JP2012007225A - Method for producing molten steel using particulate metallic iron - Google Patents

Method for producing molten steel using particulate metallic iron Download PDF

Info

Publication number
JP2012007225A
JP2012007225A JP2010146114A JP2010146114A JP2012007225A JP 2012007225 A JP2012007225 A JP 2012007225A JP 2010146114 A JP2010146114 A JP 2010146114A JP 2010146114 A JP2010146114 A JP 2010146114A JP 2012007225 A JP2012007225 A JP 2012007225A
Authority
JP
Japan
Prior art keywords
iron
metallic iron
granular metallic
molten
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010146114A
Other languages
Japanese (ja)
Inventor
Osamu Tsushimo
修 津下
Itsuo Miyahara
逸雄 宮原
Shuzo Ito
修三 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010146114A priority Critical patent/JP2012007225A/en
Priority to PCT/JP2011/064717 priority patent/WO2012002338A1/en
Priority to CA 2801606 priority patent/CA2801606A1/en
Priority to AU2011271929A priority patent/AU2011271929A1/en
Priority to RU2013103510/02A priority patent/RU2013103510A/en
Priority to CN2011800308731A priority patent/CN102959095A/en
Priority to US13/807,442 priority patent/US20130098202A1/en
Priority to TW100122588A priority patent/TW201215682A/en
Publication of JP2012007225A publication Critical patent/JP2012007225A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5252Manufacture of steel in electric furnaces in an electrically heated multi-chamber furnace, a combination of electric furnaces or an electric furnace arranged for associated working with a non electric furnace
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing molten steel that can melt more efficiently, when particulate metallic iron produced in a reducing-melting furnace, is continuously charged and melted in an arc-furnace for steel-making to produce the molten steel.SOLUTION: In the method for producing the molten steel G by melting the whole charging iron raw materials composed of the particulate metallic iron A, in which raw materials containing carbonaceous reducing material and iron oxide- contained substance, are heated in a rotary-hearth furnace 1 as the reducing-melting furnace and after solid-reducing the iron oxide in this raw material, the produced metallic iron is further heated, melted and aggregated while separating the iron from the slag composition B and produced, and scrap D being the other iron raw material, with the arc-furnace 2; the carbon-content in the particulate metallic iron A is made to be 1.0-4.5 mass% and the carbon in the particulate metallic iron A is burnt by using together with the oxygen-blown refining and also, the using ratio of the particulate metallic iron A to the whole iron raw material, is made to be 40-80 mass%, and after producing molten iron F by charging the scrap D into the arc-furnace 2 at the initial-stage, the particulate metallic iron A is continuously charged into this molten iron F.

Description

本発明は、回転炉床炉などの還元溶融炉で製造された粒状金属鉄を電弧炉で溶解して溶鋼を製造する方法に関するものである。   The present invention relates to a method for producing molten steel by melting granular metallic iron produced in a reduction melting furnace such as a rotary hearth furnace in an electric arc furnace.

製鋼用電弧炉では、従来はスクラップ、銑鉄(冷銑)、還元鉄などの鉄原料を炉上からスクラップバケットで炉内にバッチ装入し、溶解後、炉蓋を開放して前記鉄原料をバッチで追加装入し、溶解する方法を取っていた。このために、炉蓋開放および鉄原料装入の間に、熱ロスおよび時間ロス、ならびに多量の粉塵が炉外に飛散するという作業環境悪化の問題が生じていた。   Conventionally, in steel arc furnaces, iron materials such as scrap, pig iron (cold iron), and reduced iron are batch charged into the furnace with scrap buckets from the top of the furnace, and after melting, the furnace lid is opened and the iron materials are removed. Additional charging was performed in batches and the method of melting was taken. For this reason, there has been a problem of deterioration of the working environment in which heat loss and time loss and a large amount of dust are scattered outside the furnace during opening of the furnace lid and charging of the iron material.

この対応として、成分とサイズ゛が比較的均一な還元鉄の連続投入は行われて来た(例えば、特許文献1〜3参照)が、還元鉄は脈石分や未還元の酸化鉄を含むため、スクラップや銑鉄(冷銑)より溶解エネルギーを多く必要とする問題がある。   As a countermeasure to this, continuous feeding of reduced iron having a relatively uniform component and size has been performed (see, for example, Patent Documents 1 to 3), but reduced iron contains gangue and unreduced iron oxide. Therefore, there is a problem that more melting energy is required than scrap and pig iron (cold iron).

一方、銑鉄(冷銑)については、製造上の問題からサイズを小さくできない制約があり、連続投入による多量投入、溶解は実現できていない。   On the other hand, pig iron (cold iron) has a restriction that the size cannot be reduced due to a manufacturing problem, and large-scale charging and melting cannot be realized by continuous charging.

また、製鋼用電弧炉の生産性向上を目的に、酸素付加操業が定着し、酸素使用量も増加しており、投入酸素量に見合う炭素源の使用量も増加している。   In addition, with the aim of improving the productivity of electric arc furnaces for steelmaking, oxygen addition operations have become established, the amount of oxygen used has increased, and the amount of carbon source used commensurate with the amount of oxygen input has also increased.

この炭素源として、溶銑や冷銑中の炭素分、塊状コークス、粉コークスなどが使用されている。   As the carbon source, carbon content in hot metal or cold iron, lump coke, powder coke and the like are used.

しかしながら、溶銑を使用する場合は、製鋼用電弧炉の上流側に溶銑の専用製造設備と電弧炉への専用装入設備が必要となる問題がある。   However, when hot metal is used, there is a problem that a dedicated manufacturing facility for hot metal and a dedicated charging equipment for the electric arc furnace are required on the upstream side of the steel arc furnace.

一方、冷銑を使用する場合は、上述したように、そのサイズが大きいため、バッチでの装入に限られ、また溶解に時間がかかることから使用量が制約される問題がある。   On the other hand, in the case of using refrigeration, since the size is large as described above, there is a problem that the amount of use is restricted because it is limited to charging in a batch and it takes time to dissolve.

また、塊状コークス、粉コークスを使用する場合は、全硫黄分および灰分組成によっては使用量が制約される、電弧炉への装入時にスラグに捕捉されたり、排ガスとともに炉外に排出されたりするため添加歩留が低下する、などの問題があった。   In addition, when using coke batter and coke breeze, the amount of use is restricted depending on the total sulfur and ash composition, and it is trapped by slag when it is inserted into the electric arc furnace, or it is discharged outside the furnace together with the exhaust gas. Therefore, there was a problem that the addition yield was lowered.

ここで、炭素質還元材と酸化鉄含有物質を含む原料を回転炉床炉などの還元溶融炉内で加熱し、この原料中の酸化鉄を固体還元した後、生成する金属鉄をさらに加熱して溶融させるとともに、スラグ成分と分離させながら凝集させることにより、高純度の粒状金属鉄を製造する方法が開発されている(例えば、特許文献4、5参照)。   Here, after the raw material containing the carbonaceous reducing material and the iron oxide-containing material is heated in a reduction melting furnace such as a rotary hearth furnace, the iron oxide in the raw material is solid-reduced, and then the produced metallic iron is further heated. In addition, a method for producing high-purity granular metallic iron by agglomerating while being separated from the slag component has been developed (for example, see Patent Documents 4 and 5).

この粒状金属鉄は、還元鉄と比較すると、スラグ成分があらかじめ除去されているとともに、炭素含有量を高くできるので、還元鉄の替わりに電弧炉に連続装入することで、酸素吹錬と併用して電弧炉での溶解エネルギーを大幅に低減するとともに、溶鋼の生産性を大幅に向上できると期待されている。   Compared with reduced iron, this granular metallic iron has slag components removed in advance and can increase the carbon content, so it can be used together with oxygen blowing by continuously charging into an electric arc furnace instead of reduced iron. Thus, it is expected that the melting energy in the electric arc furnace can be greatly reduced and the productivity of molten steel can be greatly improved.

しかしながら、製鋼用電弧炉において、このような粒状金属鉄を連続装入してより効率的に溶解する技術についてはいまだ確立していなかった。   However, in the electric arc furnace for steel making, a technique for continuously melting such granular metallic iron and melting it more efficiently has not been established yet.

特開昭50−64111号公報Japanese Patent Laid-Open No. 50-64111 特開昭51−65007号公報Japanese Patent Laid-Open No. 51-65007 特開昭58−141314号公報JP 58-141314 A 特開2002−339009号公報JP 2002-339909 A 特開2003−73722号公報JP 2003-73722 A

そこで、本発明は、回転炉床炉などの還元溶融炉で製造された粒状金属鉄を製鋼用電弧炉に連続装入し溶解して溶鋼を製造するに際し、より効率的に溶解しうる溶鋼製造方法を提供することを目的とする。   Therefore, the present invention is a molten steel production that can be more efficiently melted when producing molten steel by continuously charging and melting granular metal iron produced in a reduction melting furnace such as a rotary hearth furnace into a steel arc furnace. It aims to provide a method.

請求項1に記載の発明は、炭素質還元材と酸化鉄含有物質を含む原料を還元溶融炉内で加熱し、この原料中の酸化鉄を固体還元した後、生成する金属鉄をさらに加熱して溶融させるとともに、スラグ成分と分離させながら凝集させて製造した粒状金属鉄と、他の鉄原料とからなる全装入鉄原料を電弧炉で溶解して溶鋼を製造する方法であって、前記粒状金属鉄中の炭素の含有量を1.0〜4.5質量%とし酸素吹錬と併用することにより前記粒状金属鉄中の炭素を燃焼させるとともに、前記全装入鉄原料に対する前記粒状金属鉄の使用割合を40〜80質量%とし、前記他の鉄原料を前記電弧炉に初期装入して溶鉄を作った後、この溶鉄中に前記粒状金属鉄を連続的に装入することを特徴とする、粒状金属鉄を用いた溶鋼製造方法である。   According to the first aspect of the present invention, a raw material containing a carbonaceous reducing material and an iron oxide-containing substance is heated in a reduction melting furnace, and after the iron oxide in the raw material is solid-reduced, the produced metallic iron is further heated. The molten metal is produced by agglomerating and separating the slag component while separating the granular metallic iron and other iron raw materials in an electric arc furnace and melting the charged iron raw material. The carbon content in the granular metallic iron is set to 1.0 to 4.5% by mass and used in combination with oxygen blowing to burn the carbon in the granular metallic iron, and the granular metal with respect to the total charged iron raw material. The amount of iron used is 40 to 80% by mass, the molten iron is made by initially charging the other iron raw material into the electric arc furnace, and then the granular metallic iron is continuously charged into the molten iron. A feature is a method for producing molten steel using granular metallic iron.

請求項2に記載の発明は、投入電力1MW当たりの前記粒状鉄の装入速度を40〜100kg/min/MWとする、請求項1に記載の粒状金属鉄を用いた溶鋼製造方法である。   Invention of Claim 2 is a molten steel manufacturing method using the granular metal iron of Claim 1 which makes the charging speed of the said granular iron per input electric power 1MW be 40-100 kg / min / MW.

請求項3に記載の発明は、前記粒状金属鉄の溶鉄表面における装入位置を電極ピッチサークル内とする、請求項1または2に記載の粒状金属鉄を用いた溶鋼製造方法である。   Invention of Claim 3 is a molten steel manufacturing method using the granular metal iron of Claim 1 or 2 which makes the charging position in the molten iron surface of the said granular metal iron be in an electrode pitch circle.

請求項4に記載の発明は、前記粒状金属鉄の平均粒径を1〜50mmとする、請求項1〜3のいずれか1項に記載の粒状金属鉄を用いた溶鋼製造方法である。   Invention of Claim 4 is a molten steel manufacturing method using the granular metal iron of any one of Claims 1-3 which makes the average particle diameter of the said granular metal iron 1-50 mm.

請求項5に記載の発明は、前記溶鉄上に形成された溶融スラグ層をフォーミングさせて電極の下端を常に被覆しつつ、前記溶鉄中に前記粒状金属鉄を連続的に装入する、請求項1〜4のいずれか1項に記載の粒状金属鉄を用いた溶鋼製造方法である。   The invention according to claim 5 continuously charges the granular metal iron into the molten iron while forming a molten slag layer formed on the molten iron to always cover the lower end of the electrode. It is a molten steel manufacturing method using the granular metallic iron of any one of 1-4.

請求項6に記載の発明は、前記還元溶融炉で製造した粒状金属鉄を、常温まで冷却することなく、400〜700℃で前記電弧炉の溶鉄中に連続的に装入する、請求項1〜5のいずれか1項に記載の粒状金属鉄を用いた溶鋼製造方法である。   The invention according to claim 6 continuously charges the granular metallic iron produced in the reduction melting furnace into the molten iron in the electric arc furnace at 400 to 700 ° C. without cooling to room temperature. It is a molten steel manufacturing method using the granular metallic iron of any one of -5.

本発明によれば、還元溶融炉で製造した、炭素含有量1.0〜4.5質量%の粒状金属鉄を酸素吹錬と併用することにより前記粒状金属鉄中の炭素を燃焼させるとともに、全装入鉄原料に対して40〜80質量%使用し、これを、他の鉄原料を電弧炉に初期装入して作った溶鉄中に連続的に装入するようにしたことで、溶解エネルギーを大幅に低減して電弧炉のエネルギー効率を上昇させるとともに、溶鋼の生産性を大幅に向上させることが実現できるようになった。   According to the present invention, the carbon in the granular metal iron is burned by using the granular metal iron produced in a reduction melting furnace and having a carbon content of 1.0 to 4.5% by mass in combination with oxygen blowing. 40-80% by mass of the total charged iron raw material was used, and this was melted by continuously charging it into molten iron made by initially charging other iron raw materials into the arc furnace. It has become possible to greatly reduce the energy and raise the energy efficiency of the electric arc furnace, and to greatly improve the productivity of molten steel.

本発明の実施形態に係る溶鋼製造設備の概略構成を示すフロー図である。It is a flowchart which shows schematic structure of the molten steel manufacturing equipment which concerns on embodiment of this invention. 電弧炉における、全装入鉄原料に対する粒状金属鉄の使用割合と溶解エネルギーとの関係を示すグラフ図である。It is a graph which shows the relationship between the usage-amount of granular metallic iron with respect to all the charging iron raw materials, and a melting energy in an electric arc furnace. 電弧炉における、全装入鉄原料に対する粒状金属鉄の使用割合と溶鋼生産速度との関係を示すグラフ図である。It is a graph which shows the relationship between the usage-amount of granular metal iron with respect to all the charging iron raw materials, and a molten steel production rate in an electric arc furnace. 溶解試験装置の概略構成を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows schematic structure of a dissolution test apparatus. 溶解試験装置における、粒状金属鉄および還元鉄の装入速度と投入電力との関係を示すグラフ図である。It is a graph which shows the relationship between the charging speed of granular metal iron and reduced iron, and input electric power in a dissolution test apparatus.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[実施形態1]
図1に、本発明の一実施形態に係る溶鋼製造設備の概略構成を示す。本実施形態に係る設備は、還元溶融炉としての回転炉床炉1と電弧炉2とが近接して設置されている場合の例である。
[Embodiment 1]
In FIG. 1, schematic structure of the molten steel manufacturing equipment which concerns on one Embodiment of this invention is shown. The facility according to the present embodiment is an example of a case where a rotary hearth furnace 1 and an electric arc furnace 2 as a reduction melting furnace are installed in close proximity.

そして、本発明で用いられる粒状金属鉄Mは、例えば以下のようにして製造される。   And the granular metal iron M used by this invention is manufactured as follows, for example.

まず、石炭などの炭素質還元材と鉄鉱石などの酸化鉄含有物質を含む原料をペレットまたはブリケットに塊成化する。そして、この塊成化物を、炭材Cを床敷した図示しない炉床上に載置し、回転炉床炉1内で、例えば1350〜1400℃程度に加熱し、原料中の酸化鉄を固体還元した後、生成する金属鉄をさらに1400〜1550℃程度に加熱して溶融させるとともに、スラグ成分と分離させながら凝集させる。その後、炉内のチル部で1000〜1100℃程度まで冷却することで、固化した粒状金属鉄AとスラグBの混合物が得られる。そして、この混合物を床敷炭材Cとともに回転炉床炉1から排出した後、スクリーン3と磁選機4を用いてスラグBと床敷炭材Cを分離除去することで、粒状金属鉄Aが得られる(例えば、上記特許文献1〜3参照)。   First, a raw material containing a carbonaceous reducing material such as coal and an iron oxide-containing substance such as iron ore is agglomerated into pellets or briquettes. Then, this agglomerated material is placed on a hearth (not shown) on which carbon material C is laid, and is heated to, for example, about 1350 to 1400 ° C. in the rotary hearth furnace 1 to reduce iron oxide in the raw material to solid reduction. After that, the metallic iron to be produced is further heated to about 1400 to 1550 ° C. to be melted, and agglomerated while being separated from the slag component. Then, the mixture of solidified granular metal iron A and slag B is obtained by cooling to about 1000-1100 degreeC in the chill part in a furnace. And after discharging this mixture from the rotary hearth furnace 1 together with the flooring carbonaceous material C, the granular metal iron A is formed by separating and removing the slag B and the flooring carbonaceous material C using the screen 3 and the magnetic separator 4. Obtained (for example, see the above-mentioned patent documents 1 to 3).

この粒状金属鉄A中の炭素含有量は1.0〜4.5質量%とする。炭素含有量の下限を1.0質量%としたのは、製造する鋼の種類に応じた必要C量を確保し、鉄原料としての汎用性を高めるためである。一方、炭素含有量の上限を4.5質量%としたのは、脱炭処理などの付加的処理の負荷を加重することなく使用するためである。粒状金属鉄A中の炭素含有量の好ましい範囲は1.5〜3.5質量%である。粒状金属鉄A中の炭素含有量は、上記塊成化物中の炭素質還元材の配合量や回転炉床炉1内の雰囲気を調節することで、容易に調整できる。   The carbon content in the granular metallic iron A is 1.0 to 4.5% by mass. The reason why the lower limit of the carbon content is set to 1.0% by mass is to secure a necessary C amount according to the type of steel to be manufactured and to enhance versatility as an iron raw material. On the other hand, the reason why the upper limit of the carbon content is 4.5% by mass is that the carbon content is used without weighting the load of additional processing such as decarburization processing. The preferable range of the carbon content in the granular metallic iron A is 1.5 to 3.5% by mass. The carbon content in the granular metallic iron A can be easily adjusted by adjusting the blending amount of the carbonaceous reducing material in the agglomerate and the atmosphere in the rotary hearth furnace 1.

ここで、回転炉床炉1内において粒状金属鉄Aが溶融状態にあるときには、該粒状金属鉄A中の炭素は、該粒状金属鉄Aの表面近傍に集まりやすいため、固化後の粒状金属鉄Aも、その表面近傍ほど炭素濃度が高くなっている。このため、電弧炉2の溶鉄F中に装入された粒状金属鉄Aは炭素濃度の高い低融点の表面近傍から容易に溶解され始める。この溶解した高炭素濃度溶鉄中の炭素は、酸素吹錬と併用することにより、すなわち、電弧炉2内に酸素を吹き込むことにより、その酸素で燃焼され、その燃焼熱で粒状金属鉄A内部の炭素濃度の低い高融点の部分も容易に溶解されることとなる。   Here, when the granular metallic iron A is in a molten state in the rotary hearth furnace 1, the carbon in the granular metallic iron A is likely to gather near the surface of the granular metallic iron A. A also has a higher carbon concentration near the surface. For this reason, the granular metallic iron A charged in the molten iron F of the electric arc furnace 2 starts to be easily melted from the vicinity of the surface having a high carbon concentration and a low melting point. The carbon in the molten high carbon concentration molten iron is combusted with oxygen by using it together with oxygen blowing, that is, by blowing oxygen into the electric arc furnace 2, and the heat of combustion in the granular metal iron A The high melting point portion with a low carbon concentration is also easily dissolved.

この粒状金属鉄Aと、他の鉄原料としてのスクラップDとを合わせて全装入鉄原料とし、この全装入鉄原料に対する粒状金属鉄Aの使用割合を40〜80質量%とする。   The granular metallic iron A and the scrap D as another iron raw material are combined to make the total charged iron raw material, and the use ratio of the granular metallic iron A to the total charged iron raw material is 40 to 80% by mass.

そして、まず、スクラップDを電弧炉2に初期装入(バッチ装入)して電極7にてアーク加熱して溶解し溶鉄Fを作る。   First, the scrap D is initially charged (batch charged) into the electric arc furnace 2 and is arc-heated and melted at the electrode 7 to make molten iron F.

その後、アーク加熱を継続しながら、酸素を吹き込みつつ(必要によりさらに粉炭を吹き込みつつ)、この溶鉄F中に粒状金属鉄Aを連続的に装入して溶解することで、電弧炉2のエネルギー効率を上昇させつつ溶鋼Gの生産性を向上させることができ、より効率良く溶鋼Gが得られる。   Then, while continuing the arc heating, while blowing oxygen (further blowing pulverized coal if necessary), by continuously charging and melting the granular metallic iron A in the molten iron F, the energy of the electric arc furnace 2 The productivity of the molten steel G can be improved while increasing the efficiency, and the molten steel G can be obtained more efficiently.

ここで、全装入鉄原料に対する粒状金属鉄Aの使用割合を40〜80質量%としたのは、以下の理由によるものである。   Here, the reason why the use ratio of the granular metallic iron A to the total charged iron raw material is 40 to 80% by mass is as follows.

すなわち、実稼動の電弧炉(内容量:90t、トランス容量:74MVA)を例に採り、粒状金属鉄の使用割合、装入方法の相違による、全装入鉄原料を溶解するのに要する溶解エネルギー、および、溶鋼の生産速度に及ぼす影響を試算した。   That is, taking the actual electric arc furnace (internal capacity: 90t, transformer capacity: 74MVA) as an example, the melting energy required to dissolve all the charged iron raw material due to the difference in the usage rate and charging method of granular metallic iron And the influence on the production rate of molten steel was calculated.

ここに、粒状金属鉄の炭素含有量は2.5質量%とした。また、粒状金属鉄を「バッチ装入」および「連続装入」する際における粒状金属鉄の温度は常温(25℃)とし、「高温連続装入」する際の粒状金属鉄の温度は400℃とした。また、粒状金属鉄を「バッチ装入」から「連続装入」に変更することで、炉のヒートロスは、追加装入1回当たり870Mcal(ここに、1Mcal=4.18605MJである。以下同じ。)減少し、止電時間は2min、ボーリング期の時間も2min、それぞれ短縮されるとした。   Here, the carbon content of the granular metallic iron was 2.5% by mass. The temperature of the granular metallic iron when the granular metallic iron is “batch charged” and “continuous charged” is room temperature (25 ° C.), and the temperature of the granular metallic iron when “high temperature continuous charged” is 400 ° C. It was. Further, by changing the granular metallic iron from “batch charging” to “continuous charging”, the heat loss of the furnace is 870 Mcal per additional charging (here, 1 Mcal = 4.186605 MJ. The same applies hereinafter). ) The power stoppage time was reduced by 2 minutes, and the boring time was also reduced by 2 minutes.

試算の結果を図2および図3に示す。図2は、粒状金属鉄の使用割合、装入方法の相違による、全装入鉄原料を溶解するのに要する溶解エネルギーの変化を示したものである。また、図3は、粒状金属鉄の使用割合、装入方法の相違による、溶鋼生産速度の変化を示したものである。   The results of the trial calculation are shown in FIGS. FIG. 2 shows the change in dissolution energy required to dissolve the entire charged iron raw material due to the difference in the usage rate of granular metallic iron and the charging method. Moreover, FIG. 3 shows the change of the molten steel production rate by the difference in the usage rate of granular metal iron, and the charging method.

粒状金属鉄Aの使用割合が40質量%未満、つまり、他の鉄原料であるスクラップDの使用割合が60質量%を超えると、バッチ装入のための図示しないスクラップバケットの容量制約から、スクラップDの初期装入を2回に分けて行う必要が生じてしまい、図3に示すように、粒状金属鉄Aを連続装入したとしても溶鋼生産速度が大幅に低下してしまう。   When the usage rate of the granular metallic iron A is less than 40% by mass, that is, when the usage rate of the scrap D, which is another iron raw material, exceeds 60% by mass, the scrap due to the capacity restriction of a scrap bucket (not shown) for batch charging It becomes necessary to perform the initial charging of D in two steps, and as shown in FIG. 3, even if the granular metallic iron A is continuously charged, the molten steel production rate is greatly reduced.

一方、粒状金属鉄Aの使用割合が80質量%を超えると、粒状金属鉄Aを「高温連続装入」した場合には、脱炭時間が、電弧炉2の投入電力容量で決定される溶解時間よりも長くなり、この脱炭時間が溶鋼の生産性を律速するようになるので、図3に示すように、溶鋼生産速度の上昇は頭打ちになる。   On the other hand, if the usage rate of the granular metallic iron A exceeds 80% by mass, the decarburization time is determined by the input power capacity of the arc furnace 2 when the granular metallic iron A is “high-temperature continuous charging”. Since it becomes longer than time and this decarburization time will determine the productivity of molten steel, as shown in FIG.

以上の結果より、全装入鉄原料に対する粒状金属鉄Aの使用割合は40〜80質量%とした。   From the above results, the ratio of the granular metallic iron A to the total charged iron raw material was 40 to 80% by mass.

また、投入電力1MW当たりの粒状金属鉄Aの装入速度は、以下の理由により、40〜100kg/min/MWとするのが好ましい。   Moreover, it is preferable that the charging speed | rate of the granular metallic iron A per input electric power 1MW shall be 40-100 kg / min / MW for the following reasons.

すなわち、連続装入の際における粒状金属鉄の溶解特性を把握するため、溶解鉄原料として下記表1に示す物理・化学性状を有する粒状金属鉄および比較材としての還元鉄を用いて溶解試験を実施した。   That is, in order to grasp the dissolution characteristics of granular metallic iron during continuous charging, a dissolution test was conducted using granular metallic iron having physical and chemical properties shown in Table 1 below as a molten iron raw material and reduced iron as a comparative material. Carried out.

溶解試験装置としては、図4に概略構成を示すように、500kg高周波誘導炉(定格:350kW、1000Hz)と、原料供給装置(ホッパー容量:200kg、原料投入速度:0〜15kg/min)と、溶解状況を観察するためのモニター用カメラと、溶湯温度および原料投入速度を記録するためのデータ収録装置とで構成されたものを用いた。   As a dissolution test apparatus, as schematically shown in FIG. 4, a 500 kg high frequency induction furnace (rated: 350 kW, 1000 Hz), a raw material supply apparatus (hopper capacity: 200 kg, raw material charging speed: 0 to 15 kg / min), A monitor camera for observing the melting state and a data recording device for recording the molten metal temperature and the raw material charging speed were used.

溶解条件としては、C:0.2〜0.3質量%、Si<0.03質量%、Mn:0.05質量%、温度:1550℃の初期溶湯250kgを作製し、溶湯温度を1550〜1600℃に維持しつつ原料投入速度を順次変更し、連続装入された鉄原料が順調に溶解するのをモニター用カメラで確認しながら投入電力を調整するようにした。   As melting conditions, C: 0.2 to 0.3% by mass, Si <0.03% by mass, Mn: 0.05% by mass, temperature: 250 kg of an initial molten metal at 1550 ° C., and a molten metal temperature of 1550 to The raw material charging speed was sequentially changed while maintaining the temperature at 1600 ° C., and the power input was adjusted while confirming that the continuously charged iron raw material was smoothly dissolved with a monitor camera.

溶解試験の結果を図5および下記表2に示す。   The results of the dissolution test are shown in FIG.

これらの図表に示すように、粒状金属鉄は還元鉄に比べて、投入電力1MW当たりの最大溶解速度が2.5〜3.0倍になった。   As shown in these charts, the granular metal iron has a maximum dissolution rate of 2.5 to 3.0 times per 1 MW of input power, compared with the reduced iron.

なお、このように粒状金属鉄の最大溶解速度が還元鉄の最大溶解速度の2.5〜3.0倍になったことは、還元鉄中に含まれるスラグ成分の量が粒状金属鉄に比べて多いことだけでは説明がつかず、溶解試験の加熱源としてアーク加熱ではなく、高周波誘導加熱を用いたことが原因と考えられる。   In addition, that the maximum dissolution rate of granular metallic iron was 2.5 to 3.0 times the maximum dissolution rate of reduced iron in this way, the amount of slag component contained in the reduced iron compared to granular metallic iron. However, it is thought that the reason is that high-frequency induction heating was used instead of arc heating as a heating source for the dissolution test.

すなわち、粒状金属鉄は溶鉄と見掛け密度がほぼ同等のため溶鉄中に浮遊した状態で溶解し、溶鉄は高周波誘導加熱により十分に加熱されるため粒状金属鉄の溶解速度は十分大きくなる。一方、還元鉄は溶融スラグと見掛け密度がほぼ同等のため溶融スラグ中に浮遊した状態で溶解し、溶融スラグはアーク加熱とは異なり、高周波誘導加熱では十分に加熱できない。このことに起因して、還元鉄の溶解速度が粒状金属鉄に比べて大幅に低下したためと考えられる。   That is, since the apparent density of the granular metallic iron is almost equal to that of the molten iron, the granular metallic iron is melted in a floating state in the molten iron, and the molten iron is sufficiently heated by the high frequency induction heating, so that the dissolution rate of the granular metallic iron is sufficiently increased. On the other hand, reduced iron has almost the same density as molten slag, so it melts in a floating state in molten slag. Unlike arc heating, molten slag cannot be heated sufficiently by high-frequency induction heating. This is considered to be due to the fact that the dissolution rate of reduced iron is greatly reduced compared to granular metallic iron.

ここで、本溶解試験装置は500kgと小型であることから、実稼動の90t電弧炉に比べて著しくヒートロスが大きいため、本溶解試験で得られた、粒状金属鉄の投入電力1MW当たりの最大溶解速度は、実稼動の電弧炉に使用した場合には、さらに大きくなると想定される。そこで、以下のようにして、実稼動の90t電弧炉に粒状金属鉄を連続装入した場合における、粒状金属鉄の投入電力1MW当たりの溶解速度の推定を行った。   Here, since the melting test apparatus is as small as 500 kg, the heat loss is remarkably larger than that of a 90t electric arc furnace in actual operation. Therefore, the maximum melting per unit input power of granular metal iron obtained in the melting test is as follows. The speed is expected to be even greater when used in an actual arc furnace. Accordingly, the melting rate per 1 MW of the input power of the granular metal iron was estimated as follows when the granular metal iron was continuously charged into the 90t electric arc furnace in actual operation.

下記表3に示すように、本溶解試験装置における粒状金属鉄の溶解電力原単位を求めると、装入速度が4kg/minの場合は714kWh/t、装入速度が7kg/minの場合は584kWh/tが得られた。一方、上記実稼動の90t電弧炉においては、還元鉄を連続装入した場合における溶解電力原単位の実績値が存在するので、この還元鉄の溶解電力原単位の実績値に、還元鉄と粒状鉄との成分の相違を考慮して粒状金属鉄の溶解電力原単位を試算すると、366kWhが得られた。したがって、上記実稼動の90t電弧炉に対する本溶解試験装置の投入電力効率は、同表に示すように、投入速度が4kg/minの場合は366/714=51.3%となり、投入速度が7kg/minの場合は366/584=62.7%となった。   As shown in Table 3 below, when the melting power basic unit of the granular metallic iron in this melting test apparatus is determined, it is 714 kWh / t when the charging speed is 4 kg / min, and 584 kWh when the charging speed is 7 kg / min. / T was obtained. On the other hand, in the actual operation 90t electric arc furnace, there is an actual value of the melting power basic unit in the case where reduced iron is continuously charged. 366 kWh was obtained when the melting power basic unit of granular metallic iron was calculated in consideration of the difference in composition from iron. Therefore, as shown in the table, the charging power efficiency of the melting test apparatus for the actual 90t electric arc furnace is 366/714 = 51.3% when the charging speed is 4 kg / min, and the charging speed is 7 kg. In the case of / min, 366/584 = 62.7%.

そこで、上記表2に示す本溶解試験装置における、粒状金属鉄の投入電力1MW当たりの最大溶解速度[R]を上記投入電力効率[C]/100で割ることによって補正し、上記実稼動の90t電弧炉における、粒状金属鉄の投入電力1MW当たりの最大溶解速度を推定した(上記表2の「補正後の最大溶解速度」の欄参照)。   Therefore, in the present dissolution test apparatus shown in Table 2, the maximum dissolution rate [R] per 1 MW of the input power of granular metallic iron is corrected by dividing by the input power efficiency [C] / 100, and the actual operation of 90 t In the electric arc furnace, the maximum dissolution rate per 1 MW of the input power of granular metallic iron was estimated (see the column of “Maximum dissolution rate after correction” in Table 2 above).

上記推定結果を集約して下記表4の「連続装入」の欄に示す。また、同表には、粒状金属鉄の炭素含有量を2.5質量%として、この含有炭素を酸素吹込みにより燃焼してエネルギー付与した場合、さらに、粒状金属鉄を600℃で高温装入した場合のそれぞれについて上記実稼動の90t電弧炉における電力原単位を試算し、粒状金属鉄の投入電力1MW当たりの最大溶解速度を推定した結果を併記した。   The estimation results are summarized and shown in the “continuous charging” column of Table 4 below. Also, in the same table, when the carbon content of granular metallic iron is 2.5% by mass and this carbon is burned by oxygen blowing to give energy, the granular metallic iron is further charged at 600 ° C. at a high temperature. For each of the cases, the power consumption rate in the above-mentioned 90t electric arc furnace in actual operation was estimated, and the results of estimating the maximum melting rate per 1 MW of the input power of granular metallic iron are also shown.

上記 表4に示す推定結果より、粒状金属鉄の投入電力1MW当たりの最大溶解速度は、該粒状金属鉄の炭素含有量や装入温度により変動するものの、40〜100kg/min/MWの範囲にあることがわかる。よって、投入電力1MW当たりの粒状金属鉄Aの装入速度は、40〜100kg/min/MWとするのが推奨される。   From the estimation results shown in Table 4 above, the maximum dissolution rate per 1 MW of input power of the granular metallic iron varies depending on the carbon content of the granular metallic iron and the charging temperature, but in the range of 40 to 100 kg / min / MW. I know that there is. Therefore, it is recommended that the charging speed of granular metallic iron A per 1 MW of input power is 40 to 100 kg / min / MW.

また、粒状金属鉄Aの溶鉄F面における装入位置は電極ピッチサークル内とするのが好ましい。   Moreover, it is preferable that the charging position on the molten iron F surface of the granular metallic iron A is within the electrode pitch circle.

すなわち、従来の還元鉄は、上述したように、その見掛け密度が溶融スラグとほぼ同等であるので、電弧炉の溶湯中に投入された還元鉄は、溶融スラグ層中に比較的長い時間滞留し、溶融スラグ層を介してアーク加熱により溶解が進行する。このため、還元鉄の装入位置には特に制約はなかった。   That is, as described above, since the apparent density of conventional reduced iron is almost the same as that of molten slag, the reduced iron introduced into the molten metal of the electric arc furnace stays in the molten slag layer for a relatively long time. Melting proceeds by arc heating through the molten slag layer. For this reason, there was no restriction | limiting in particular in the charging position of reduced iron.

これに対して、本発明に係る粒状金属鉄Aは、その見掛け密度が溶鉄Fとほぼ同等であるので、電弧炉2の溶湯中に投入された粒状金属鉄Aは、溶融スラグ層Eを突き抜けて溶鉄層F中に潜り込み、溶融スラグ層Eと溶鉄層Fを介してアーク加熱により溶解が進行する。このため、粒状金属鉄Aを電極7から離れた位置に装入すると、粒状金属鉄Aへの伝熱が不足して、溶鉄層F中に粒状金属鉄Aの溶け残りが蓄積されるおそれが生じる。したがって、粒状金属鉄Aの溶鉄F面における装入位置は、電極ピッチサークル内とすることが特に推奨され、これによってアーク熱がより直接的、効率的に粒状金属鉄Aに伝えられ、溶け残りが防止されて、溶鋼Gの生産性がさらに向上する。   On the other hand, since the apparent density of the granular metallic iron A according to the present invention is almost equal to the molten iron F, the granular metallic iron A introduced into the molten metal of the electric arc furnace 2 penetrates the molten slag layer E. The molten iron layer F enters the molten iron layer F, and melting proceeds by arc heating through the molten slag layer E and the molten iron layer F. For this reason, when the granular metallic iron A is inserted at a position away from the electrode 7, heat transfer to the granular metallic iron A is insufficient, and there is a possibility that the undissolved residue of the granular metallic iron A is accumulated in the molten iron layer F. Arise. Therefore, it is particularly recommended that the charging position of the granular metallic iron A on the molten iron F surface is within the electrode pitch circle, whereby the arc heat is more directly and efficiently transmitted to the granular metallic iron A and remains unmelted. Is prevented, and the productivity of the molten steel G is further improved.

また、粒状金属鉄Aの平均粒径は1〜50mmとするのが好ましい。   Moreover, it is preferable that the average particle diameter of granular metallic iron A shall be 1-50 mm.

粒状金属鉄Aの粒度が小さすぎると、回転炉床炉1から排出された後の分別回収時に微細なスラグ成分が混入しやすくなって鉄分純度が低下したり、電弧炉2への装入時に飛散しやすくなって添加歩留が低下する。一方、粒状金属鉄Aの粒度が大きすぎると、回転炉床炉1での製造時に上記塊成化物の内部まで伝熱するのに時間がかかって生産性が低下したり、炉上ホッパー6内や同ホッパー6からの切り出し部での詰まりが発生したり、あるいは電弧炉2での溶解時に溶解速度が低下したりするためである。粒状金属鉄Aのより好ましい平均粒径は2〜25mmである。   If the particle size of the granular metallic iron A is too small, fine slag components are likely to be mixed at the time of separation and recovery after being discharged from the rotary hearth furnace 1, and the purity of the iron content is lowered, or when the electric arc furnace 2 is charged. It becomes easy to scatter and an additive yield falls. On the other hand, if the particle size of the granular metallic iron A is too large, it takes time to transfer the heat to the inside of the agglomerated material during the production in the rotary hearth furnace 1, and the productivity is lowered or the inside of the furnace hopper 6 is reduced. This is because clogging occurs at the cut-out portion from the hopper 6 or the melting rate is lowered during melting in the electric arc furnace 2. The more preferable average particle diameter of the granular metallic iron A is 2 to 25 mm.

本発明において、平均粒径とは、篩い分け法で分級後、各篩目間の代表径とその篩目間の質量から算出される質量平均粒径である。例えば、篩目がD、D・・・、D、Dn+1(D<D<・・・<D<Dn+1)の篩を用いて分級したとき、篩目DとDk+1間の質量がWである場合、質量平均粒径dは、d=Σk=1,n(W×d)/Σk=1,n(W)で定義される。ここに、dは篩目DとDk+1間の代表径であり、d=(D+Dk+1)/2である。 In the present invention, the average particle diameter is a mass average particle diameter calculated from the representative diameter between each sieve mesh and the mass between the sieve meshes after classification by a sieving method. For example, when the sieve is classified by a D 1, D 2 ···, D n, sieve D n + 1 (D 1 < D 2 <··· <D n <D n + 1), and the sieve D k when the mass between D k + 1 is W k, mass average particle diameter d m is defined by d m = Σ k = 1, n (W k × d k) / Σ k = 1, n (W k) The Here, d k is a representative diameter between the meshes D k and D k + 1 , and d k = (D k + D k + 1 ) / 2.

また、電弧炉2の溶鉄F中に粒状金属鉄Aを連続的に装入するに際して、溶鉄層F上に形成された溶融スラグ層Eをフォーミングさせて電極7の下端を常に被覆しつつ溶解を行うことが好ましい。これにより、アークの熱を上部空間に逃がすことなく、より効率的に溶鉄層Fに伝えることができ、粒状金属鉄Aの溶解速度がさらに向上する。溶融スラグ層Eのフォーミングの高さは、例えば溶鉄層F中に酸素を吹き込み、溶鉄層F中の炭素の脱炭反応によってCOガスを生成させることで調整できる。   Further, when the granular metallic iron A is continuously charged into the molten iron F of the electric arc furnace 2, the molten slag layer E formed on the molten iron layer F is formed to melt while always covering the lower end of the electrode 7. Preferably it is done. Thereby, the heat of the arc can be transmitted to the molten iron layer F more efficiently without escaping to the upper space, and the dissolution rate of the granular metallic iron A is further improved. The forming height of the molten slag layer E can be adjusted, for example, by blowing oxygen into the molten iron layer F and generating CO gas by decarburization reaction of carbon in the molten iron layer F.

また、回転炉床炉1で製造された粒状金属鉄Aを、常温まで冷却することなく、400〜700℃の高温状態で電弧炉2の溶鉄F中に連続的に装入するのが好ましい。   Moreover, it is preferable to continuously charge the granular metallic iron A produced in the rotary hearth furnace 1 into the molten iron F of the electric arc furnace 2 at a high temperature of 400 to 700 ° C. without cooling to the room temperature.

これにより、粒状金属鉄Aの顕熱を有効に利用して、さらに、電弧炉2における溶解エネルギー原単位を低減するとともに、溶鋼Gの生産性(溶鋼生産速度)を向上させることができる(後述の実施例参照)。   Thereby, the sensible heat of the granular metallic iron A can be effectively used, and the unit of melting energy in the electric arc furnace 2 can be further reduced, and the productivity (molten steel production rate) of the molten steel G can be improved (described later). See Examples).

粒状金属鉄Aの装入温度の好適範囲を400〜700℃としたのは、以下の理由による。すなわち、粒状金属鉄Aの顕熱の有効利用の観点からある程度の温度が必要なことから下限温度を400℃とし、磁選により粒状金属鉄Aとスラグ成分Bおよび床敷炭材Cとを分離するに際して、粒状金属鉄Aを磁化する必要があるため、上限温度を、鉄のキュリー温度(770℃)より低い700℃とした。   The reason why the preferable temperature range for the granular metallic iron A is set to 400 to 700 ° C. is as follows. That is, since a certain temperature is required from the viewpoint of effective utilization of sensible heat of the granular metallic iron A, the lower limit temperature is set to 400 ° C., and the granular metallic iron A, the slag component B, and the flooring carbon material C are separated by magnetic separation. At this time, since it is necessary to magnetize the granular metallic iron A, the upper limit temperature was set to 700 ° C. lower than the Curie temperature (770 ° C.) of iron.

粒状金属鉄Aを高温状態で電弧炉2に装入するため、回転炉床炉1から排出した1000〜1100℃程度の粒状金属鉄AとスラグBおよび床敷炭材Cの混合物を、後段のスクリーン3、磁選機4、コンベヤ5などの設備保護のため少し冷却した後、ともに高温仕様のスクリーン3と磁選機4で粒状金属鉄Aを分離回収し、この粒状金属鉄Aを、高温仕様のコンベア5によって、電弧炉2の炉上ホッパー6まで搬送していったん貯蔵し、この炉上ホッパー6から切り出すときの温度が400〜700℃になるようにすればよい。なお、回転炉床炉1から上記混合物を排出するための排出ダクトから電弧炉2の炉上ホッパー6までは、粒状金属鉄Aが大気と直接接触して再酸化することを防止するため、Nなどを吹き込んで不活性ガス雰囲気としておくのがよい。 In order to charge the granular metallic iron A into the electric arc furnace 2 in a high temperature state, a mixture of the granular metallic iron A, the slag B, and the floor covering carbon material C at about 1000 to 1100 ° C. discharged from the rotary hearth furnace 1 After cooling a little to protect the equipment such as the screen 3, the magnetic separator 4 and the conveyor 5, the granular metallic iron A is separated and recovered by the high-temperature specification screen 3 and the magnetic separator 4, and this granular metallic iron A is converted to the high-temperature specification. What is necessary is just to make it the temperature when it conveys to the upper hopper 6 of the electric arc furnace 2 with the conveyor 5, and once stores it and cuts from this upper hopper 6 to 400-700 degreeC. In order to prevent the granular metal iron A from coming into direct contact with the atmosphere and reoxidizing from the discharge duct for discharging the mixture from the rotary hearth furnace 1 to the furnace hopper 6 of the electric arc furnace 2, N 2 or the like is preferably blown to create an inert gas atmosphere.

(変形例)
上記実施形態では、還元溶融炉の炉形式として回転炉床炉を例示したが、直線炉を用いてもよい。
(Modification)
In the above embodiment, the rotary hearth furnace is exemplified as the furnace type of the reduction melting furnace, but a linear furnace may be used.

また、上記実施形態では、炭素質還元材と酸化鉄含有物質を含む原料として、炭素質還元材と酸化鉄含有物質を塊成化してなる塊成化物を例示したが、塊成化せずに、これらを粉状のまま用いてもよい。   Moreover, in the said embodiment, although the agglomerated material formed by agglomerating a carbonaceous reducing material and an iron oxide containing material was illustrated as a raw material containing a carbonaceous reducing material and an iron oxide containing material, it does not agglomerate. These may be used in powder form.

また、上記実施形態では、高温状態の粒状金属鉄の搬送装置として高温仕様のコンベアを例示したが、保温された容器を、搬送台車およびクレーンなど用いて移送するようにしてもよい。   Moreover, in the said embodiment, although the conveyor of a high temperature specification was illustrated as a conveyance apparatus of the granular metal iron of a high temperature state, you may make it transfer the heat-retained container using a conveyance trolley, a crane, etc.

また、上記実施形態では、回転炉床炉と電弧炉が近接して設置されている場合を例示したが、回転炉床炉と電弧炉が離れて設置されている場合には、回転炉床炉で製造された粒状金属鉄を常温まで冷却すれば、粒状金属鉄はいったん溶融した後固化しているので、還元鉄に比べて緻密化していることから、特別な再酸化防止手段を講じることなく、通常の輸送手段を用いて電弧炉まで輸送することができる。   Moreover, in the said embodiment, although the case where a rotary hearth furnace and an electric arc furnace were installed close was illustrated, when a rotary hearth furnace and an electric arc furnace are installed apart, a rotary hearth furnace If the granular metallic iron produced in step 1 is cooled to room temperature, the granular metallic iron is once melted and solidified, so it is denser than reduced iron, so there is no need to take special measures to prevent reoxidation. It can be transported to the electric arc furnace using ordinary transportation means.

また、上記実施形態では、電弧炉へ初期装入する他の鉄原料として、スクラップを例示したが、還元鉄あるいは粒状金属鉄を用いてもよいし、これらの2種以上を併用してもよい。   Moreover, in the said embodiment, although the scrap was illustrated as another iron raw material initially charged to an electric arc furnace, reduced iron or granular metal iron may be used, and these 2 or more types may be used together. .

なお、電弧炉へ初期装入する他の鉄原料の全部または一部として粒状金属鉄を用いる場合でも、この初期装入された他の鉄原料で作った溶鉄中に連続的に装入する粒状金属鉄の、全装入鉄原料に対する使用割合は40〜80質量%にする必要がある。換言すれば、電弧炉へ初期装入する他の鉄原料の全部または一部として粒状金属鉄を用いる場合には、全装入鉄原料に対する全粒状金属鉄の使用割合は、初期装入分と連続装入分とを合計した割合となるので、40〜80質量%より高い使用割合になる。   In addition, even when using granular metallic iron as all or part of the other iron raw material initially charged in the electric arc furnace, the granular material continuously charged in the molten iron made from the other iron raw material initially charged. The use ratio of metallic iron with respect to all the charged iron raw materials needs to be 40 to 80% by mass. In other words, when using granular metallic iron as all or part of other iron raw materials initially charged to the electric arc furnace, the ratio of the total granular metallic iron to the total charged iron raw materials is the initial charged amount. Since it becomes the ratio which totaled the continuous charge, it will be a usage rate higher than 40-80 mass%.

1…溶融還元炉(回転炉床炉)
2…電弧炉
3…スクリーン
4…磁選機
5…コンベア
6…炉上ホッパー
7…電極
A…粒状金属鉄
B…スラグ
C…床敷炭材
D…他の鉄原料(スクラップ)
E…溶融スラグ、溶融スラグ層
F…溶鉄、溶鉄層
G…溶鋼
1 ... Smelting reduction furnace (rotary hearth furnace)
2 ... Electric arc furnace 3 ... Screen 4 ... Magnetic separator 5 ... Conveyor 6 ... Furnace hopper 7 ... Electrode A ... Granular metal iron B ... Slag C ... Flooring carbon material D ... Other iron raw materials (scrap)
E ... Molten slag, molten slag layer F ... Molten iron, molten iron layer G ... Molten steel

Claims (6)

炭素質還元材と酸化鉄含有物質を含む原料を還元溶融炉内で加熱し、この原料中の酸化鉄を固体還元した後、生成する金属鉄をさらに加熱して溶融させるとともに、スラグ成分と分離させながら凝集させて製造した粒状金属鉄と、他の鉄原料とからなる全装入鉄原料を電弧炉で溶解して溶鋼を製造する方法であって、
前記粒状金属鉄中の炭素の含有量を1.0〜4.5質量%とし酸素吹錬と併用することにより前記粒状金属鉄中の炭素を燃焼させるとともに、
前記全装入鉄原料に対する前記粒状金属鉄の使用割合を40〜80質量%とし、
前記他の鉄原料を前記電弧炉に初期装入して溶鉄を作った後、この溶鉄中に前記粒状金属鉄を連続的に装入することを特徴とする、粒状金属鉄を用いた溶鋼製造方法。
A raw material containing a carbonaceous reducing material and an iron oxide-containing substance is heated in a reduction melting furnace, and the iron oxide in the raw material is solid-reduced, and then the resulting metallic iron is further heated to melt and separated from the slag component It is a method for producing molten steel by melting all charged iron raw materials composed of granular metallic iron produced by agglomerating while making other iron raw materials in an electric arc furnace,
Combusting the carbon in the granular metallic iron by using together with oxygen blowing and the content of carbon in the granular metallic iron is 1.0-4.5 mass%,
The use ratio of the granular metallic iron to the total charged iron raw material is 40 to 80% by mass,
After the initial charging of the other iron raw material into the electric arc furnace and making molten iron, the granular metallic iron is continuously charged into the molten iron, and the molten steel production using granular metallic iron Method.
投入電力1MW当たりの前記粒状金属鉄の装入速度を40〜100kg/min/MWとする、請求項1に記載の粒状金属鉄を用いた溶鋼製造方法。   The molten steel manufacturing method using the granular metallic iron according to claim 1, wherein a charging speed of the granular metallic iron per 1 MW of input power is 40 to 100 kg / min / MW. 前記粒状金属鉄の溶鉄表面における装入位置を電極ピッチサークル内とする、請求項1または2に記載の粒状金属鉄を用いた溶鋼製造方法。   The molten steel manufacturing method using the granular metallic iron according to claim 1 or 2, wherein a charging position of the granular metallic iron on the surface of the molten iron is within an electrode pitch circle. 前記粒状金属鉄の平均粒径を1〜50mmとする、請求項1〜3のいずれか1項に記載の粒状金属鉄を用いた溶鋼製造方法。   The molten steel manufacturing method using the granular metallic iron of any one of Claims 1-3 which makes the average particle diameter of the said granular metallic iron 1-50 mm. 前記溶鉄上に形成された溶融スラグ層をフォーミングさせて電極の下端を常に被覆しつつ、前記溶鉄中に前記粒状金属鉄を連続的に装入する、請求項1〜4のいずれか1項に記載の粒状金属鉄を用いた溶鋼製造方法。   The molten metal slag layer formed on the molten iron is formed and the granular metallic iron is continuously charged into the molten iron while always covering the lower end of the electrode. The manufacturing method of the molten steel using the granular metal iron of description. 前記還元溶融炉で製造した粒状金属鉄を、常温まで冷却することなく、400〜700℃で前記電弧炉の溶鉄中に連続的に装入する、請求項1〜5のいずれか1項に記載の粒状金属鉄を用いた溶鋼製造方法。   The granular metallic iron manufactured by the said reduction melting furnace is continuously charged in the molten iron of the said electric arc furnace at 400-700 degreeC, without cooling to normal temperature. A method for producing molten steel using granular metallic iron.
JP2010146114A 2010-06-28 2010-06-28 Method for producing molten steel using particulate metallic iron Pending JP2012007225A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010146114A JP2012007225A (en) 2010-06-28 2010-06-28 Method for producing molten steel using particulate metallic iron
PCT/JP2011/064717 WO2012002338A1 (en) 2010-06-28 2011-06-27 Process for producing molten steel using particulate metallic iron
CA 2801606 CA2801606A1 (en) 2010-06-28 2011-06-27 Process for producing molten steel using granular metallic iron
AU2011271929A AU2011271929A1 (en) 2010-06-28 2011-06-27 Process for producing molten steel using particulate metallic iron
RU2013103510/02A RU2013103510A (en) 2010-06-28 2011-06-27 METHOD FOR PRODUCING LIQUID STEEL USING GRANULATED METAL IRON
CN2011800308731A CN102959095A (en) 2010-06-28 2011-06-27 Process for producing molten steel using particulate metallic iron
US13/807,442 US20130098202A1 (en) 2010-06-28 2011-06-27 Process for producing molten steel using granular metallic iron
TW100122588A TW201215682A (en) 2010-06-28 2011-06-28 Process for producing molten steel using particulate metallic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010146114A JP2012007225A (en) 2010-06-28 2010-06-28 Method for producing molten steel using particulate metallic iron

Publications (1)

Publication Number Publication Date
JP2012007225A true JP2012007225A (en) 2012-01-12

Family

ID=45402046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010146114A Pending JP2012007225A (en) 2010-06-28 2010-06-28 Method for producing molten steel using particulate metallic iron

Country Status (8)

Country Link
US (1) US20130098202A1 (en)
JP (1) JP2012007225A (en)
CN (1) CN102959095A (en)
AU (1) AU2011271929A1 (en)
CA (1) CA2801606A1 (en)
RU (1) RU2013103510A (en)
TW (1) TW201215682A (en)
WO (1) WO2012002338A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925610A (en) * 2012-10-22 2013-02-13 西安桃园冶金设备工程有限公司 Electricity-coal process melting and reduction ironmaking technology
CN114651074A (en) * 2019-11-21 2022-06-21 株式会社神户制钢所 Method for producing molten steel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043645A (en) * 2012-08-03 2014-03-13 Kobe Steel Ltd Process of producing metallic iron
CN102787195B (en) * 2012-08-24 2013-10-16 北京首钢国际工程技术有限公司 Stainless-steel smelting method
CN102787196B (en) * 2012-08-24 2013-10-16 北京首钢国际工程技术有限公司 Method for smelting stainless steel by direct reduced iron
WO2014126495A1 (en) * 2013-02-13 2014-08-21 Siemens Aktiengesellschaft Apparatus and method for automatic controlling direct reduction process of iron oxide containing material
FI127179B (en) * 2015-09-15 2017-12-29 Outotec Finland Oy METHOD AND ORGANIZATION FOR MONITORING THE FEATURES PROPERTIES AND PROCESS MONITORING UNIT
WO2019203278A1 (en) * 2018-04-17 2019-10-24 日本製鉄株式会社 Molten steel production method
JP7094264B2 (en) * 2019-12-25 2022-07-01 株式会社神戸製鋼所 Manufacturing method of molten steel
DE102020205493A1 (en) * 2020-04-30 2021-11-04 Sms Group Gmbh Process for making liquid pig iron from a DRI product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101609A (en) * 1976-02-24 1977-08-25 Ishikawajima Harima Heavy Ind Co Ltd Arc furnace for continuous melting and refining of reduced iron
JPS5449913A (en) * 1977-09-29 1979-04-19 Nat Res Inst Metals Production of molten iron or molten steel
JPS5613420A (en) * 1979-07-12 1981-02-09 Nikko Sangyo:Kk Method and apparatus for rapid melting of direct-reduced iron
JPH07286208A (en) * 1994-04-15 1995-10-31 Nippon Steel Corp Operating method of continuous scrap charging type arc furnace
JPH1121607A (en) * 1997-07-07 1999-01-26 Nkk Corp Operation of arc furnace
JPH11344287A (en) * 1998-04-01 1999-12-14 Nkk Corp Operation of arc furnace
JP2001279315A (en) * 2000-03-30 2001-10-10 Midrex Internatl Bv Method for producing granular metallic iron and method for producing molten steel using the metallic iron
JP2002327211A (en) * 2001-04-26 2002-11-15 Nkk Corp Method for melting cold iron source

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514218A (en) * 1984-06-06 1985-04-30 Daidotokushuko Kabushikikaisha Reduced iron melting method using electric arc furnace
EP1764420B1 (en) * 2000-03-30 2011-02-16 Kabushiki Kaisha Kobe Seiko Sho Method of producing metallic iron in a moving hearth type smelt reduction furnace
JP5388450B2 (en) * 2004-12-07 2014-01-15 ニュー−アイロン テクノロジー リミテッド ライアビリティー カンパニー Method and system for producing metallic iron nuggets
CN1264993C (en) * 2005-01-07 2006-07-19 四川龙蟒集团有限责任公司 Method for separating and extracting metal element from varadium-titanium magnetite
CN101082068A (en) * 2007-07-14 2007-12-05 胡炳坤 Method for separating and extracting multiple metallic elements from vanadium titanium magnetic iron ore

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101609A (en) * 1976-02-24 1977-08-25 Ishikawajima Harima Heavy Ind Co Ltd Arc furnace for continuous melting and refining of reduced iron
JPS5449913A (en) * 1977-09-29 1979-04-19 Nat Res Inst Metals Production of molten iron or molten steel
JPS5613420A (en) * 1979-07-12 1981-02-09 Nikko Sangyo:Kk Method and apparatus for rapid melting of direct-reduced iron
JPH07286208A (en) * 1994-04-15 1995-10-31 Nippon Steel Corp Operating method of continuous scrap charging type arc furnace
JPH1121607A (en) * 1997-07-07 1999-01-26 Nkk Corp Operation of arc furnace
JPH11344287A (en) * 1998-04-01 1999-12-14 Nkk Corp Operation of arc furnace
JP2001279315A (en) * 2000-03-30 2001-10-10 Midrex Internatl Bv Method for producing granular metallic iron and method for producing molten steel using the metallic iron
JP2002327211A (en) * 2001-04-26 2002-11-15 Nkk Corp Method for melting cold iron source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925610A (en) * 2012-10-22 2013-02-13 西安桃园冶金设备工程有限公司 Electricity-coal process melting and reduction ironmaking technology
CN114651074A (en) * 2019-11-21 2022-06-21 株式会社神户制钢所 Method for producing molten steel
CN114651074B (en) * 2019-11-21 2023-04-04 株式会社神户制钢所 Method for producing molten steel

Also Published As

Publication number Publication date
RU2013103510A (en) 2014-08-10
WO2012002338A1 (en) 2012-01-05
CA2801606A1 (en) 2012-01-05
AU2011271929A1 (en) 2013-01-10
TW201215682A (en) 2012-04-16
CN102959095A (en) 2013-03-06
US20130098202A1 (en) 2013-04-25
AU2011271929A9 (en) 2013-07-25

Similar Documents

Publication Publication Date Title
WO2012002338A1 (en) Process for producing molten steel using particulate metallic iron
AU2003261814B2 (en) Method for producing titanium oxide containing slag
TW518366B (en) Method of producing molten iron in duplex furnaces and molten iron product manufactured thereby
US20110024681A1 (en) Titanium oxide-containing agglomerate for producing granular metallic iron
JP5334240B2 (en) Method for producing reduced iron agglomerates for steelmaking
EP2210959B1 (en) Process for producing molten iron
JP2010189762A (en) Process for manufacturing granular iron
WO2013011521A1 (en) A method for direct reduction of oxidized chromite ore fines composite agglomerates in a tunnel kiln using carbonaceous reductant for production of reduced chromite product/ agglomerates applicable in ferrochrome or charge chrome production.
JP5428534B2 (en) Pig iron production method using high zinc content iron ore
JP2007291452A (en) Method for producing molten iron, and apparatus for producing molten iron
JP2004183070A (en) Method for producing molten iron
Teguri et al. Manganese ore pre-reduction using a rotary kiln to manufacture super-low-phosphorus ferromanganese
JP2016536468A (en) Steel production in coke dry fire extinguishing system.
JP2003239008A (en) Method for operating movable type hearth furnace and solid reducing material for protecting furnace hearth refractory
JP3735016B2 (en) Molten iron manufacturing method and molten iron manufacturing apparatus
JP4220988B2 (en) Molten iron manufacturing method
JP2006257545A (en) Method for producing molten iron and apparatus therefor
JP2011179090A (en) Method for producing granulated iron
JP5397020B2 (en) Reduced iron production method
JP2002060860A (en) Apparatus for recovering zinc oxide from iron-making dust
JPH1129807A (en) Production of molten iron
JP2003239007A (en) Method for manufacturing reduced metal from metal- containing substance
JP2011132578A (en) Method for producing granular iron using ore
JPH03287708A (en) Smelting reduction iron making method
JP2003073718A (en) Method for manufacturing reduced metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141014