスとするために、大規模設備が必要であり、立地条件は制約される。
これに対して、天然ガスに代わる還元剤として石炭等の炭材を使用する方法として、ロータリーキルン式や回転炉床式がある。これらは、還元炉から熱を供給して加熱し、還元反応はペレットに混在した石炭等の炭材を使用して行う。
これらの方法で製造された還元鉄は、そのままもしくはブリケット状等に成形してから電気炉等の溶解炉に装入し、溶解して金属鉄を製造する。そのため、金属鉄を得るまでに、還元鉄の製造を行う還元炉と金属鉄の製造を行う溶解炉という、少なくとも2段階の設備構成を必要とすることから、設備が複雑かつ大規模にならざるを得ない課題があった。
Conventionally, there are various metal reduction processes for producing reduced iron from iron oxide such as steelmaking dust generated in a steelmaking factory.
Among them, shaft-type reduction furnaces, rotary kiln-type reduction furnaces, rotary hearth-type reduction furnaces, and the like have been put into practical use as processes for pelletizing iron oxide powder as a raw material and reducing it at a high temperature.
The shaft-type reduction furnace uses natural gas to produce reduced iron from iron ore and iron oxide pellets, and this reduced iron is melted in an electric furnace to produce steel.
However, in order to reform natural gas to reduce gas, large-scale facilities are required, and the location conditions are restricted.
On the other hand, there are a rotary kiln type and a rotary hearth type as a method of using a carbon material such as coal as a reducing agent in place of natural gas. These are heated by supplying heat from a reduction furnace, and the reduction reaction is performed using a carbonaceous material such as coal mixed in pellets.
The reduced iron produced by these methods is formed as it is or in a briquette form, and then charged into a melting furnace such as an electric furnace and melted to produce metallic iron. For this reason, it is necessary to have at least two stages of equipment configuration, ie, a reduction furnace that produces reduced iron and a melting furnace that produces metallic iron, before the metal iron is obtained. There was a problem that could not be obtained.

一方で、製鋼工場内にて発生するスラグおよびメタルの高温溶融物は、冷却・固化後に一部は磁選工程を経て、スクラップとして転炉その他の工程にてリサイクルされているが、これらの冷却過程において、顕熱を回収することはされておらず、無駄に排出されている。   On the other hand, the high-temperature slag and metal melts generated in steelmaking plants are partly subjected to magnetic separation after cooling and solidification, and are recycled as scrap in the converter and other processes. However, sensible heat is not recovered and is exhausted wastefully.

そこで、この顕熱を活用することに着目し、簡易的に酸化鉄の還元に利用した従来技術として、特公平3−71488号公報に、製鋼スラグの顕熱を利用した方法が開示されている。
この方法は、製鋼ダスト類と炭素質固体燃料を混合・塊成化し、事前余熱した後に、溶融している製鋼スラグに投入することで、ダスト類中の酸化鉄を還元し、還元された鉄分については、溶融スラグを凝固させた後に、選鉱処理により粒鉄として回収する方法である。
炭素系還元材と混合した製鋼ダスト等の酸化鉄の還元においては、混合物温度が、1000℃を超えると、内部で酸化鉄と炭素との直接還元反応が活発化し、発生するCOガスによっても還元反応が進行する。
また、この際に発生するCO2ガスは、近傍のC分と反応しCOガスとなるため、Fe2O3またはFeOの還元剤として働き、反応が連続的に進行していく。但し、開放系であれば、発生したCOガスが系外に抜けるため、それ以降の反応は起こりにくく、還元効率が低下する。
従って、特公平3−71488号公報の方法では、還元反応で発生したCOガスは待機中にロスするため、還元効率が低下するうえ、ロスしたガスを回収するためには、大規模な設備が必要という問題点があった。
特公平3−71488号公報
Therefore, paying attention to utilizing this sensible heat, Japanese Patent Publication No. 3-71488 discloses a method using the sensible heat of steelmaking slag as a conventional technique that is simply used to reduce iron oxide. .
In this method, steelmaking dusts and carbonaceous solid fuel are mixed and agglomerated, preheated, and then put into molten steelmaking slag to reduce the iron oxide in the dusts and reduce the reduced iron content. Is a method in which molten slag is solidified and then recovered as granular iron by a beneficiation treatment.
In the reduction of iron oxides such as steelmaking dust mixed with carbon-based reducing materials, if the temperature of the mixture exceeds 1000 ° C, the direct reduction reaction between iron oxide and carbon is activated inside, and reduction is also caused by the generated CO gas. The reaction proceeds.
In addition, the CO 2 gas generated at this time reacts with the C component in the vicinity to become CO gas, and thus acts as a reducing agent for Fe 2 O 3 or FeO, and the reaction proceeds continuously. However, if it is an open system, the generated CO gas escapes out of the system, so that the subsequent reaction hardly occurs and the reduction efficiency decreases.
Therefore, in the method of Japanese Examined Patent Publication No. 3-71488, CO gas generated in the reduction reaction is lost during standby, so that the reduction efficiency is reduced and a large-scale facility is required to recover the lost gas. There was a problem of necessity.
Japanese Patent Publication No. 3-71488

本発明は、前述のような従来の問題点を解決すべく、ロスエネルギーを有効活用しつつ、簡易な方法で、効率的に酸化鉄を還元する方法を提供することを課題とする。   In order to solve the conventional problems as described above, an object of the present invention is to provide a method for efficiently reducing iron oxide by a simple method while effectively utilizing loss energy.

本発明は、還元剤とともに混合した製鋼ダスト類の酸化鉄を還元する方法であって、ロスエネルギーを有効活用しつつ、簡易な方法で、効率的に酸化鉄を還元する方法を提供するものであり、その要旨とするところは、特許請求の範囲に記載した通りの下記内容である。
(1)還元剤と共に混合した酸化鉄を還元する酸化鉄の還元方法であって、
前記酸化鉄と還元剤との混合物を容器に投入し、
該混合物の上方から、凝固温度が1000℃以上の製鉄工程で発生するスラグおよび/または溶鋼である溶融物を、該凝固温度以上、かつ、該凝固温度+30℃以下の温度で投入することを特徴とする酸化鉄の還元方法。
)前記還元剤として、コークス、石炭、木屑の1種または2種以上を使用することを特徴とする(1)に記載の酸化鉄の還元方法。
The present invention provides a method for reducing iron oxide in steelmaking dusts mixed with a reducing agent, and effectively reducing iron oxide while effectively utilizing loss energy. Yes, the gist thereof is the following contents as described in the claims.
(1) A method for reducing iron oxide for reducing iron oxide mixed with a reducing agent,
Put the mixture of iron oxide and reducing agent into a container,
From above the mixture, a slag and / or molten steel melt generated in a steelmaking process with a solidification temperature of 1000 ° C. or higher is charged at a temperature equal to or higher than the solidification temperature and equal to or lower than the solidification temperature + 30 ° C. The method of reducing iron oxide.
( 2 ) The method for reducing iron oxide according to ( 1) , wherein one or more of coke, coal, and wood chips are used as the reducing agent.

本発明によれば、還元剤と共に混合した製鋼ダスト類の酸化鉄を還元する方法であって、ロスエネルギーを有効活用しつつ、簡易な方法で、効率的に酸化鉄を還元する方法を提供することができるなど、産業上有用な著しい効果を奏する。   According to the present invention, there is provided a method for reducing iron oxide of steelmaking dusts mixed with a reducing agent, and efficiently reducing iron oxide by a simple method while effectively utilizing loss energy. It is possible to achieve significant industrially useful effects.

以下本発明を実施するための最良の形態について詳述する。
製鋼ダスト等の酸化鉄から、還元鉄を製造するためには、炭素分などの還元剤とともに熱源が必要であり、還元剤と酸化鉄の混合物の温度が1000℃を超えると、還元反応が活発化する。その際の反応は以下に示される。
FeO + C → Fe +CO↑ … (A)
FeO + CO → Fe +CO2↑ … (B)
CO2 + C → 2CO … (C)
本発明では、効率的な酸化鉄還元を実現するためには、上記(B)、(C)の反応をロスなく起こすことが必要であり、(A)の反応で発生するCOガスを系外にできるだけロスさせないために、密閉度を高めることが重要であると考えた。
ここで、密閉度を高めるには、蓋等も考えられるが、新たな設備が必要となることに加え、ダスト表面は異形状であり、空隙が生じてしまう課題がある。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
In order to produce reduced iron from iron oxides such as steelmaking dust, a heat source is required together with a reducing agent such as carbon. When the temperature of the mixture of reducing agent and iron oxide exceeds 1000 ° C., the reduction reaction is active. Turn into. The reaction at that time is shown below.
FeO + C → Fe + CO ↑ (A)
FeO + CO → Fe + CO 2 ↑… (B)
CO 2 + C → 2CO (C)
In the present invention, in order to realize efficient iron oxide reduction, it is necessary to cause the reactions (B) and (C) without loss, and the CO gas generated by the reaction (A) is removed from the system. In order to prevent loss as much as possible, it was considered important to increase the sealing degree.
Here, in order to increase the degree of sealing, a lid or the like can be considered, but in addition to the need for new equipment, the dust surface has an irregular shape, and there is a problem that voids are generated.

従って、還元に必要な熱源を持ち、流動性のある物質で覆うことが効果的であると考えられる。そこで本発明者等は、還元剤とともに混合した製鋼ダスト類の酸化鉄に熱源を加える際において、混合物をあらかじめ容器内に入れ置きし、その上方から高温溶融物を凝固点近傍で容器内に投入することにより、表面固化することを利用して密閉度を高め、還元剤である発生COガスのロスを低減するとともに、酸化物層を還元雰囲気に保持できることを見出した。
ここで、容器内へ投入する際の温度降下は約30℃であるから、投入時の溶融物温度は凝固温度以上、かつ、凝固温度+30℃以下とし、対象となる溶融物の凝固温度は、直接還元反応の活発化する1000℃以上とすることによって、投入後すぐに溶融物の表面を固化させることができ、混合物を密閉状態に保って還元反応を促進させることができる。但し、その後の還元中の温度降下を考慮すると、1200℃以上が望ましい。
Therefore, it is considered effective to have a heat source necessary for reduction and to cover with a fluid substance. Therefore, when adding a heat source to the iron oxide of steelmaking dusts mixed with a reducing agent, the inventors put the mixture in a container in advance, and put the high-temperature melt into the container near the freezing point from above. As a result, the present inventors have found that the solidification is increased by utilizing surface solidification, loss of generated CO gas as a reducing agent is reduced, and the oxide layer can be maintained in a reducing atmosphere.
Here, since the temperature drop at the time of charging into the container is about 30 ° C, the melt temperature at the time of charging is not less than the solidification temperature and not more than the solidification temperature + 30 ° C, and the solidification temperature of the target melt is By setting the temperature to 1000 ° C. or higher at which the direct reduction reaction is activated, the surface of the melt can be solidified immediately after the addition, and the reduction reaction can be promoted by keeping the mixture in a sealed state. However, considering the temperature drop during the subsequent reduction, 1200 ° C. or higher is desirable.

また、熱源としては、製鉄工程でロスしているスラグ・溶鋼などの高温溶融物の顕熱を活用することで、余分なエネルギーを投入することなく、混合物温度を上昇させることが可能である。併せて、容器についても、通常これらの溶融物を排出しているものと同様の設備を活用することが可能であり、簡易な設備で行うことが可能である。溶融物の対象としては、スラグ、メタル、混合物いずれでもよいが、還元後の鉄分リサイクル性を考慮すると、メタルが望ましい。また、混合物と投入する溶融物との比率については、溶融物顕熱からの熱バランスより決定されるが、例えば溶鋼を用いる場合は、混合物に対して4倍以上の量が必要であり、望ましくは5倍以上とする。
混合する還元剤については、通常コークス、石炭等が用いられるが、木屑等炭素を含有しているものであれば利用可能であり、効率的な還元を行うため、ダスト中酸化物比率に応じて、炭素分を理論等量の70〜100%に配合することが望ましい。
本発明により、簡易な方法で、炭素比率が同等の場合は酸化鉄の還元率を高めることが可能であり、同レベルの還元率を得るためには還元剤の必要量を少なくすることが可能である。
Moreover, as a heat source, it is possible to raise the temperature of the mixture without using excess energy by utilizing the sensible heat of a high-temperature melt such as slag or molten steel that has been lost in the iron making process. In addition, for the container, it is possible to utilize the same facilities as those normally discharging these melts, and it is possible to carry out with simple facilities. As the object of the melt, any of slag, metal, and mixture may be used, but metal is desirable in view of iron recyclability after reduction. Further, the ratio of the mixture to the melt to be charged is determined by the heat balance from the sensible heat of the melt. For example, when using molten steel, an amount of 4 times or more that of the mixture is necessary, which is desirable. Is 5 times or more.
As for the reducing agent to be mixed, coke, coal, etc. are usually used, but any carbon containing carbon such as wood chips can be used, and in order to perform efficient reduction, depending on the oxide ratio in the dust It is desirable to blend the carbon content in 70 to 100% of the theoretical equivalent.
According to the present invention, it is possible to increase the reduction rate of iron oxide when the carbon ratio is the same by a simple method, and it is possible to reduce the amount of reducing agent required to obtain the same level of reduction rate It is.

図1は、本発明における酸化鉄の還元方法の処理フローを例示する図である。
まず、図1(1)に示すように、酸化鉄として例えば製鋼ダストとコークスなどの還元剤をミキサーにより事前混合した混合物2を、袋詰めや塊成化等実施後、容器1に投入する。
次に、図1(2)に示すように、凝固温度が1000℃以上の溶融物(スラグまたは溶鋼)4を測温プローブまたは放射温度計3によって測温し、投入時の温度が、該凝固温度以上、かつ、該凝固温度+30℃以下の温度になるまで待機させた後に、前述の混合物を投入した容器1まで運搬する。
そして、図1(3)に示すように、前述の混合物2の上方から高温溶融物4を投入する。
投入した高温溶融物4は、表面から固化し、混合物2を密閉する働きを有し、前述の(A)〜(C)の還元反応を促進させることができ、その状態を保持することによって、図1(4)に示すように、放置・放水等により冷却固化させる。
冷却固化時の保持時間は、放射測温計で確認することによって、還元反応が停滞する1000℃を下回ったタイミング以降で完了とする。
次に、溶融物2がスラグの場合には、図1(5)に示すように、磁力選鉱によってスラグ分とメタル分を分離し、メタル分を粒鉄として回収して、例えば、図1(6)に示すように、転炉6にてスクラップ7として使用することができる。
また、溶融物2が溶鋼の場合には、図1(5)´に示すように、固化した還元鉄5を抜き取り、叩くなどの方法で衝撃を与えることによりスラグ分を分離した後、例えば、図1(6)に示すように、転炉6にてスクラップ7として使用することができる。
FIG. 1 is a diagram illustrating a processing flow of a method for reducing iron oxide in the present invention.
First, as shown in FIG. 1 (1), a mixture 2 obtained by premixing, for example, steelmaking dust and a reducing agent such as coke as iron oxide with a mixer is put into a container 1 after carrying out bagging or agglomeration.
Next, as shown in FIG. 1 (2), a melt (slag or molten steel) 4 having a solidification temperature of 1000 ° C. or higher is measured with a temperature measuring probe or a radiation thermometer 3, and the temperature at the time of charging is the solidification temperature. After waiting until the temperature reaches a temperature equal to or higher than the temperature and equal to or lower than the solidification temperature + 30 ° C., the product is transported to the container 1 charged with the mixture.
And as shown in FIG.1 (3), the high temperature melt 4 is thrown in from the upper direction of the above-mentioned mixture 2. FIG.
The charged high-temperature melt 4 has a function of solidifying from the surface and sealing the mixture 2, and can promote the reduction reactions (A) to (C) described above. As shown in Fig. 1 (4), it is cooled and solidified by leaving or discharging water.
The holding time at the time of solidification by cooling is completed after the timing when the reduction reaction falls below 1000 ° C. by checking with a radiation thermometer.
Next, when the melt 2 is slag, as shown in FIG. 1 (5), the slag and metal are separated by magnetic separation, and the metal is recovered as granular iron. As shown in 6), it can be used as scrap 7 in the converter 6.
Further, when the melt 2 is molten steel, as shown in FIG. 1 (5) ', after the solidified reduced iron 5 is extracted and impacted by a method such as tapping, the slag is separated, for example, As shown in FIG. 1 (6), it can be used as scrap 7 in the converter 6.

以下、本発明の実施例について説明する。
転炉にて発生したダストと、還元剤としてのコークスを理論等量比率で配合した混合物500kgを事前に投入された容器の上方から、凝固温度が1000℃以上であり、表2の溶融物投入時温度に設定された溶融物を約5t投入した。
酸化鉄の還元状況を定量化するために、溶融物の凝固・冷却後、容器から地金分を抜き取り、粉砕・磁選分離し、回収された鉄分の重量・成分を測定した。
本試験に使用したダストとコークスの混合物の成分を、表1に示し、試験結果を表2に示す。

Figure 0004767611
表2中のNo.1〜4は、投入する溶融物として、溶鋼を使用した例であり、No.5〜8は溶融製鋼スラグを使用した例である。
また、評価は酸化鉄分の金属化率によって行った。
ここで、金属化率とは、No.1〜4の試験においては、全鉄回収量から使用した溶鋼分を除いた残分を、ダスト中の酸化鉄の還元によって生成した鉄分として比率を算出し、No.5〜8の試験においては、全鉄回収量を、使用したスラグ中酸化鉄中の鉄分とダスト中酸化鉄中の鉄分の和との比率とした。
例えば、表2のNo.1においては、生成した鉄分は、回収鉄分量5.46tの内、回収鉄分M.Fe分97.2%であり、5.30tとなる。このうち、投入した溶鋼中の鉄分5.2t×99%=5.15tを除いた分0.15tが、混合物中の酸化鉄が還元されて生成した鉄分量となる。混合物中の酸化鉄が全量還元した場合に生成する鉄分は、500kgの混合物中T.Fe%分であり、0.5t×50.5%=0.25tとなる。従って、投入量5.2tであり・・・・、従って、酸化鉄金属化率は、0.15/0.25=62%となる。
また、表2のNo.5においては、生成した鉄分は、回収鉄分量0.61tの内、回収鉄分M.Fe分94.5%であり、0.57tとなる。この場合は、溶融物である製鋼スラグに含まれている酸化鉄中鉄分4.9t×15%=0.74tと、混合物の酸化鉄中の鉄分0.5t×50.5%=0.25tの和である0.99tが還元対象となる。従って、酸化鉄金属化率は、0.57/0.99=58%となる。
Examples of the present invention will be described below.
From the top of a container charged beforehand with 500 kg of a mixture containing dust generated in the converter and coke as a reducing agent in a theoretical equivalent ratio, the solidification temperature is 1000 ° C. or higher, and the melt input shown in Table 2 is added. About 5 t of the melt set at the hour temperature was charged.
In order to quantify the reduction state of iron oxide, after solidification and cooling of the melt, the metal was extracted from the container, ground and magnetically separated, and the weight and components of the recovered iron were measured.
The components of the dust and coke mixture used in this test are shown in Table 1, and the test results are shown in Table 2.
Figure 0004767611
Nos. 1 to 4 in Table 2 are examples in which molten steel is used as the melt to be charged, and Nos. 5 to 8 are examples in which molten steel slag is used.
Moreover, evaluation was performed by the metallization rate of the iron oxide content.
Here, with the metallization rate, in the tests of Nos. 1 to 4, the ratio is calculated by using the remainder obtained by removing the molten steel used from the total recovered iron as the iron produced by the reduction of iron oxide in the dust. In the tests Nos. 5 to 8, the total iron recovery amount was the ratio of the iron content in the iron oxide in the slag used and the sum of the iron content in the iron oxide in the dust.
For example, in Table 2, No. 1, the produced iron content is the recovered iron content M.M. Fe content is 97.2%, which is 5.30t. Of these, 0.15t excluding 5.2t × 99% = 5.15t of iron in the molten steel is the amount of iron produced by reducing iron oxide in the mixture. When the total amount of iron oxide in the mixture is reduced, the iron content produced is reduced by T.O. in 500 kg of the mixture. Fe% content, 0.5t × 50.5% = 0.25t. Therefore, the input amount is 5.2 t, and thus the iron oxide metallization rate is 0.15 / 0.25 = 62%.
In Table 2, No. 5, the produced iron content is the recovered iron content M.M. The Fe content is 94.5%, which is 0.57 t. In this case, the iron content in iron oxide contained in the steelmaking slag as a melt is 4.9 t × 15% = 0.74 t, and the iron content in the iron oxide of the mixture is 0.5 t × 50.5% = 0.25 t. The sum of 0.99t is the reduction target. Therefore, the iron oxide metallization rate is 0.57 / 0.99 = 58%.

溶鋼を用いた試験においては、投入時温度が凝固温度+30℃以下のNo.1,No.2において、凝固温度+30℃を超えるNo.3,No.4と比較し、50%以上の高い金属化率が得られた。
また、溶融スラグを用いた試験においても同様で、投入時温度が凝固温度+30℃を超えるNo.7,No.8と比較し、+30℃以下で投入したNo.5,No.6の試験で、高い金属化率が得られることが確認された。
従って、溶融物を、凝固温度以上、かつ、凝固温度+30℃以下で酸化鉄と還元剤との混合物の上方から投入することにより、効率的な酸化鉄の還元が行われていることが確認された。

Figure 0004767611
In tests using molten steel, No. 1 and No. 2 with a charging temperature of + 30 ° C or lower are 50% higher than No. 3 and No. 4 with a solidification temperature of + 30 ° C or higher. A metallization rate was obtained.
The same applies to tests using molten slag. Compared with No.7 and No.8, where the temperature at the time of injection exceeds the solidification temperature + 30 ° C, it is the test of No.5 and No.6 that were input at + 30 ° C or less. It was confirmed that a high metallization rate was obtained.
Therefore, it is confirmed that the iron oxide is efficiently reduced by charging the melt from above the mixture of iron oxide and reducing agent at a solidification temperature of not less than 30 ° C. and not more than 30 ° C. It was.
Figure 0004767611

本発明における酸化鉄の還元方法の処理フローを例示する図である。It is a figure which illustrates the processing flow of the reduction method of the iron oxide in this invention.

符号の説明Explanation of symbols

1 容器
2 混合物
3 放射温度計
4 高温溶融物
5 還元鉄
6 転炉
7 スクラップ
1 container 2 mixture 3 radiation thermometer 4 high-temperature melt 5 reduced iron 6 converter 7 scrap

Claims (2)

還元剤と共に混合した酸化鉄を還元する酸化鉄の還元方法であって、
前記酸化鉄と還元剤との混合物を容器に投入し、
該混合物の上方から、凝固温度が1000℃以上の製鉄工程で発生するスラグおよび/または溶鋼である溶融物を、該凝固温度以上、かつ、該凝固温度+30℃以下の温度で投入することを特徴とする酸化鉄の還元方法。
An iron oxide reduction method for reducing iron oxide mixed with a reducing agent,
Put the mixture of iron oxide and reducing agent into a container,
From above the mixture, a slag and / or molten steel melt generated in a steelmaking process with a solidification temperature of 1000 ° C. or higher is charged at a temperature equal to or higher than the solidification temperature and equal to or lower than the solidification temperature + 30 ° C. The method of reducing iron oxide.
前記還元剤として、コークス、石炭、木屑の1種または2種以上を使用することを特徴とする請求項1に記載の酸化鉄の還元方法。 The method for reducing iron oxide according to claim 1, wherein one or more of coke, coal, and wood chips are used as the reducing agent.
JP2005216638A 2005-07-27 2005-07-27 Reduction method of iron oxide Active JP4767611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216638A JP4767611B2 (en) 2005-07-27 2005-07-27 Reduction method of iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216638A JP4767611B2 (en) 2005-07-27 2005-07-27 Reduction method of iron oxide

Publications (2)

Publication Number Publication Date
JP2007031774A JP2007031774A (en) 2007-02-08
JP4767611B2 true JP4767611B2 (en) 2011-09-07

Family

ID=37791381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216638A Active JP4767611B2 (en) 2005-07-27 2005-07-27 Reduction method of iron oxide

Country Status (1)

Country Link
JP (1) JP4767611B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101623420B1 (en) * 2013-12-30 2016-06-07 우진 일렉트로나이트㈜ Porperty measuring device for slag and measuring mtethod of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324001B2 (en) * 1973-10-02 1978-07-18

Also Published As

Publication number Publication date
JP2007031774A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
AU2008295564B2 (en) Direct processing of metallic ore concentrates into ferroalloys
US8535411B2 (en) Production of iron from metallurgical waste
JP2004156140A (en) Processes for preparing ferronickel and ferronickel smelting material
JP5297077B2 (en) Method for producing ferromolybdenum
JP2012007225A (en) Method for producing molten steel using particulate metallic iron
Tangstad Manganese ferroalloys technology
NO830389L (en) PROCEDURE FOR THE MANUFACTURE OF FERROSILICIUM
RU2612330C2 (en) Method of direct reduction of materials containing metal oxides to produce melt metal and device for carrying out method
JP4767611B2 (en) Reduction method of iron oxide
JPH11152511A (en) Treatment of steelmaking furnace dust and dust pellet
JP2009079257A (en) Method for producing molten steel
US4236699A (en) Apparatus for wet-post treatment of metallized iron ore
JPS61147807A (en) Conversion treatment of refined slag
JPS6337173B2 (en)
JPH0375615B2 (en)
JP2016505718A (en) Method for reusing iron-containing by-products and apparatus therefor
Nokhrina et al. Manganese concentrate usage in steelmaking
Tzevelekou et al. Direct Smelting of Metallurgical Dusts and Ore Fines in a 125t DC‐HEP Furnace
JPS6152324A (en) Simultaneous treatment of slag after steel manufacture, dust after steel manufacture and sludge
JPS6318650B2 (en)
JPS6183876A (en) Method of treating steel-making dephosphorized slag
Eto POWER AND INCINERATION
Adams The reduction of composite iron ore-coal pellets to liquid iron
Hood Jr Investigations of several variables in the Dwight-Lloyd McWane ironmaking process
JPH06100919A (en) Treatment of dephosphorized slag in molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R151 Written notification of patent or utility model registration

Ref document number: 4767611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350