WO2019203278A1 - Molten steel production method - Google Patents

Molten steel production method Download PDF

Info

Publication number
WO2019203278A1
WO2019203278A1 PCT/JP2019/016502 JP2019016502W WO2019203278A1 WO 2019203278 A1 WO2019203278 A1 WO 2019203278A1 JP 2019016502 W JP2019016502 W JP 2019016502W WO 2019203278 A1 WO2019203278 A1 WO 2019203278A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
dri
molten steel
concentration
iron
Prior art date
Application number
PCT/JP2019/016502
Other languages
French (fr)
Japanese (ja)
Inventor
平田 浩
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201980023386.9A priority Critical patent/CN112004947B/en
Priority to KR1020207029459A priority patent/KR102359738B1/en
Priority to JP2020514418A priority patent/JP6923075B2/en
Publication of WO2019203278A1 publication Critical patent/WO2019203278A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing molten steel in which molten iron is produced by reducing and melting reduced iron (DRI) produced by pre-reducing iron oxide (iron ore etc.) in a melting furnace.
  • DRI reduced iron
  • Patent Document 1 a DRI containing 60% or more of metallized iron is produced by the RHF method, and thereafter, molten iron having a carbon content of 1.5 to 4.5% by mass is produced in an arc heating melting furnace, A method is described in which the molten iron is discharged out of the furnace and then desulfurized, dephosphorized and decarburized in another melting furnace. In this method, carbonaceous material is added to the melting furnace in order to reduce the remaining iron oxide content. However, in this method, heat loss is increased by transferring the molten iron to another furnace. Further, when a molten steel is produced by further adding a carbonaceous material to secure a heat source and decarburizing molten iron having a high carbon content, the amount of CO 2 generated is increased. Furthermore, Patent Document 2 discloses a technique for dissolving an iron-based raw material while supplying a hydrocarbon gas. However, this method is costly because it is premised on using hydrocarbon gas.
  • the present invention has high productivity, low heat loss, and low CO 2 generation amount when melting and reducing DRI having a particularly low metallization rate in a melting furnace such as an electric furnace. It aims at providing the manufacturing method of.
  • the present invention in order to produce a molten steel by dissolving and reducing DRI having a low metallization rate, a part of the molten steel is left in the furnace and used as a seed water for the next channel.
  • the seed hot water remains in the molten steel, the dissolution and reduction of DRI is delayed. Therefore, before supplying DRI, only the carbon source is first supplied to the seed hot water to increase the C concentration of the seed hot water.
  • the C concentration is preferably 0.5% by mass or more and 1.5% by mass or less.
  • the present invention is as follows. (1) a first step of obtaining a carbon-containing molten iron by adding a carbon source to the molten steel left in the electric furnace as seed water at the time of steelmaking in the previous ch; A second step in which DRI is added to the carbon-containing molten iron produced in the first step to perform dissolution reduction; Next, a third step of adding a deoxidizer and performing a desulfurization treatment, A fourth step of discharging the desulfurization slag generated by the desulfurization treatment of the third step; Next, a fifth step of performing decarburization processing by blowing oxygen, A sixth step of discharging the decarburized slag generated by the decarburizing process of the fifth step; After discharging the decarburized slag in the sixth step, the seventh step of leaving the seed ch of the next ch and performing steel output; The manufacturing method of the molten steel characterized by having.
  • a method for producing molten steel with high productivity, low heat loss, and low CO 2 generation amount is provided. Can be provided.
  • FIG. 1 is a figure for explaining each process which manufactures molten steel in the embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the C concentration and the melting point of molten iron.
  • FIG. 1 is a view for explaining a method for producing molten steel by melting and reducing DRI having a particularly low metallization rate in a melting furnace such as an electric furnace according to the present embodiment.
  • the manufacturing method according to the present embodiment includes at least seven steps from the first step to the seventh step.
  • the seventh step is a step of discharging the molten steel whose C concentration has been lowered to, for example, less than 0.1% by mass by the decarburization process of the fifth step. At this time, the entire amount of molten steel is not discharged, but the amount of molten steel used as seed water for the next channel is left in the furnace.
  • the seed hot water amount W (t) satisfies the following formula (1). 0.3 ⁇ D 2 ⁇ W ⁇ 1.6 ⁇ D 2 (1)
  • the contact resistance between the DRI and the bottom electrode of the furnace bottom tends to increase, and the arc may not be stabilized.
  • the load of the decarburization process in the 5th process mentioned later will increase that the seed water amount W is 1.6 * D ⁇ 2 > or more.
  • the numerical values “0.3” and “1.6” are values calculated from the product of the bath depth (m) and the density of molten iron (t / m 3 ) in the electric furnace.
  • a coal material such as coal (steam coal) or anthracite is added to the furnace, and the molten steel as the seed hot water is molten iron having a predetermined C concentration.
  • a method of supplying the carbonaceous material there are no particular restrictions on the method of supplying the carbonaceous material, but there is a method of adding free fall from a hopper installed in the upper part of the furnace, a method of supplying the upper electrode from the hollow part as a hollow electrode, and spraying the molten steel using a dedicated lance.
  • a method of directly blowing into molten steel using an immersion lance a method of blowing into molten steel from a bottom blowing tuyer installed for stirring of molten metal, and the like.
  • the DRI added in the second step cannot be melted unless the melting point of iron is exceeded. Therefore, when the C concentration of the seed hot water remains as molten steel such as less than 0.1% by mass, a large amount of energy is required for melting. Further, the operation temperature is equal to or higher than the melting point of iron, and if the superheat is 100 ° C. in order to stabilize the operation, it is necessary to maintain a high temperature state of 1650 ° C. Therefore, the load on the refractory is large.
  • carburization is performed in the first step, and the seed hot water is made a C-containing molten metal.
  • the added metallic iron of DRI is carburized by C in the molten metal, the melting point is lowered, the dissolution rate is accelerated, and the productivity is improved.
  • the operating temperature can be lowered according to the C concentration of the seed hot water, and the load on the refractory is reduced.
  • iron oxide in DRI reacts with C in the seed hot water to promote reduction, the iron oxide concentration in the generated slag is also low.
  • denitrification is promoted with the decarburization reaction in the fifth step, it is possible to reduce nitrogen.
  • the productivity can be improved by using the seed hot water as the C-containing molten metal, and the load on the refractory can be reduced.
  • the C concentration of the molten iron as the seed hot water is preferably 0.5 mass% or more. This is because when the C concentration is less than 0.5% by mass, the carburizing dissolution rate of metallic iron in DRI and the reduction rate of iron oxide are reduced, and the productivity is deteriorated. On the other hand, if the C concentration of the molten iron becomes too high, the decarburization load increases in the fifth step, which will be described later, and the amount of CO 2 generated increases. Therefore, it is preferable that the C concentration of the molten iron which is the seed hot water is 1.5% by mass or less.
  • the DRI manufactured by the shaft furnace or RHF is supplied to the melting furnace, and an arc is generated by applying a voltage between the upper electrode and the lower electrode installed at the bottom of the furnace. And the iron oxide remaining in the DRI is reduced.
  • a method for supplying DRI for example, a lump-like material can be added to the furnace by free fall from a hopper installed at the top, and a powdery material can be used in which the upper electrode is a hollow electrode and blown from the hollow portion.
  • the DRI supplied in the second step has, for example, the composition shown in Table 1 below.
  • a carbon material such as coal or anthracite is added in accordance with the DRI supply rate.
  • the amount of carbon material introduced here is the sum of the amount necessary for carburizing the iron content in the DRI to the C concentration of the molten iron and the amount necessary for reducing the iron oxide (FeO, etc.) in the DRI.
  • Examples of the carbon material input in the second step include general coal and anthracite as in the case of the carbon material input in the first step.
  • Table 2 below shows examples of the composition of steam coal
  • Table 3 shows examples of the composition of anthracite coal.
  • FC in Table 2 and Table 3 represents fixed carbon (Fixed ⁇ ⁇ Carbon), and VM represents a volatile component (Volaile Matter).
  • steam coal and anthracite may be used alone or in combination.
  • carbon sources such as waste plastic and biomass as other carbon materials.
  • the operating temperature is necessary for carburizing the amount of carbon material introduced in the second step and the iron content in the DRI to the C concentration of the molten iron with respect to the C concentration in the molten iron adjusted in the first step. It is determined by the C concentration in the molten iron, which depends on the difference between the amount and the sum required to reduce iron oxide (such as FeO) in the DRI.
  • FIG. 2 is an Fe—C phase diagram showing the change in the melting point of iron with the C concentration. In order to stabilize the operation, it is said that superheat is required to be 100 ° C. or more. For example, in order to operate at superheat 100 ° C., the melting point is 1430 in the case of molten iron having a C concentration of 1.5 mass%.
  • the operating temperature is 1530 ° C.
  • a voltage is applied according to the supply speed of the carbonaceous material and DRI so as to maintain this operating temperature determined by the C concentration in the molten iron.
  • the C concentration of the carbon-containing molten iron before the start of the second step is preferably 0.5% by mass or more and 1.5% by mass or less. It is more preferable to control within the range of 5 mass% or more and 1.5 mass% or less.
  • Iron ore and coal contain sulfur, although the content varies depending on the production area. Since the iron oxide in the DRI is not reduced instantaneously, the iron oxide concentration in the slag is high immediately after the end of the DRI charging. In a state where the iron oxide concentration in the slag is high, the sulfur distribution between the molten iron (hereinafter sometimes referred to as metal) and the slag is low, and more sulfur is present in the metal than in the slag. In the decarburization process of the fifth step described later, sulfur in the metal is difficult to remove.
  • the sulfur concentration of the molten steel after the decarburization process is high, and the low-sulfur steel Not satisfying manufacturing needs.
  • sulfur is a surface active component, it occupies the adsorption site. Therefore, if the sulfur concentration in the metal is high, it is difficult to remove nitrogen from the metal, and the need for low-nitrogen steel production is not satisfied. For this reason, it is important to perform the desulfurization treatment after the second step.
  • a deoxidizer such as metal Al or a metal Al-containing material is added to the furnace to reduce the iron oxide content in the slag, and the oxygen in the molten iron Remove.
  • the sulfur distribution between the slag and the metal becomes high, the sulfur shifts from the metal to the slag, and the sulfur concentration in the metal decreases.
  • the melting furnace is a DC electric furnace
  • the upper electrode is usually a negative electrode and the lower electrode at the bottom of the furnace is a positive electrode.
  • the upper electrode is applied as a positive electrode and the lower electrode at the furnace bottom is applied as a negative electrode, it is electrochemically applied. Apparent sulfur distribution can be increased, and desulfurization can be further promoted.
  • an oxygen lance is inserted into the furnace from the top of the furnace, and oxygen is blown to the molten iron to perform dephosphorization and decarburization, thereby reducing the phosphorus concentration and carbon concentration to a predetermined level.
  • oxygen and carbon in the molten iron react to generate CO gas.
  • nitrogen dissolved in the molten iron is taken into the CO gas, and nitrogen is removed from the molten iron.
  • the sixth step is a step of discharging the decarburized slag generated in the fifth step.
  • phosphorus in the molten iron moves to slag. If decarburization slag is discharged and phosphorus is not discharged out of the system, phosphorus is concentrated and low P steel cannot be manufactured. For this reason, decarburization slag needs to be discharged as much as possible.
  • the first to seventh steps in the present embodiment can produce molten steel with reduced heat loss and reduced CO 2 generation.
  • the first step by adding a carbon source to the seed hot water to obtain molten iron containing carbon, it is possible to increase the dissolution rate and reduction rate of DRI and reduce heat loss.
  • addition of the carbon material for ensuring a heat source can be suppressed, and as a result, the amount of CO 2 generation can also be suppressed.
  • Tables 4 and 5 below show the metal composition and slag composition in each step, respectively.
  • a carbon material such as coal or anthracite is further added in accordance with the DRI supply rate, and the C concentration in the molten iron is 0.1 to 1.5 mass%. It becomes the range. By suppressing the C concentration, the amount of CO 2 generated by the decarburization process can also be suppressed.
  • the conditions in the examples are one condition example adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this one condition example. It is not limited.
  • the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • molten steel was discharged from a DC electric furnace having a furnace diameter of 6 m having a hollow electrode, and 20 t of molten steel was left as seed water in the DC electric furnace.
  • the C concentration of the molten steel produced in the previous ch was 0.05% by mass.
  • carbon material is added from the hollow electrode, and the C concentration of the seed bath is 1.0% by mass while measuring the C concentration with a sub lance probe incorporating a C sensor for measuring the C concentration by thermal analysis. Carburized until.
  • DRI having a metallization rate of 75% was added together with the carbonaceous material, and dissolution reduction was performed.
  • the C concentration in the metal was controlled to remain at 1.0% by mass, and the operation temperature was controlled to 1570 ° C.
  • the dissolution and reduction time was 30 minutes.
  • the amount of molten metal was 300 t, and the amount of slag was 40 t.
  • the third step Al ash was added as a deoxidizer to perform desulfurization. After desulfurization, 30 t of slag was discharged from the exhaust hole of the DC electric furnace in the fourth step. Thereafter, in the fifth step, decarburization treatment was carried out by sending oxygen from an oxygen lance installed in the upper part of the furnace to produce molten steel having a C concentration of 0.05% by mass. In the fifth step, denitrification was promoted together with decarburization, and the produced molten steel had an N concentration of 30 ppm. In the sixth step, the slag generated by the decarburization process was discharged from the exhaust hole. Thereafter, in the seventh step, the molten steel 20 t was left in the furnace as the seed ch for the next ch, and the remaining 280 t of molten steel was produced.
  • a method for producing molten steel with high productivity, low heat loss, and low CO 2 generation amount is provided. It can be provided and has great industrial value.

Abstract

The present invention comprises: a first step for obtaining carbon-containing molten iron by adding a carbon source to molten steel left in an electric furnace as molten seed when a previous ch was tapped; a second step for performing melt-reduction by adding a DRI to the carbon-containing molten iron generated in the first step; a third step for performing desulphurisation processing by adding a deoxidisation material; a fourth step for discharging desulphurisation slag generated by the desulphurisation processing in the third step; a fifth step for performing decarbonation processing by blowing in oxygen; a sixth step for discharging decarbonation slag generated by the decarbonation processing in the fifth step; and a seventh step for tapping steel and leaving a portion as a molten seed for a subsequent ch, after the decarbonation slag has been discharged in the sixth step.

Description

溶鋼の製造方法Manufacturing method of molten steel
 本発明は、酸化鉄(鉄鉱石等)を予備還元して製造された還元鉄(DRI)を溶解炉で還元及び溶解して溶鋼を製造する溶鋼の製造方法に関する。 The present invention relates to a method for producing molten steel in which molten iron is produced by reducing and melting reduced iron (DRI) produced by pre-reducing iron oxide (iron ore etc.) in a melting furnace.
 従来、高炉を新設するには多くのコストがかかるため、天然ガスが産出する国では、例えばミドレックス法などにより、ペレット等の塊状化した鉄鉱石等の酸化鉄をシャフト炉で還元して金属化率90%以上の還元鉄(DRI)を製造し、そのDRIを電気炉で溶解して直接、溶鋼を製造するプロセスが主流になっている。 Conventionally, since it takes a lot of cost to establish a new blast furnace, in countries where natural gas is produced, iron oxide such as agglomerated iron ore such as pellets is reduced by a shaft furnace, for example, by the Midrex method. The mainstream is a process in which reduced iron (DRI) having a conversion rate of 90% or more is manufactured and the DRI is melted in an electric furnace to directly manufacture molten steel.
 また、天然ガスに代わる還元剤として石炭等の炭材を使用する還元鉄製造プロセスも開発され、実用化されている。この還元鉄製造プロセスには、鉄鉱石等の焼成ペレットを石炭粉と共にロータリーキルンで加熱還元する方法(SL/RN法)や、炭材と粉状の酸化鉄とを混合して塊状化し、ロータリーハース上で加熱還元して還元鉄を製造する方法(RHF法)などがある。これらの方法では、シャフト炉法に比べて高金属化率のDRIを製造することは困難であり、一般的に金属化率は高くて85%程度である。そのため、このDRIを使用する際には、電気炉等の溶解炉にて金属鉄の溶解を行うとともに、残存する酸化鉄分の還元も行う必要がある。 In addition, a reduced iron production process using coal and other carbonaceous materials as a reducing agent in place of natural gas has been developed and put into practical use. In this reduced iron production process, calcined pellets of iron ore and the like are heated and reduced together with coal powder in a rotary kiln (SL / RN method), or a mixture of carbonaceous material and powdered iron oxide is agglomerated to form a rotary hearth. There is a method of producing reduced iron by heat reduction (RHF method). In these methods, it is difficult to produce a DRI having a high metallization rate as compared with the shaft furnace method, and the metallization rate is generally about 85%. Therefore, when this DRI is used, it is necessary to dissolve metallic iron in a melting furnace such as an electric furnace and to reduce the remaining iron oxide content.
 特許文献1には、金属化鉄が60%以上のDRIをRHF法で製造し、その後、アーク加熱式溶解炉にて炭素含有量1.5~4.5質量%の溶融鉄を製造し、その溶融鉄を炉外に排出した後、別の溶解炉で脱硫処理、脱りん処理及び脱炭処理を行う方法が記載されている。この方法では、残存する酸化鉄分を還元するために溶解炉には炭材が添加されている。しかしながらこの方法では、溶融鉄を別の炉へ移し替えることによって熱ロスが大きくなってしまう。また、熱源を確保するために炭材をさらに添加して炭素含有量の高い溶融鉄を脱炭して溶鋼を製造することにより、CO2発生量が多くなってしまう。さらに特許文献2には、炭化水素ガスを供給しながら鉄系原料を溶解する技術が開示されている。しかしながら、この方法では、炭化水素ガスを用いることを前提としていることからコストが多くかかってしまう。 In Patent Document 1, a DRI containing 60% or more of metallized iron is produced by the RHF method, and thereafter, molten iron having a carbon content of 1.5 to 4.5% by mass is produced in an arc heating melting furnace, A method is described in which the molten iron is discharged out of the furnace and then desulfurized, dephosphorized and decarburized in another melting furnace. In this method, carbonaceous material is added to the melting furnace in order to reduce the remaining iron oxide content. However, in this method, heat loss is increased by transferring the molten iron to another furnace. Further, when a molten steel is produced by further adding a carbonaceous material to secure a heat source and decarburizing molten iron having a high carbon content, the amount of CO 2 generated is increased. Furthermore, Patent Document 2 discloses a technique for dissolving an iron-based raw material while supplying a hydrocarbon gas. However, this method is costly because it is premised on using hydrocarbon gas.
特表2001-515138号公報JP-T-2001-515138 特開2016-108575号公報JP 2016-108575 A
 本発明は前述の問題点を鑑み、電気炉等の溶解炉で特に金属化率が低いDRIを溶解・還元する際に、生産性が高くて熱ロスが少なく、かつCO2発生量の少ない溶鋼の製造方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention has high productivity, low heat loss, and low CO 2 generation amount when melting and reducing DRI having a particularly low metallization rate in a melting furnace such as an electric furnace. It aims at providing the manufacturing method of.
 本発明では、金属化率の低いDRIを溶解還元し溶鋼を製造するために、溶鋼の一部を炉内に残し、次chの種湯として使用する。但し、種湯が溶鋼のままであると、DRIの溶解還元が遅滞するので、DRIを供給する前にまず炭素源のみを種湯に供給して種湯のC濃度を高める。このC濃度は、後述するように、0.5質量%以上1.5質量%以下であることが好ましい。 In the present invention, in order to produce a molten steel by dissolving and reducing DRI having a low metallization rate, a part of the molten steel is left in the furnace and used as a seed water for the next channel. However, if the seed hot water remains in the molten steel, the dissolution and reduction of DRI is delayed. Therefore, before supplying DRI, only the carbon source is first supplied to the seed hot water to increase the C concentration of the seed hot water. As will be described later, the C concentration is preferably 0.5% by mass or more and 1.5% by mass or less.
 本発明は以下のとおりである。
(1)前chの出鋼時に種湯として電気炉に残した溶鋼に炭素源を添加して炭素含有溶融鉄を得る第1工程と、
 前記第1工程で生成された炭素含有溶融鉄にDRIを添加して溶解還元を行う第2工程と、
 次いで、脱酸材を添加して脱硫処理を行う第3工程と、
 前記第3工程の脱硫処理によって生成された脱硫スラグを排出する第4工程と、
 次いで、酸素を吹き込んで脱炭処理を行う第5工程と、
 前記第5工程の脱炭処理で生成された脱炭スラグを排出する第6工程と、
 前記第6工程で前記脱炭スラグを排出した後に、次chの種湯分を残して出鋼を行う第7工程と、
を有することを特徴とする溶鋼の製造方法。
(2)前記電気炉の炉径をD(m)とした場合に、前記第7工程で残す種湯量W(t)は0.3×D2<W<1.6×D2とすることを特徴とする上記(1)に記載の溶鋼の製造方法。
(3)前記第1工程において、C濃度が0.5質量%以上1.5質量%以下の炭素含有溶融鉄を得ることを特徴とする上記(1)又は(2)に記載の溶鋼の製造方法。
The present invention is as follows.
(1) a first step of obtaining a carbon-containing molten iron by adding a carbon source to the molten steel left in the electric furnace as seed water at the time of steelmaking in the previous ch;
A second step in which DRI is added to the carbon-containing molten iron produced in the first step to perform dissolution reduction;
Next, a third step of adding a deoxidizer and performing a desulfurization treatment,
A fourth step of discharging the desulfurization slag generated by the desulfurization treatment of the third step;
Next, a fifth step of performing decarburization processing by blowing oxygen,
A sixth step of discharging the decarburized slag generated by the decarburizing process of the fifth step;
After discharging the decarburized slag in the sixth step, the seventh step of leaving the seed ch of the next ch and performing steel output;
The manufacturing method of the molten steel characterized by having.
(2) When the furnace diameter of the electric furnace is D (m), the amount of seed water W (t) remaining in the seventh step is 0.3 × D 2 <W <1.6 × D 2 The manufacturing method of the molten steel as described in said (1) characterized by these.
(3) In the said 1st process, carbon concentration molten iron with a C density | concentration of 0.5 mass% or more and 1.5 mass% or less is obtained, The manufacture of the molten steel as described in said (1) or (2) characterized by the above-mentioned. Method.
 本発明によれば、電気炉等の溶解炉で特に金属化率が低いDRIを溶解・還元する際に、生産性が高くて熱ロスが少なく、かつCO2発生量の少ない溶鋼の製造方法を提供することができる。 According to the present invention, when melting and reducing DRI having a particularly low metallization rate in a melting furnace such as an electric furnace, a method for producing molten steel with high productivity, low heat loss, and low CO 2 generation amount is provided. Can be provided.
図1は、本発明の実施形態において、溶鋼を製造する各工程を説明するための図である。Drawing 1 is a figure for explaining each process which manufactures molten steel in the embodiment of the present invention. 図2は、C濃度と溶融鉄の融点との関係を示す図である。FIG. 2 is a diagram showing the relationship between the C concentration and the melting point of molten iron.
 以下、本発明の実施形態について、図面を参照しながら説明する。
 図1は、本実施形態に係る、電気炉等の溶解炉で特に金属化率が低いDRIを溶解・還元して溶鋼を製造する方法を説明するための図である。
 図1に示すように、本実施形態に係る製造方法は少なくとも第1工程~第7工程の7つの工程から成り立っている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a view for explaining a method for producing molten steel by melting and reducing DRI having a particularly low metallization rate in a melting furnace such as an electric furnace according to the present embodiment.
As shown in FIG. 1, the manufacturing method according to the present embodiment includes at least seven steps from the first step to the seventh step.
 まず、説明上の都合により第7工程から説明する。第7工程は、第5工程の脱炭処理によってC濃度が例えば0.1質量%未満まで低下させられた溶鋼を排出する工程である。この際に溶鋼を全量排出するのではなく、次chの種湯として使用する量の溶鋼を炉内に残すようにする。 First, the seventh step will be described for convenience of explanation. The seventh step is a step of discharging the molten steel whose C concentration has been lowered to, for example, less than 0.1% by mass by the decarburization process of the fifth step. At this time, the entire amount of molten steel is not discharged, but the amount of molten steel used as seed water for the next channel is left in the furnace.
 直流電気炉を溶解炉として用いる場合、後述する第2工程では、上部電極と炉底に設置した下部電極との間に電圧を印加してアークを発生させ、その熱をDRIの溶解還元に使用する。電圧を印加する際に種湯がない場合は、DRIを経由して電気が流れるため、DRIと炉底の下部電極との接触抵抗が大きく、溶解初期にアークが不安定となり、溶解時間が長くなる。また、還元率が低く酸化鉄分が多いDRIを用いた場合には電気が流れにくくなり、さらに溶解時間が増加してしまう。 When a DC electric furnace is used as a melting furnace, in the second step to be described later, a voltage is applied between the upper electrode and the lower electrode installed at the bottom of the furnace to generate an arc, and the heat is used for DRI dissolution and reduction. To do. When there is no seed water when applying voltage, electricity flows through the DRI, so the contact resistance between the DRI and the bottom electrode at the bottom of the furnace is large, the arc becomes unstable at the beginning of melting, and the melting time is long. Become. In addition, when DRI having a low reduction rate and a high iron oxide content is used, it becomes difficult for electricity to flow, and the dissolution time further increases.
 一方、電圧を印加する際に種湯があると炉底の下部電極の接触が密であるため、アークが安定して溶解時間を短縮することができる。このため、全量を出鋼するのではなく、一部を種湯として残すことが重要である。また、溶解炉における炉内径をD(m)とした場合に、種湯量W(t)は、以下の式(1)を満足することが好ましい。
 0.3×D2<W<1.6×D2   ・・・(1)
On the other hand, if there is seed water when applying a voltage, the lower electrode at the bottom of the furnace is in close contact, so that the arc is stable and the melting time can be shortened. For this reason, it is important to leave a part as seed hot water instead of producing the whole amount. Moreover, when the furnace inner diameter in a melting furnace is set to D (m), it is preferable that the seed hot water amount W (t) satisfies the following formula (1).
0.3 × D 2 <W <1.6 × D 2 (1)
 ここで、種湯量Wが0.3×D2以下であると、前述したようにDRIと炉底の下部電極との接触抵抗が大きくなりやすく、アークが安定しない可能性がある。また、種湯量Wが1.6×D2以上であると、後述する第5工程での脱炭処理の負荷が増大してしまう。なお、「0.3」及び「1.6」という数値は、電気炉内における浴深(m)及び溶鉄の密度(t/m)の積より算出された値である。 Here, if the seed water amount W is 0.3 × D 2 or less, as described above, the contact resistance between the DRI and the bottom electrode of the furnace bottom tends to increase, and the arc may not be stabilized. Moreover, the load of the decarburization process in the 5th process mentioned later will increase that the seed water amount W is 1.6 * D < 2 > or more. The numerical values “0.3” and “1.6” are values calculated from the product of the bath depth (m) and the density of molten iron (t / m 3 ) in the electric furnace.
 次に、第1工程について説明する。後述の第2工程でDRIを添加する前に、第1工程では、石炭(一般炭)や無煙炭等の炭材を炉内に添加し、種湯である溶鋼を所定のC濃度の溶融鉄とする。炭材の供給方法については特に限定はないが、炉上部に設置されたホッパーから自由落下で添加する方法、上部電極を中空電極とし中空部から供給する方法、専用のランスを用いて溶鋼に吹き付ける方法、浸漬ランスを用い溶鋼に直接吹き込む方法、溶湯の撹拌のために設置された底吹き羽口から溶鋼に吹き込む方法等がある。 Next, the first step will be described. Before adding DRI in the second step described later, in the first step, a coal material such as coal (steam coal) or anthracite is added to the furnace, and the molten steel as the seed hot water is molten iron having a predetermined C concentration. To do. There are no particular restrictions on the method of supplying the carbonaceous material, but there is a method of adding free fall from a hopper installed in the upper part of the furnace, a method of supplying the upper electrode from the hollow part as a hollow electrode, and spraying the molten steel using a dedicated lance. There are a method, a method of directly blowing into molten steel using an immersion lance, a method of blowing into molten steel from a bottom blowing tuyer installed for stirring of molten metal, and the like.
 ここで、種湯のC濃度が0.1質量%未満等の溶鋼の場合、第2工程で添加されるDRIは鉄の融点以上にならないと溶解できない。したがって、種湯のC濃度が0.1質量%未満等の溶鋼のままである場合は、溶解のために多量のエネルギーを要する。また、操業温度は鉄の融点以上となり、操業を安定化するためスーパーヒートを100℃とすると、1650℃という高温状態を保持する必要がある。そのため、耐火物への負荷が大きい。また、種湯のC濃度が0.1質量%未満等の溶鋼のままである場合はDRI中に残留する酸化鉄分は還元されず、高酸化鉄濃度のスラグが生成し、耐火物に悪影響を与える。特に低金属化率のDRIを使用した場合は顕著である。 Here, in the case of molten steel having a C concentration of the seed hot water of less than 0.1% by mass or the like, the DRI added in the second step cannot be melted unless the melting point of iron is exceeded. Therefore, when the C concentration of the seed hot water remains as molten steel such as less than 0.1% by mass, a large amount of energy is required for melting. Further, the operation temperature is equal to or higher than the melting point of iron, and if the superheat is 100 ° C. in order to stabilize the operation, it is necessary to maintain a high temperature state of 1650 ° C. Therefore, the load on the refractory is large. In addition, when the molten steel with a C concentration of the seed hot water of less than 0.1% by mass remains, the iron oxide remaining in the DRI is not reduced, and high iron oxide concentration slag is generated, which adversely affects the refractory. give. This is particularly noticeable when DRI with a low metalization rate is used.
 そこで本実施形態では、第1工程で加炭を行い、種湯をC含有溶湯とする。これにより、添加されたDRIの金属鉄は溶湯中のCにより浸炭され、融点が低下して溶解速度が促進され、生産性が向上する。また、操業温度も種湯のC濃度に応じて低下させることができ、耐火物への負荷が軽減される。また、DRI中の酸化鉄も種湯中のCと反応して還元が促進されるため、生成されるスラグ中の酸化鉄濃度も低位となる。さらに第5工程での脱炭反応にともなって脱窒が促進されるため、低窒素化も可能となる。以上のように、種湯をC含有溶湯とすることにより生産性を向上させることができ、さらに耐火物への負荷も軽減することができる。 Therefore, in this embodiment, carburization is performed in the first step, and the seed hot water is made a C-containing molten metal. Thereby, the added metallic iron of DRI is carburized by C in the molten metal, the melting point is lowered, the dissolution rate is accelerated, and the productivity is improved. Also, the operating temperature can be lowered according to the C concentration of the seed hot water, and the load on the refractory is reduced. Moreover, since iron oxide in DRI reacts with C in the seed hot water to promote reduction, the iron oxide concentration in the generated slag is also low. Furthermore, since denitrification is promoted with the decarburization reaction in the fifth step, it is possible to reduce nitrogen. As described above, the productivity can be improved by using the seed hot water as the C-containing molten metal, and the load on the refractory can be reduced.
 ここで、第2工程に入る前に、種湯である溶融鉄のC濃度は0.5質量%以上とすることが好ましい。C濃度が0.5質量%未満である場合は、DRI中の金属鉄の浸炭溶解速度、酸化鉄の還元速度が低下し、生産性が悪化するためである。また、逆に溶融鉄のC濃度が高くなり過ぎた場合、後述する第5工程で脱炭処理の負荷が増大するとともにCO2発生量が増加してしまう。したがって、種湯である溶融鉄のC濃度は1.5質量%以下にすることが好ましい。 Here, before entering the second step, the C concentration of the molten iron as the seed hot water is preferably 0.5 mass% or more. This is because when the C concentration is less than 0.5% by mass, the carburizing dissolution rate of metallic iron in DRI and the reduction rate of iron oxide are reduced, and the productivity is deteriorated. On the other hand, if the C concentration of the molten iron becomes too high, the decarburization load increases in the fifth step, which will be described later, and the amount of CO 2 generated increases. Therefore, it is preferable that the C concentration of the molten iron which is the seed hot water is 1.5% by mass or less.
 次に、第2工程について説明する。第2工程では、シャフト炉やRHFで製造されたDRIを溶解炉に供給し、上部電極と炉底に設置した下部電極との間に電圧を印加してアークを発生させ、DRI中の金属鉄を溶解させるとともにDRIに残存する酸化鉄分の還元を行う。DRIの供給方法は、例えば塊状のものは上部に設置されたホッパーから自由落下で炉内に添加し、粉状のものは上部電極を中空電極とし、中空部から吹き込む方法などが採用できる。第2工程で供給されるDRIは、例えば以下の表1に示す組成のものである。なお、スラグ成分は、SiO2,Al23が主成分であり、その他にCaO,MgO,S,P25,MnOを含む。また、金属化率は、DRI中の純鉄成分の質量%をmass%M.Feとし、DRI中のFeO成分の質量%をmass%FeOとした場合に、金属化率=mass%M.Fe/(mass%M.Fe+mass%FeO×55.75/71.85)で計算することができる。 Next, the second step will be described. In the second step, the DRI manufactured by the shaft furnace or RHF is supplied to the melting furnace, and an arc is generated by applying a voltage between the upper electrode and the lower electrode installed at the bottom of the furnace. And the iron oxide remaining in the DRI is reduced. As a method for supplying DRI, for example, a lump-like material can be added to the furnace by free fall from a hopper installed at the top, and a powdery material can be used in which the upper electrode is a hollow electrode and blown from the hollow portion. The DRI supplied in the second step has, for example, the composition shown in Table 1 below. The slag component is mainly composed of SiO 2 and Al 2 O 3 , and additionally contains CaO, MgO, S, P 2 O 5 and MnO. Further, the metallization rate is such that the mass% of the pure iron component in the DRI is mass% M.Fe and the mass% of the FeO component in the DRI is mass% FeO, the metallization rate = mass% M.Fe. /(Mass%M.Fe+mass%FeO×55.75/71.85).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第1工程で調整された溶融鉄中のC濃度に対し、第2工程では、さらに石炭や無煙炭等の炭材がDRIの供給速度に合わせて投入される。ここで投入される炭材量は、DRI中の鉄分が溶融鉄のC濃度まで浸炭するのに必要な量とDRI中の酸化鉄(FeO等)を還元するのに必要な量との和がベースとなる。第2工程で投入される炭材は、第1工程で投入される炭材と同様に、一般炭や無煙炭などが挙げられる。以下の表2には、一般炭の組成の例を示し、表3には、無煙炭の組成の例を示す。表2及び表3中のFCは固定炭素(Fixed Carbon)を表し、VMは揮発成分(Volaile Matter)を表す。第1工程および第2工程では、一般炭、無煙炭をそれぞれ単独で使用しても良いし、混合して使用しても良い。また、それ以外の炭材として、廃プラやバイオマスのような炭素源を使用することも可能である。 In contrast to the C concentration in the molten iron adjusted in the first step, in the second step, a carbon material such as coal or anthracite is added in accordance with the DRI supply rate. The amount of carbon material introduced here is the sum of the amount necessary for carburizing the iron content in the DRI to the C concentration of the molten iron and the amount necessary for reducing the iron oxide (FeO, etc.) in the DRI. Base. Examples of the carbon material input in the second step include general coal and anthracite as in the case of the carbon material input in the first step. Table 2 below shows examples of the composition of steam coal, and Table 3 shows examples of the composition of anthracite coal. FC in Table 2 and Table 3 represents fixed carbon (Fixed 揮 発 Carbon), and VM represents a volatile component (Volaile Matter). In the first step and the second step, steam coal and anthracite may be used alone or in combination. Moreover, it is also possible to use carbon sources such as waste plastic and biomass as other carbon materials.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 操業温度は、第1工程で調整された溶融鉄中のC濃度に対し、第2工程で投入される炭材量と前記したDRI中の鉄分が溶融鉄のC濃度まで浸炭するのに必要な量とDRI中の酸化鉄(FeO等)を還元するのに必要な量との和との差に依存する、溶融鉄中のC濃度により決定される。図2は、C濃度による鉄の融点の変化を示すFe-C系状態図である。操業が安定化するためにはスーパーヒートが100℃以上必要と言われており、例えばスーパーヒート100℃で操業を行うには、C濃度が1.5質量%の溶融鉄の場合は融点が1430℃であるため、操業温度は1530℃となる。第2工程では、溶融鉄中のC濃度により決定されるこの操業温度を保つように、炭材とDRIの供給速度に応じて電圧を印加する。
 第2工程開始前の炭素含有溶融鉄のC濃度は、前記したように0.5質量%以上1.5質量%以下であることが好ましいが、併せて、第2工程の終了時まで0.5質量%以上1.5質量%以下の範囲内に制御することが一層好ましい。
The operating temperature is necessary for carburizing the amount of carbon material introduced in the second step and the iron content in the DRI to the C concentration of the molten iron with respect to the C concentration in the molten iron adjusted in the first step. It is determined by the C concentration in the molten iron, which depends on the difference between the amount and the sum required to reduce iron oxide (such as FeO) in the DRI. FIG. 2 is an Fe—C phase diagram showing the change in the melting point of iron with the C concentration. In order to stabilize the operation, it is said that superheat is required to be 100 ° C. or more. For example, in order to operate at superheat 100 ° C., the melting point is 1430 in the case of molten iron having a C concentration of 1.5 mass%. Since it is ° C., the operating temperature is 1530 ° C. In the second step, a voltage is applied according to the supply speed of the carbonaceous material and DRI so as to maintain this operating temperature determined by the C concentration in the molten iron.
As described above, the C concentration of the carbon-containing molten iron before the start of the second step is preferably 0.5% by mass or more and 1.5% by mass or less. It is more preferable to control within the range of 5 mass% or more and 1.5 mass% or less.
 次に、第3工程について説明する。産地によって含有量は異なるが、鉄鉱石や石炭には硫黄が含有されている。DRI中の酸化鉄は瞬時に還元されないため、DRI投入終了直後は、スラグ中の酸化鉄濃度は高い。スラグ中の酸化鉄濃度が高い状態では、溶融鉄(以下、メタルと記載する場合がある。)とスラグとの間での硫黄分配は低く、硫黄はスラグよりメタル中に多く存在する。後述の第5工程の脱炭処理では、メタル中の硫黄は除去しにくいため、第3工程及び後述の第4工程を省略すると、脱炭処理終了後の溶鋼の硫黄濃度は高く、低硫鋼製造のニーズを満足しない。また、硫黄は表面活性成分であるため吸着サイトを独占する。したがって、メタル中の硫黄濃度が高いとメタル中から窒素を除去することが困難となり、低窒鋼製造のニーズを満足しない。そのため、第2工程終了後に脱硫処理を行うことが重要である。 Next, the third step will be described. Iron ore and coal contain sulfur, although the content varies depending on the production area. Since the iron oxide in the DRI is not reduced instantaneously, the iron oxide concentration in the slag is high immediately after the end of the DRI charging. In a state where the iron oxide concentration in the slag is high, the sulfur distribution between the molten iron (hereinafter sometimes referred to as metal) and the slag is low, and more sulfur is present in the metal than in the slag. In the decarburization process of the fifth step described later, sulfur in the metal is difficult to remove. Therefore, if the third step and the fourth step described later are omitted, the sulfur concentration of the molten steel after the decarburization process is high, and the low-sulfur steel Not satisfying manufacturing needs. Moreover, since sulfur is a surface active component, it occupies the adsorption site. Therefore, if the sulfur concentration in the metal is high, it is difficult to remove nitrogen from the metal, and the need for low-nitrogen steel production is not satisfied. For this reason, it is important to perform the desulfurization treatment after the second step.
 第2工程終了(DRI供給終了)後、第3工程において、金属Alや金属Al含有物等の脱酸剤を炉内に添加し、スラグ中の酸化鉄分を還元するとともに、溶融鉄中の酸素を除去する。この状態ではスラグとメタルとの間の硫黄分配は高くなり、硫黄はメタルからスラグに移行し、メタル中の硫黄濃度は低下する。また、溶解炉を直流電気炉とする場合、通常は、上部電極は負極、炉底の下部電極は正極とするが、上部電極を正極、炉底の下部電極を負極として印加すると電気化学的に見掛け上の硫黄分配が高くすることができ、さらに脱硫を促進させることができる。 After the end of the second step (end of DRI supply), in the third step, a deoxidizer such as metal Al or a metal Al-containing material is added to the furnace to reduce the iron oxide content in the slag, and the oxygen in the molten iron Remove. In this state, the sulfur distribution between the slag and the metal becomes high, the sulfur shifts from the metal to the slag, and the sulfur concentration in the metal decreases. When the melting furnace is a DC electric furnace, the upper electrode is usually a negative electrode and the lower electrode at the bottom of the furnace is a positive electrode. However, if the upper electrode is applied as a positive electrode and the lower electrode at the furnace bottom is applied as a negative electrode, it is electrochemically applied. Apparent sulfur distribution can be increased, and desulfurization can be further promoted.
 次に、第4工程について説明する。第3工程の脱硫で形成された脱硫スラグをそのまま残して脱炭処理を行うと、硫黄が再びスラグからメタルに移行(復硫)するため、第4工程では、排滓孔から脱硫スラグを排出する。 Next, the fourth step will be described. If the desulfurization slag formed by the desulfurization in the third step is left as it is, desulfurization slag is discharged from the exhaust hole in the fourth step because sulfur is transferred again from the slag to the metal (resulfurization). To do.
 次に、第5工程について説明する。第5工程では、炉上部から酸素ランスを炉内に挿入し、溶融鉄に酸素を吹付けることによって脱りん処理および脱炭処理を行い、所定のりん濃度および炭素濃度まで低下させる。脱炭処理では、酸素と溶融鉄中の炭素とが反応してCOガスが発生するが、この時、溶融鉄中に溶解している窒素がCOガスに取り込まれ、溶鉄中から窒素が除去される。 Next, the fifth step will be described. In the fifth step, an oxygen lance is inserted into the furnace from the top of the furnace, and oxygen is blown to the molten iron to perform dephosphorization and decarburization, thereby reducing the phosphorus concentration and carbon concentration to a predetermined level. In the decarburization process, oxygen and carbon in the molten iron react to generate CO gas. At this time, nitrogen dissolved in the molten iron is taken into the CO gas, and nitrogen is removed from the molten iron. The
 次に、第6工程について説明する。第6工程は、第5工程で生成した脱炭スラグを排出する工程である。第5工程の脱りん処理及び脱炭処理では溶鉄中のりんがスラグに移行する。脱炭スラグを排出してりんを系外に排出しないとりんが濃化し、低P鋼が製造できなくなる。このため、脱炭スラグはできる限り排出する必要がある。 Next, the sixth step will be described. The sixth step is a step of discharging the decarburized slag generated in the fifth step. In the dephosphorization process and the decarburization process in the fifth step, phosphorus in the molten iron moves to slag. If decarburization slag is discharged and phosphorus is not discharged out of the system, phosphorus is concentrated and low P steel cannot be manufactured. For this reason, decarburization slag needs to be discharged as much as possible.
 以上のように本実施形態における第1工程~第7工程により、熱ロスを抑え、かつCO2発生量を抑えて溶鋼を製造することができる。特に、第1工程において、種湯に炭素源を添加して炭素含有溶鉄とすることによりDRIの溶解速度および還元速度を高めて熱ロスを少なくすることができる。これにより、熱源を確保するための炭材の添加を抑えることができ、その結果、CO2発生量も抑えることができる。以下の表4及び表5には、それぞれ各工程でのメタル組成、スラグ組成を示す。 As described above, the first to seventh steps in the present embodiment can produce molten steel with reduced heat loss and reduced CO 2 generation. In particular, in the first step, by adding a carbon source to the seed hot water to obtain molten iron containing carbon, it is possible to increase the dissolution rate and reduction rate of DRI and reduce heat loss. Thereby, addition of the carbon material for ensuring a heat source can be suppressed, and as a result, the amount of CO 2 generation can also be suppressed. Tables 4 and 5 below show the metal composition and slag composition in each step, respectively.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 表4に示すように本実施形態では、第2工程では、さらに石炭や無煙炭等の炭材がDRIの供給速度に合わせて投入され、溶鉄中のC濃度は0.1~1.5質量%の範囲となる。C濃度が抑えられることにより、脱炭処理によるCO2発生量も抑えることができる。 As shown in Table 4, in the present embodiment, in the second step, a carbon material such as coal or anthracite is further added in accordance with the DRI supply rate, and the C concentration in the molten iron is 0.1 to 1.5 mass%. It becomes the range. By suppressing the C concentration, the amount of CO 2 generated by the decarburization process can also be suppressed.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions in the examples are one condition example adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this one condition example. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
 まず、前chにおいて、中空電極を有した炉径6mの直流電気炉から溶鋼を出鋼し、20tの溶鋼を直流電気炉に種湯として残した。前chで製造された溶鋼のC濃度は0.05質量%であった。そして、第1工程において、中空電極から炭材を添加し、熱分析でC濃度を測定するCセンサーを内蔵したサブランスプローブでC濃度を測定しながら種湯のC濃度が1.0質量%になるまで加炭した。 First, in the previous channel, molten steel was discharged from a DC electric furnace having a furnace diameter of 6 m having a hollow electrode, and 20 t of molten steel was left as seed water in the DC electric furnace. The C concentration of the molten steel produced in the previous ch was 0.05% by mass. In the first step, carbon material is added from the hollow electrode, and the C concentration of the seed bath is 1.0% by mass while measuring the C concentration with a sub lance probe incorporating a C sensor for measuring the C concentration by thermal analysis. Carburized until.
 続いて、第2工程において、金属化率75%のDRIを炭材とともに添加し、溶解還元を行った。この時、メタル中のC濃度は1.0質量%のままとなるように制御し、操業温度が1570℃になるように制御した。溶解還元時間は30分であり、DRIの添加が終了した時の溶湯量は300t、スラグ量は40tであった。 Subsequently, in the second step, DRI having a metallization rate of 75% was added together with the carbonaceous material, and dissolution reduction was performed. At this time, the C concentration in the metal was controlled to remain at 1.0% by mass, and the operation temperature was controlled to 1570 ° C. The dissolution and reduction time was 30 minutes. When the addition of DRI was completed, the amount of molten metal was 300 t, and the amount of slag was 40 t.
 次いで、第3工程において、脱酸剤としてAl灰を添加して脱硫を行い、脱硫後、第4工程において、直流電気炉の排滓孔から30tのスラグを排出した。その後、第5工程において、炉上部に設置した酸素ランスから送酸して脱炭処理を行い、C濃度が0.05質量%の溶鋼を製造した。第5工程では脱炭とともに脱窒が促進され、製造した溶鋼のN濃度は30ppmであった。そして、第6工程において、脱炭処理によって生成されたスラグを排滓孔から排出した。その後、第7工程において、溶鋼20tを次chの種湯として炉内に残し、残りの280tの溶鋼を出鋼した。 Next, in the third step, Al ash was added as a deoxidizer to perform desulfurization. After desulfurization, 30 t of slag was discharged from the exhaust hole of the DC electric furnace in the fourth step. Thereafter, in the fifth step, decarburization treatment was carried out by sending oxygen from an oxygen lance installed in the upper part of the furnace to produce molten steel having a C concentration of 0.05% by mass. In the fifth step, denitrification was promoted together with decarburization, and the produced molten steel had an N concentration of 30 ppm. In the sixth step, the slag generated by the decarburization process was discharged from the exhaust hole. Thereafter, in the seventh step, the molten steel 20 t was left in the furnace as the seed ch for the next ch, and the remaining 280 t of molten steel was produced.
 一方、1炉で脱炭まで行わず、溶解還元後の溶銑を出銑し、別炉で脱炭処理を行う2炉方式の場合は、溶解炉からの出銑と脱炭炉への溶銑の装入により少なくとも100℃の温度低下が生じる。これに対し、本実施例ではこの熱ロスがなく、エネルギー原単位の低減を図ることができた。また、C濃度が1.0質量%の状態からの脱炭であったため、2炉方式に比べて脱炭量が少なく、CO2発生量を低減することができた。具体的には以下のとおりである。 On the other hand, in the case of the two-furnace system in which hot metal after smelting and reduction is discharged without decarburization in one furnace and decarburization treatment is performed in another furnace, The charging causes a temperature drop of at least 100 ° C. On the other hand, in this example, there was no heat loss, and the energy intensity could be reduced. Moreover, since the decarburization was performed from a state where the C concentration was 1.0% by mass, the decarburization amount was small as compared with the two-furnace method, and the CO 2 generation amount could be reduced. Specifically, it is as follows.
 本実施例では、C濃度が1.0質量%の溶融鉄300tを0.05質量%まで脱炭したため、
 300×(1-0.05)/100/12×22.4=5.3Nm3
のCO2が発生したことになる。
 一方、2炉方式の場合、DRIの還元時はC濃度を3.0質量%で実施し、その溶銑を出銑して別炉で脱炭処理を行うものとする。C濃度を3.0質量%としたのは、3.0質量%より低いと、移し替え時の熱ロスがあるため、脱炭処理のC燃焼による発熱だけでは脱炭処理終了時の所定温度に達しないためである。本実施例では280tの溶鋼を出鋼したため、2炉方式では280tの溶銑を脱炭すれば良い。したがって、CO2発生量は、
 280×(3-0.05)/100/12×22.4=16.5Nm3
となる。
 以上のように本実施例の場合は、2炉方式に比べてCO2発生量を削減できたことが確認できた。
In this example, 300 t of molten iron having a C concentration of 1.0% by mass was decarburized to 0.05% by mass,
300 × (1-0.05) /100/12×22.4=5.3 Nm 3
CO 2 is generated.
On the other hand, in the case of the two-furnace system, when reducing DRI, the C concentration is set to 3.0% by mass, and the molten iron is taken out and decarburized in a separate furnace. The reason why the C concentration is 3.0% by mass is that if it is lower than 3.0% by mass, there is a heat loss at the time of transfer. It is because it does not reach. In this embodiment, since 280 t of molten steel is produced, the 280 t hot metal may be decarburized in the 2-furnace system. Therefore, the amount of CO 2 generated is
280 × (3-0.05) /100/12×22.4=16.5 Nm 3
It becomes.
As described above, in the case of this example, it was confirmed that the amount of generated CO 2 could be reduced as compared with the two-furnace method.
(比較例)
 まず、前chにおいて、中空電極を有した炉径6mの直流電気炉から溶鋼を出鋼し、20tの溶鋼を直流電気炉に種湯として残した。前chで製造された溶鋼のC濃度は0.05質量%であった。続いて、第1工程を省略し、第2工程において、金属化率75%のDRIを添加し、溶解還元を行った。この時、操業温度が1640℃と高温にする必要があった上に、溶解還元時間は60分かかってしまった。その後は、実施例と同様の条件により、脱硫処理、脱炭処理などを行った。
(Comparative example)
First, in the previous channel, molten steel was discharged from a DC electric furnace having a furnace diameter of 6 m having a hollow electrode, and 20 t of molten steel was left as seed water in the DC electric furnace. The C concentration of the molten steel produced in the previous ch was 0.05% by mass. Subsequently, the first step was omitted, and in the second step, DRI having a metallization rate of 75% was added and dissolution reduction was performed. At this time, the operation temperature had to be as high as 1640 ° C., and the dissolution and reduction time took 60 minutes. Thereafter, desulfurization treatment, decarburization treatment, and the like were performed under the same conditions as in the examples.
 以上のように比較例では、溶解還元時間が実施例と比べて倍の時間がかかってしまったため、生産性が低下した結果となった。 As described above, in the comparative example, the dissolution and reduction time took twice as long as that in the example, resulting in a decrease in productivity.
 本発明によれば、電気炉等の溶解炉で特に金属化率が低いDRIを溶解・還元する際に、生産性が高くて熱ロスが少なく、かつCO2発生量の少ない溶鋼の製造方法を提供することができ、工業的価値が大きい。 According to the present invention, when melting and reducing DRI having a particularly low metallization rate in a melting furnace such as an electric furnace, a method for producing molten steel with high productivity, low heat loss, and low CO 2 generation amount is provided. It can be provided and has great industrial value.

Claims (3)

  1.  前chの出鋼時に種湯として電気炉に残した溶鋼に炭素源を添加して炭素含有溶融鉄を得る第1工程と、
     前記第1工程で生成された炭素含有溶融鉄にDRIを添加して溶解還元を行う第2工程と、
     次いで、脱酸材を添加して脱硫処理を行う第3工程と、
     前記第3工程の脱硫処理によって生成された脱硫スラグを排出する第4工程と、
     次いで、酸素を吹き込んで脱炭処理を行う第5工程と、
     前記第5工程の脱炭処理によって生成された脱炭スラグを排出する第6工程と、
     前記第6工程で前記脱炭スラグを排出した後に、次chの種湯分を残して出鋼を行う第7工程と、
    を有することを特徴とする溶鋼の製造方法。
    A first step of obtaining a carbon-containing molten iron by adding a carbon source to the molten steel left in the electric furnace as a seed hot water at the time of steelmaking in the previous ch;
    A second step in which DRI is added to the carbon-containing molten iron produced in the first step to perform dissolution reduction;
    Next, a third step of adding a deoxidizer and performing a desulfurization treatment,
    A fourth step of discharging the desulfurization slag generated by the desulfurization treatment of the third step;
    Next, a fifth step of performing decarburization processing by blowing oxygen,
    A sixth step of discharging the decarburized slag generated by the decarburizing process of the fifth step;
    After discharging the decarburized slag in the sixth step, the seventh step of leaving the seed ch of the next ch and performing steel output;
    The manufacturing method of the molten steel characterized by having.
  2.  前記電気炉の炉径をD(m)とした場合に、前記第7工程で残す種湯量W(t)は0.3×D2<W<1.6×D2とすることを特徴とする請求項1に記載の溶鋼の製造方法。 When the furnace diameter of the electric furnace is D (m), the amount of seed hot water W (t) left in the seventh step is 0.3 × D 2 <W <1.6 × D 2 The manufacturing method of the molten steel of Claim 1 to do.
  3.  前記第1工程において、C濃度が0.5質量%以上1.5質量%以下の炭素含有溶融鉄を得ることを特徴とする請求項1又は2に記載の溶鋼の製造方法。 3. The method for producing molten steel according to claim 1, wherein in the first step, carbon-containing molten iron having a C concentration of 0.5 mass% to 1.5 mass% is obtained.
PCT/JP2019/016502 2018-04-17 2019-04-17 Molten steel production method WO2019203278A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980023386.9A CN112004947B (en) 2018-04-17 2019-04-17 Method for producing molten steel
KR1020207029459A KR102359738B1 (en) 2018-04-17 2019-04-17 Molten Steel Manufacturing Method
JP2020514418A JP6923075B2 (en) 2018-04-17 2019-04-17 Method of manufacturing molten steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018078958 2018-04-17
JP2018-078958 2018-04-17

Publications (1)

Publication Number Publication Date
WO2019203278A1 true WO2019203278A1 (en) 2019-10-24

Family

ID=68239702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016502 WO2019203278A1 (en) 2018-04-17 2019-04-17 Molten steel production method

Country Status (5)

Country Link
JP (1) JP6923075B2 (en)
KR (1) KR102359738B1 (en)
CN (1) CN112004947B (en)
TW (1) TWI698532B (en)
WO (1) WO2019203278A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131799A1 (en) * 2019-12-25 2021-07-01 株式会社神戸製鋼所 Molten steel production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211454B2 (en) * 2021-06-11 2023-01-24 Jfeスチール株式会社 Method for denitrifying molten steel, method for simultaneous denitrification and desulfurization, and method for manufacturing steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038139A1 (en) * 2007-09-19 2009-03-26 Kabushiki Kaisha Kobe Seiko Sho Process for producing molten iron

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411570A (en) * 1993-06-16 1995-05-02 Iscor Limited Steelmaking process
JP3509072B2 (en) 1997-09-01 2004-03-22 株式会社神戸製鋼所 Iron and steel making
US6149709A (en) * 1997-09-01 2000-11-21 Kabushiki Kaisha Kobe Seiko Sho Method of making iron and steel
JP2001316715A (en) * 2000-02-28 2001-11-16 Nkk Corp Method for melting cold iron source
US8057570B2 (en) * 2004-10-11 2011-11-15 Technological Resources Pty. Limited Electric arc furnace steelmaking
CN101775460B (en) * 2010-03-23 2012-05-02 武钢集团昆明钢铁股份有限公司 Electric furnace steelmaking method using 100% low-quality tunnel kiln direct reduced iron as raw material
JP2012007225A (en) * 2010-06-28 2012-01-12 Kobe Steel Ltd Method for producing molten steel using particulate metallic iron
WO2013137292A1 (en) * 2012-03-15 2013-09-19 Jfeスチール株式会社 Vacuum refining method of molten steel
JP5954551B2 (en) * 2013-01-18 2016-07-20 Jfeスチール株式会社 Converter steelmaking
JP6413710B2 (en) 2014-12-02 2018-10-31 新日鐵住金株式会社 Production method of high purity steel by DC arc electric furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038139A1 (en) * 2007-09-19 2009-03-26 Kabushiki Kaisha Kobe Seiko Sho Process for producing molten iron

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131799A1 (en) * 2019-12-25 2021-07-01 株式会社神戸製鋼所 Molten steel production method
JP2021102798A (en) * 2019-12-25 2021-07-15 株式会社神戸製鋼所 Production method of molten steel
JP7094264B2 (en) 2019-12-25 2022-07-01 株式会社神戸製鋼所 Manufacturing method of molten steel
CN114829635A (en) * 2019-12-25 2022-07-29 株式会社神户制钢所 Method for producing molten steel
CN114829635B (en) * 2019-12-25 2023-04-21 株式会社神户制钢所 Method for producing molten steel

Also Published As

Publication number Publication date
JP6923075B2 (en) 2021-08-18
CN112004947A (en) 2020-11-27
TW201943856A (en) 2019-11-16
CN112004947B (en) 2024-03-26
TWI698532B (en) 2020-07-11
JPWO2019203278A1 (en) 2021-02-12
KR20200130858A (en) 2020-11-20
KR102359738B1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
WO2019203278A1 (en) Molten steel production method
AU2008301651B2 (en) Process for producing molten iron
CN104195283A (en) Vanadium slag modifier for converter vanadium extraction and converter vanadium extraction smelting method
JP6984731B2 (en) How to remove phosphorus from hot metal
JP5061598B2 (en) Hot metal desulfurization method
JP6992604B2 (en) Phosphate slag fertilizer manufacturing method
CN108676954A (en) A kind of interior dephosphorization method for making steel recycled of converter steel slag hearth
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP2013127089A (en) Method for pretreating molten iron
JP2020125541A (en) Converter refining method
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP2005068533A (en) Method for dephosphorizing molten pig iron
JP5691198B2 (en) Hot metal desiliconization method
JP3577365B2 (en) Hot metal pretreatment method
JP5055794B2 (en) Method for producing reduced metal
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JPH11343514A (en) Method for melting high carbon steel using bottom-blown converter
JP3718263B2 (en) Hot metal pretreatment method
JP2011084782A (en) Method for producing high chromium steel
JP2003171713A (en) Carbonizing material, and steel making method using the same
JP2002256324A (en) Method for melting high carbon and high chromium steel
JPH0445214A (en) Production of molten chromium-containing iron
JP2005171375A (en) Method for pre-treating molten pig iron
JPH05239510A (en) Production of low si, low s and low p molten iron

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19787850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514418

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207029459

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19787850

Country of ref document: EP

Kind code of ref document: A1