JP6923075B2 - Method of manufacturing molten steel - Google Patents

Method of manufacturing molten steel Download PDF

Info

Publication number
JP6923075B2
JP6923075B2 JP2020514418A JP2020514418A JP6923075B2 JP 6923075 B2 JP6923075 B2 JP 6923075B2 JP 2020514418 A JP2020514418 A JP 2020514418A JP 2020514418 A JP2020514418 A JP 2020514418A JP 6923075 B2 JP6923075 B2 JP 6923075B2
Authority
JP
Japan
Prior art keywords
dri
molten steel
concentration
iron
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020514418A
Other languages
Japanese (ja)
Other versions
JPWO2019203278A1 (en
Inventor
平田 浩
浩 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2019203278A1 publication Critical patent/JPWO2019203278A1/en
Application granted granted Critical
Publication of JP6923075B2 publication Critical patent/JP6923075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture Of Iron (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、酸化鉄(鉄鉱石等)を予備還元して製造された還元鉄(DRI)を溶解炉で還元及び溶解して溶鋼を製造する溶鋼の製造方法に関する。 The present invention relates to a method for producing molten steel, which produces molten steel by reducing and melting reduced iron (DRI) produced by pre-reducing iron oxide (iron ore, etc.) in a melting furnace.

従来、高炉を新設するには多くのコストがかかるため、天然ガスが産出する国では、例えばミドレックス法などにより、ペレット等の塊状化した鉄鉱石等の酸化鉄をシャフト炉で還元して金属化率90%以上の還元鉄(DRI)を製造し、そのDRIを電気炉で溶解して直接、溶鋼を製造するプロセスが主流になっている。 Conventionally, it costs a lot to construct a new blast furnace, so in countries where natural gas is produced, for example, by the Midrex method, iron oxide such as agglomerated iron ore such as pellets is reduced in a shaft furnace and metal. The mainstream process is to produce reduced iron (DRI) with a conversion rate of 90% or more, melt the DRI in an electric furnace, and directly produce molten steel.

また、天然ガスに代わる還元剤として石炭等の炭材を使用する還元鉄製造プロセスも開発され、実用化されている。この還元鉄製造プロセスには、鉄鉱石等の焼成ペレットを石炭粉と共にロータリーキルンで加熱還元する方法(SL/RN法)や、炭材と粉状の酸化鉄とを混合して塊状化し、ロータリーハース上で加熱還元して還元鉄を製造する方法(RHF法)などがある。これらの方法では、シャフト炉法に比べて高金属化率のDRIを製造することは困難であり、一般的に金属化率は高くて85%程度である。そのため、このDRIを使用する際には、電気炉等の溶解炉にて金属鉄の溶解を行うとともに、残存する酸化鉄分の還元も行う必要がある。 In addition, a reduced iron production process that uses a coal material such as coal as a reducing agent instead of natural gas has also been developed and put into practical use. In this reduced iron production process, a method of heating and reducing calcined pellets such as iron ore together with coal powder with a rotary kiln (SL / RN method), or a method of mixing carbonaceous material and powdered iron oxide to agglomerate and agglomerate them into a rotary hearth. There is a method (RHF method) for producing reduced iron by heating and reducing the above. With these methods, it is difficult to produce a DRI having a high metallization rate as compared with the shaft furnace method, and the metallization rate is generally as high as about 85%. Therefore, when using this DRI, it is necessary to melt the metallic iron in a melting furnace such as an electric furnace and also reduce the remaining iron oxide.

特許文献1には、金属化鉄が60%以上のDRIをRHF法で製造し、その後、アーク加熱式溶解炉にて炭素含有量1.5〜4.5質量%の溶融鉄を製造し、その溶融鉄を炉外に排出した後、別の溶解炉で脱硫処理、脱りん処理及び脱炭処理を行う方法が記載されている。この方法では、残存する酸化鉄分を還元するために溶解炉には炭材が添加されている。しかしながらこの方法では、溶融鉄を別の炉へ移し替えることによって熱ロスが大きくなってしまう。また、熱源を確保するために炭材をさらに添加して炭素含有量の高い溶融鉄を脱炭して溶鋼を製造することにより、CO2発生量が多くなってしまう。さらに特許文献2には、炭化水素ガスを供給しながら鉄系原料を溶解する技術が開示されている。しかしながら、この方法では、炭化水素ガスを用いることを前提としていることからコストが多くかかってしまう。In Patent Document 1, a DRI having a metallized iron content of 60% or more is produced by the RHF method, and then molten iron having a carbon content of 1.5 to 4.5% by mass is produced in an arc heating type melting furnace. A method of performing desulfurization treatment, dephosphorization treatment, and decarburization treatment in another melting furnace after discharging the molten iron to the outside of the furnace is described. In this method, a charcoal material is added to the melting furnace in order to reduce the remaining iron oxide. However, in this method, the heat loss increases by transferring the molten iron to another furnace. Further, in order to secure a heat source, a carbon dioxide material is further added to decarburize molten iron having a high carbon content to produce molten steel, so that the amount of CO 2 generated increases. Further, Patent Document 2 discloses a technique for dissolving an iron-based raw material while supplying a hydrocarbon gas. However, this method is costly because it is premised on the use of hydrocarbon gas.

特表2001−515138号公報Special Table 2001-515138 特開2016−108575号公報Japanese Unexamined Patent Publication No. 2016-108575

本発明は前述の問題点を鑑み、電気炉等の溶解炉で特に金属化率が低いDRIを溶解・還元する際に、生産性が高くて熱ロスが少なく、かつCO2発生量の少ない溶鋼の製造方法を提供することを目的とする。In view of the above-mentioned problems, the present invention is a molten steel having high productivity, low heat loss, and low CO 2 generation when melting and reducing DRI having a particularly low metallization rate in a melting furnace such as an electric furnace. It is an object of the present invention to provide the manufacturing method of.

本発明では、金属化率の低いDRIを溶解還元し溶鋼を製造するために、溶鋼の一部を炉内に残し、次chの種湯として使用する。但し、種湯が溶鋼のままであると、DRIの溶解還元が遅滞するので、DRIを供給する前にまず炭素源のみを種湯に供給して種湯のC濃度を高める。このC濃度は、後述するように、0.5質量%以上1.5質量%以下であることが好ましい。 In the present invention, in order to dissolve and reduce DRI having a low metallization rate to produce molten steel, a part of the molten steel is left in the furnace and used as a seed bath for the next channel. However, if the seed water remains as molten steel, the dissolution and reduction of DRI is delayed. Therefore, before supplying DRI, only the carbon source is first supplied to the seed water to increase the C concentration of the seed water. As will be described later, the C concentration is preferably 0.5% by mass or more and 1.5% by mass or less.

本発明は以下のとおりである。
(1)前chの出鋼時に種湯として電気炉に残した溶鋼に炭素源を添加して炭素含有溶融鉄を得る第1工程と、
前記第1工程で生成された炭素含有溶融鉄にDRIを添加して溶解還元を行う第2工程と、
次いで、脱酸材を添加して脱硫処理を行う第3工程と、
前記第3工程の脱硫処理によって生成された脱硫スラグを排出する第4工程と、
次いで、酸素を吹き込んで脱炭処理を行う第5工程と、
前記第5工程の脱炭処理で生成された脱炭スラグを排出する第6工程と、
前記第6工程で前記脱炭スラグを排出した後に、次chの種湯分を残して出鋼を行う第7工程と、
を有することを特徴とする溶鋼の製造方法。
(2)前記電気炉の炉径をD(m)とした場合に、前記第7工程で残す種湯量W(t)は0.3×D2<W<1.6×D2とすることを特徴とする上記(1)に記載の溶鋼の製造方法。
(3)前記第1工程において、C濃度が0.5質量%以上1.5質量%以下の炭素含有溶融鉄を得ることを特徴とする上記(1)又は(2)に記載の溶鋼の製造方法。
The present invention is as follows.
(1) The first step of adding a carbon source to the molten steel left in the electric furnace as a seed hot water at the time of steel ejection of the previous channel to obtain carbon-containing molten iron.
The second step of adding DRI to the carbon-containing molten iron produced in the first step to dissolve and reduce it, and the second step.
Next, the third step of adding a deoxidizing material and performing a desulfurization treatment, and
The fourth step of discharging the desulfurized slag produced by the desulfurization treatment of the third step and
Next, the fifth step of blowing oxygen to perform decarburization treatment and
The sixth step of discharging the decarburized slag produced in the decarburization treatment of the fifth step and
In the sixth step, after discharging the decarburized slag, the seventh step, in which the seed hot water of the next channel is left and the steel is discharged,
A method for producing molten steel, which comprises.
(2) When the diameter of the electric furnace is D (m), the amount of seed water W (t) left in the seventh step is 0.3 × D 2 <W <1.6 × D 2. The method for producing molten steel according to (1) above.
(3) Production of the molten steel according to (1) or (2) above, wherein in the first step, a carbon-containing molten iron having a C concentration of 0.5% by mass or more and 1.5% by mass or less is obtained. Method.

本発明によれば、電気炉等の溶解炉で特に金属化率が低いDRIを溶解・還元する際に、生産性が高くて熱ロスが少なく、かつCO2発生量の少ない溶鋼の製造方法を提供することができる。According to the present invention, when melting and reducing DRI having a particularly low metallization rate in a melting furnace such as an electric furnace, a method for producing molten steel having high productivity, low heat loss, and low CO 2 generation amount is provided. Can be provided.

図1は、本発明の実施形態において、溶鋼を製造する各工程を説明するための図である。FIG. 1 is a diagram for explaining each step of manufacturing molten steel in the embodiment of the present invention. 図2は、C濃度と溶融鉄の融点との関係を示す図である。FIG. 2 is a diagram showing the relationship between the C concentration and the melting point of molten iron.

以下、本発明の実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係る、電気炉等の溶解炉で特に金属化率が低いDRIを溶解・還元して溶鋼を製造する方法を説明するための図である。
図1に示すように、本実施形態に係る製造方法は少なくとも第1工程〜第7工程の7つの工程から成り立っている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram for explaining a method for producing molten steel by melting and reducing DRI having a particularly low metallization rate in a melting furnace such as an electric furnace according to the present embodiment.
As shown in FIG. 1, the manufacturing method according to the present embodiment comprises at least seven steps from the first step to the seventh step.

まず、説明上の都合により第7工程から説明する。第7工程は、第5工程の脱炭処理によってC濃度が例えば0.1質量%未満まで低下させられた溶鋼を排出する工程である。この際に溶鋼を全量排出するのではなく、次chの種湯として使用する量の溶鋼を炉内に残すようにする。 First, for convenience of explanation, the seventh step will be described. The seventh step is a step of discharging molten steel whose C concentration has been reduced to, for example, less than 0.1% by mass by the decarburization treatment of the fifth step. At this time, instead of discharging the entire amount of molten steel, the amount of molten steel used as the seed bath for the next channel is left in the furnace.

直流電気炉を溶解炉として用いる場合、後述する第2工程では、上部電極と炉底に設置した下部電極との間に電圧を印加してアークを発生させ、その熱をDRIの溶解還元に使用する。電圧を印加する際に種湯がない場合は、DRIを経由して電気が流れるため、DRIと炉底の下部電極との接触抵抗が大きく、溶解初期にアークが不安定となり、溶解時間が長くなる。また、還元率が低く酸化鉄分が多いDRIを用いた場合には電気が流れにくくなり、さらに溶解時間が増加してしまう。 When a DC electric furnace is used as a melting furnace, in the second step described later, a voltage is applied between the upper electrode and the lower electrode installed on the bottom of the furnace to generate an arc, and the heat is used for melting and reducing DRI. do. If there is no seed water when applying voltage, electricity flows through DRI, so the contact resistance between DRI and the lower electrode of the furnace bottom is large, the arc becomes unstable at the initial stage of melting, and the melting time is long. Become. Further, when DRI having a low reduction rate and a high iron oxide content is used, it becomes difficult for electricity to flow and the dissolution time further increases.

一方、電圧を印加する際に種湯があると炉底の下部電極の接触が密であるため、アークが安定して溶解時間を短縮することができる。このため、全量を出鋼するのではなく、一部を種湯として残すことが重要である。また、溶解炉における炉内径をD(m)とした場合に、種湯量W(t)は、以下の式(1)を満足することが好ましい。
0.3×D2<W<1.6×D2 ・・・(1)
On the other hand, if there is a seed bath when applying a voltage, the contact between the lower electrodes of the furnace bottom is close, so that the arc is stable and the melting time can be shortened. For this reason, it is important to leave a part of the water as a seed hot water, rather than producing the entire amount of steel. Further, when the inner diameter of the melting furnace is D (m), the amount of seed water W (t) preferably satisfies the following formula (1).
0.3 x D 2 <W <1.6 x D 2 ... (1)

ここで、種湯量Wが0.3×D2以下であると、前述したようにDRIと炉底の下部電極との接触抵抗が大きくなりやすく、アークが安定しない可能性がある。また、種湯量Wが1.6×D2以上であると、後述する第5工程での脱炭処理の負荷が増大してしまう。なお、「0.3」及び「1.6」という数値は、電気炉内における浴深(m)及び溶鉄の密度(t/m)の積より算出された値である。Here, if the amount of seed water W is 0.3 × D 2 or less, the contact resistance between the DRI and the lower electrode of the furnace bottom tends to increase as described above, and the arc may not be stable. Further, if the amount of seed water W is 1.6 × D 2 or more, the load of the decarburization treatment in the fifth step described later increases. The numerical values "0.3" and "1.6" are values calculated from the product of the bath depth (m) and the density of molten iron (t / m 3) in the electric furnace.

次に、第1工程について説明する。後述の第2工程でDRIを添加する前に、第1工程では、石炭(一般炭)や無煙炭等の炭材を炉内に添加し、種湯である溶鋼を所定のC濃度の溶融鉄とする。炭材の供給方法については特に限定はないが、炉上部に設置されたホッパーから自由落下で添加する方法、上部電極を中空電極とし中空部から供給する方法、専用のランスを用いて溶鋼に吹き付ける方法、浸漬ランスを用い溶鋼に直接吹き込む方法、溶湯の撹拌のために設置された底吹き羽口から溶鋼に吹き込む方法等がある。 Next, the first step will be described. Before adding DRI in the second step, which will be described later, in the first step, coal materials such as coal (general coal) and anthracite are added into the furnace, and molten steel, which is a seed bath, is mixed with molten iron having a predetermined C concentration. do. The method of supplying the charcoal material is not particularly limited, but it is added by free fall from the hopper installed in the upper part of the furnace, the upper electrode is used as a hollow electrode and is supplied from the hollow part, and the molten steel is sprayed using a dedicated lance. There are a method, a method of blowing directly into the molten steel using a dipping lance, a method of blowing into the molten steel from a bottom blowing tuyere installed for stirring the molten metal, and the like.

ここで、種湯のC濃度が0.1質量%未満等の溶鋼の場合、第2工程で添加されるDRIは鉄の融点以上にならないと溶解できない。したがって、種湯のC濃度が0.1質量%未満等の溶鋼のままである場合は、溶解のために多量のエネルギーを要する。また、操業温度は鉄の融点以上となり、操業を安定化するためスーパーヒートを100℃とすると、1650℃という高温状態を保持する必要がある。そのため、耐火物への負荷が大きい。また、種湯のC濃度が0.1質量%未満等の溶鋼のままである場合はDRI中に残留する酸化鉄分は還元されず、高酸化鉄濃度のスラグが生成し、耐火物に悪影響を与える。特に低金属化率のDRIを使用した場合は顕著である。 Here, in the case of molten steel having a C concentration of less than 0.1% by mass in the seed bath, the DRI added in the second step cannot be melted unless it exceeds the melting point of iron. Therefore, if the C concentration of the seed bath remains as molten steel such as less than 0.1% by mass, a large amount of energy is required for melting. Further, the operating temperature is equal to or higher than the melting point of iron, and if the super heat is set to 100 ° C. in order to stabilize the operation, it is necessary to maintain a high temperature state of 1650 ° C. Therefore, the load on the refractory is large. Further, if the C concentration of the seed bath remains as molten steel such as less than 0.1% by mass, the iron oxide content remaining in the DRI is not reduced, and slag having a high iron oxide concentration is generated, which adversely affects the refractory. give. This is particularly noticeable when a low metallization rate DRI is used.

そこで本実施形態では、第1工程で加炭を行い、種湯をC含有溶湯とする。これにより、添加されたDRIの金属鉄は溶湯中のCにより浸炭され、融点が低下して溶解速度が促進され、生産性が向上する。また、操業温度も種湯のC濃度に応じて低下させることができ、耐火物への負荷が軽減される。また、DRI中の酸化鉄も種湯中のCと反応して還元が促進されるため、生成されるスラグ中の酸化鉄濃度も低位となる。さらに第5工程での脱炭反応にともなって脱窒が促進されるため、低窒素化も可能となる。以上のように、種湯をC含有溶湯とすることにより生産性を向上させることができ、さらに耐火物への負荷も軽減することができる。 Therefore, in the present embodiment, coal is added in the first step, and the seed water is used as a C-containing molten metal. As a result, the added metallic iron of DRI is carburized by C in the molten metal, the melting point is lowered, the melting rate is promoted, and the productivity is improved. In addition, the operating temperature can be lowered according to the C concentration of the seed hot water, and the load on the refractory is reduced. In addition, iron oxide in DRI also reacts with C in the seed bath to promote reduction, so that the iron oxide concentration in the produced slag is also low. Further, since denitrification is promoted along with the decarburization reaction in the fifth step, it is possible to reduce nitrogen. As described above, by using the C-containing molten metal as the seed water, the productivity can be improved and the load on the refractory can be reduced.

ここで、第2工程に入る前に、種湯である溶融鉄のC濃度は0.5質量%以上とすることが好ましい。C濃度が0.5質量%未満である場合は、DRI中の金属鉄の浸炭溶解速度、酸化鉄の還元速度が低下し、生産性が悪化するためである。また、逆に溶融鉄のC濃度が高くなり過ぎた場合、後述する第5工程で脱炭処理の負荷が増大するとともにCO2発生量が増加してしまう。したがって、種湯である溶融鉄のC濃度は1.5質量%以下にすることが好ましい。Here, it is preferable that the C concentration of the molten iron, which is the seed hot water, is 0.5% by mass or more before entering the second step. This is because when the C concentration is less than 0.5% by mass, the carburizing dissolution rate of metallic iron and the reduction rate of iron oxide in DRI decrease, and the productivity deteriorates. On the contrary, when the C concentration of molten iron becomes too high, the load of the decarburization treatment increases and the amount of CO 2 generated increases in the fifth step described later. Therefore, the C concentration of molten iron, which is a seed hot water, is preferably 1.5% by mass or less.

次に、第2工程について説明する。第2工程では、シャフト炉やRHFで製造されたDRIを溶解炉に供給し、上部電極と炉底に設置した下部電極との間に電圧を印加してアークを発生させ、DRI中の金属鉄を溶解させるとともにDRIに残存する酸化鉄分の還元を行う。DRIの供給方法は、例えば塊状のものは上部に設置されたホッパーから自由落下で炉内に添加し、粉状のものは上部電極を中空電極とし、中空部から吹き込む方法などが採用できる。第2工程で供給されるDRIは、例えば以下の表1に示す組成のものである。なお、スラグ成分は、SiO2,Al23が主成分であり、その他にCaO,MgO,S,P25,MnOを含む。また、金属化率は、DRI中の純鉄成分の質量%をmass%M.Feとし、DRI中のFeO成分の質量%をmass%FeOとした場合に、金属化率=mass%M.Fe/(mass%M.Fe+mass%FeO×55.75/71.85)で計算することができる。Next, the second step will be described. In the second step, the DRI manufactured in the shaft furnace or RHF is supplied to the melting furnace, and a voltage is applied between the upper electrode and the lower electrode installed on the bottom of the furnace to generate an arc, and the metallic iron in the DRI is generated. Is dissolved and the iron oxide remaining in the DRI is reduced. As a method for supplying DRI, for example, a method in which a lumpy one is added into the furnace by free fall from a hopper installed at the upper part, and a powdery one has an upper electrode as a hollow electrode and is blown from the hollow portion can be adopted. The DRI supplied in the second step has, for example, the composition shown in Table 1 below. The slag component is mainly composed of SiO 2 , Al 2 O 3 , and also contains CaO, MgO, S, P 2 O 5 , and MnO. The metallization rate is mass% M.Fe when the mass% of the pure iron component in the DRI is mass% M.Fe and the mass% of the FeO component in the DRI is mass% FeO. It can be calculated by / (mass% M.Fe + mass% FeO × 55.75 / 71.85).

Figure 0006923075
Figure 0006923075

第1工程で調整された溶融鉄中のC濃度に対し、第2工程では、さらに石炭や無煙炭等の炭材がDRIの供給速度に合わせて投入される。ここで投入される炭材量は、DRI中の鉄分が溶融鉄のC濃度まで浸炭するのに必要な量とDRI中の酸化鉄(FeO等)を還元するのに必要な量との和がベースとなる。第2工程で投入される炭材は、第1工程で投入される炭材と同様に、一般炭や無煙炭などが挙げられる。以下の表2には、一般炭の組成の例を示し、表3には、無煙炭の組成の例を示す。表2及び表3中のFCは固定炭素(Fixed Carbon)を表し、VMは揮発成分(Volaile Matter)を表す。第1工程および第2工程では、一般炭、無煙炭をそれぞれ単独で使用しても良いし、混合して使用しても良い。また、それ以外の炭材として、廃プラやバイオマスのような炭素源を使用することも可能である。 In the second step, coal materials such as coal and anthracite are further added according to the supply rate of DRI with respect to the C concentration in the molten iron adjusted in the first step. The amount of carbonaceous material input here is the sum of the amount required for the iron content in the DRI to carburize to the C concentration of molten iron and the amount required for reducing iron oxide (FeO, etc.) in the DRI. It becomes the base. Examples of the coal material introduced in the second step include steam coal and anthracite coal, as in the case of the coal material introduced in the first step. Table 2 below shows an example of the composition of steaming coal, and Table 3 shows an example of the composition of anthracite coal. FC in Tables 2 and 3 represents fixed carbon, and VM represents a volatile component (Volaile Matter). In the first step and the second step, steaming coal and anthracite may be used alone or in combination. It is also possible to use a carbon source such as waste plastic or biomass as the other carbon material.

Figure 0006923075
Figure 0006923075

Figure 0006923075
Figure 0006923075

操業温度は、第1工程で調整された溶融鉄中のC濃度に対し、第2工程で投入される炭材量と前記したDRI中の鉄分が溶融鉄のC濃度まで浸炭するのに必要な量とDRI中の酸化鉄(FeO等)を還元するのに必要な量との和との差に依存する、溶融鉄中のC濃度により決定される。図2は、C濃度による鉄の融点の変化を示すFe−C系状態図である。操業が安定化するためにはスーパーヒートが100℃以上必要と言われており、例えばスーパーヒート100℃で操業を行うには、C濃度が1.5質量%の溶融鉄の場合は融点が1430℃であるため、操業温度は1530℃となる。第2工程では、溶融鉄中のC濃度により決定されるこの操業温度を保つように、炭材とDRIの供給速度に応じて電圧を印加する。
第2工程開始前の炭素含有溶融鉄のC濃度は、前記したように0.5質量%以上1.5質量%以下であることが好ましいが、併せて、第2工程の終了時まで0.5質量%以上1.5質量%以下の範囲内に制御することが一層好ましい。
The operating temperature is required for the amount of carbonaceous material input in the second step and the iron content in the above-mentioned DRI to carburize to the C concentration of the molten iron with respect to the C concentration in the molten iron adjusted in the first step. It is determined by the C concentration in molten iron, which depends on the difference between the amount and the sum of the amount required to reduce iron oxide (FeO, etc.) in DRI. FIG. 2 is a Fe-C phase diagram showing a change in the melting point of iron depending on the C concentration. It is said that a super heat of 100 ° C or higher is required to stabilize the operation. For example, in order to operate at a super heat of 100 ° C, a molten iron having a C concentration of 1.5% by mass has a melting point of 1430. Since it is ° C, the operating temperature is 1530 ° C. In the second step, a voltage is applied according to the supply rate of the carbonaceous material and the DRI so as to maintain this operating temperature determined by the C concentration in the molten iron.
The C concentration of the carbon-containing molten iron before the start of the second step is preferably 0.5% by mass or more and 1.5% by mass or less as described above, but at the same time, 0. It is more preferable to control within the range of 5% by mass or more and 1.5% by mass or less.

次に、第3工程について説明する。産地によって含有量は異なるが、鉄鉱石や石炭には硫黄が含有されている。DRI中の酸化鉄は瞬時に還元されないため、DRI投入終了直後は、スラグ中の酸化鉄濃度は高い。スラグ中の酸化鉄濃度が高い状態では、溶融鉄(以下、メタルと記載する場合がある。)とスラグとの間での硫黄分配は低く、硫黄はスラグよりメタル中に多く存在する。後述の第5工程の脱炭処理では、メタル中の硫黄は除去しにくいため、第3工程及び後述の第4工程を省略すると、脱炭処理終了後の溶鋼の硫黄濃度は高く、低硫鋼製造のニーズを満足しない。また、硫黄は表面活性成分であるため吸着サイトを独占する。したがって、メタル中の硫黄濃度が高いとメタル中から窒素を除去することが困難となり、低窒鋼製造のニーズを満足しない。そのため、第2工程終了後に脱硫処理を行うことが重要である。 Next, the third step will be described. Sulfur is contained in iron ore and coal, although the content varies depending on the place of origin. Since iron oxide in DRI is not instantly reduced, the iron oxide concentration in slag is high immediately after the completion of DRI injection. When the iron oxide concentration in the slag is high, the sulfur distribution between the molten iron (hereinafter, may be referred to as metal) and the slag is low, and sulfur is more abundant in the metal than in the slag. Since it is difficult to remove sulfur in the metal in the decarburization treatment of the fifth step described later, if the third step and the fourth step described later are omitted, the sulfur concentration of the molten steel after the completion of the decarburization treatment is high and the low sulfur steel. Does not meet manufacturing needs. Moreover, since sulfur is a surface active component, it monopolizes the adsorption site. Therefore, if the sulfur concentration in the metal is high, it becomes difficult to remove nitrogen from the metal, which does not satisfy the needs for producing low nitrogen steel. Therefore, it is important to perform the desulfurization treatment after the completion of the second step.

第2工程終了(DRI供給終了)後、第3工程において、金属Alや金属Al含有物等の脱酸剤を炉内に添加し、スラグ中の酸化鉄分を還元するとともに、溶融鉄中の酸素を除去する。この状態ではスラグとメタルとの間の硫黄分配は高くなり、硫黄はメタルからスラグに移行し、メタル中の硫黄濃度は低下する。また、溶解炉を直流電気炉とする場合、通常は、上部電極は負極、炉底の下部電極は正極とするが、上部電極を正極、炉底の下部電極を負極として印加すると電気化学的に見掛け上の硫黄分配が高くすることができ、さらに脱硫を促進させることができる。 After the completion of the second step (end of DRI supply), in the third step, a deoxidizing agent such as metal Al or a metal Al-containing substance is added into the furnace to reduce the iron oxide content in the slag and oxygen in the molten iron. To remove. In this state, the sulfur distribution between the slag and the metal becomes high, the sulfur moves from the metal to the slag, and the sulfur concentration in the metal decreases. When the melting furnace is a DC electric furnace, the upper electrode is usually a negative electrode and the bottom electrode of the furnace bottom is a positive electrode, but when the upper electrode is used as a positive electrode and the lower electrode of the furnace bottom is used as a negative electrode, electrochemically The apparent sulfur distribution can be increased, and desulfurization can be further promoted.

次に、第4工程について説明する。第3工程の脱硫で形成された脱硫スラグをそのまま残して脱炭処理を行うと、硫黄が再びスラグからメタルに移行(復硫)するため、第4工程では、排滓孔から脱硫スラグを排出する。 Next, the fourth step will be described. If the desulfurized slag formed by the desulfurization in the third step is left as it is and the decarburization treatment is performed, sulfur is transferred from the slag to the metal (desulfurization) again. Therefore, in the fourth step, the desulfurized slag is discharged from the drain hole. do.

次に、第5工程について説明する。第5工程では、炉上部から酸素ランスを炉内に挿入し、溶融鉄に酸素を吹付けることによって脱りん処理および脱炭処理を行い、所定のりん濃度および炭素濃度まで低下させる。脱炭処理では、酸素と溶融鉄中の炭素とが反応してCOガスが発生するが、この時、溶融鉄中に溶解している窒素がCOガスに取り込まれ、溶鉄中から窒素が除去される。 Next, the fifth step will be described. In the fifth step, an oxygen lance is inserted into the furnace from the upper part of the furnace, and oxygen is blown onto the molten iron to perform dephosphorization treatment and decarburization treatment to reduce the phosphorus concentration and carbon concentration to a predetermined level. In the decarburization process, oxygen reacts with carbon in the molten iron to generate CO gas. At this time, nitrogen dissolved in the molten iron is taken into the CO gas and nitrogen is removed from the molten iron. NS.

次に、第6工程について説明する。第6工程は、第5工程で生成した脱炭スラグを排出する工程である。第5工程の脱りん処理及び脱炭処理では溶鉄中のりんがスラグに移行する。脱炭スラグを排出してりんを系外に排出しないとりんが濃化し、低P鋼が製造できなくなる。このため、脱炭スラグはできる限り排出する必要がある。 Next, the sixth step will be described. The sixth step is a step of discharging the decarburized slag produced in the fifth step. In the dephosphorization treatment and decarburization treatment in the fifth step, phosphorus in the molten iron is transferred to slag. Unless decarburized slag is discharged and phosphorus is discharged to the outside of the system, phosphorus will be concentrated and low P steel cannot be produced. Therefore, it is necessary to discharge decarburized slag as much as possible.

以上のように本実施形態における第1工程〜第7工程により、熱ロスを抑え、かつCO2発生量を抑えて溶鋼を製造することができる。特に、第1工程において、種湯に炭素源を添加して炭素含有溶鉄とすることによりDRIの溶解速度および還元速度を高めて熱ロスを少なくすることができる。これにより、熱源を確保するための炭材の添加を抑えることができ、その結果、CO2発生量も抑えることができる。以下の表4及び表5には、それぞれ各工程でのメタル組成、スラグ組成を示す。As described above, the molten steel can be produced by suppressing the heat loss and suppressing the amount of CO 2 generated by the first to seventh steps in the present embodiment. In particular, in the first step, by adding a carbon source to the seed bath to obtain carbon-containing molten iron, the dissolution rate and reduction rate of DRI can be increased and heat loss can be reduced. As a result, the addition of charcoal material for securing a heat source can be suppressed, and as a result, the amount of CO 2 generated can also be suppressed. Tables 4 and 5 below show the metal composition and the slag composition in each step, respectively.

Figure 0006923075
Figure 0006923075

Figure 0006923075
Figure 0006923075

表4に示すように本実施形態では、第2工程では、さらに石炭や無煙炭等の炭材がDRIの供給速度に合わせて投入され、溶鉄中のC濃度は0.1〜1.5質量%の範囲となる。C濃度が抑えられることにより、脱炭処理によるCO2発生量も抑えることができる。As shown in Table 4, in the second step, in the second step, coal materials such as coal and anthracite are further charged according to the supply rate of DRI, and the C concentration in the molten iron is 0.1 to 1.5% by mass. Is in the range of. By suppressing the C concentration, the amount of CO 2 generated by the decarburization treatment can also be suppressed.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is described in this one condition example. It is not limited. The present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.

まず、前chにおいて、中空電極を有した炉径6mの直流電気炉から溶鋼を出鋼し、20tの溶鋼を直流電気炉に種湯として残した。前chで製造された溶鋼のC濃度は0.05質量%であった。そして、第1工程において、中空電極から炭材を添加し、熱分析でC濃度を測定するCセンサーを内蔵したサブランスプローブでC濃度を測定しながら種湯のC濃度が1.0質量%になるまで加炭した。 First, in the front channel, molten steel was ejected from a DC electric furnace having a hollow electrode and having a furnace diameter of 6 m, and 20 tons of molten steel was left in the DC electric furnace as a seed bath. The C concentration of the molten steel produced in the previous channel was 0.05% by mass. Then, in the first step, the carbonaceous material is added from the hollow electrode, and the C concentration of the seed bath is 1.0% by mass while measuring the C concentration with a sublance probe having a built-in C sensor that measures the C concentration by thermal analysis. Charcoal was added until

続いて、第2工程において、金属化率75%のDRIを炭材とともに添加し、溶解還元を行った。この時、メタル中のC濃度は1.0質量%のままとなるように制御し、操業温度が1570℃になるように制御した。溶解還元時間は30分であり、DRIの添加が終了した時の溶湯量は300t、スラグ量は40tであった。 Subsequently, in the second step, DRI having a metallization rate of 75% was added together with the carbonaceous material to carry out dissolution reduction. At this time, the C concentration in the metal was controlled to remain at 1.0% by mass, and the operating temperature was controlled to be 1570 ° C. The dissolution-reduction time was 30 minutes, and the amount of molten metal was 300 tons and the amount of slag was 40 tons when the addition of DRI was completed.

次いで、第3工程において、脱酸剤としてAl灰を添加して脱硫を行い、脱硫後、第4工程において、直流電気炉の排滓孔から30tのスラグを排出した。その後、第5工程において、炉上部に設置した酸素ランスから送酸して脱炭処理を行い、C濃度が0.05質量%の溶鋼を製造した。第5工程では脱炭とともに脱窒が促進され、製造した溶鋼のN濃度は30ppmであった。そして、第6工程において、脱炭処理によって生成されたスラグを排滓孔から排出した。その後、第7工程において、溶鋼20tを次chの種湯として炉内に残し、残りの280tの溶鋼を出鋼した。 Next, in the third step, Al ash was added as a deoxidizing agent to perform desulfurization, and after desulfurization, 30 tons of slag was discharged from the drain hole of the DC electric furnace in the fourth step. Then, in the fifth step, acid was sent from an oxygen lance installed in the upper part of the furnace to perform decarburization treatment, and molten steel having a C concentration of 0.05% by mass was produced. In the fifth step, denitrification was promoted along with decarburization, and the N concentration of the produced molten steel was 30 ppm. Then, in the sixth step, the slag produced by the decarburization treatment was discharged from the slag hole. Then, in the seventh step, 20 tons of molten steel was left in the furnace as a seed bath for the next channel, and the remaining 280 tons of molten steel was discharged.

一方、1炉で脱炭まで行わず、溶解還元後の溶銑を出銑し、別炉で脱炭処理を行う2炉方式の場合は、溶解炉からの出銑と脱炭炉への溶銑の装入により少なくとも100℃の温度低下が生じる。これに対し、本実施例ではこの熱ロスがなく、エネルギー原単位の低減を図ることができた。また、C濃度が1.0質量%の状態からの脱炭であったため、2炉方式に比べて脱炭量が少なく、CO2発生量を低減することができた。具体的には以下のとおりである。On the other hand, in the case of the two-combustion method, in which the hot metal after thawing and reduction is taken out in one furnace and the decarburization is performed in another furnace, the hot metal from the melting furnace and the hot metal in the decarburization furnace are separated. The charging causes a temperature drop of at least 100 ° C. On the other hand, in this embodiment, there was no heat loss, and the energy intensity could be reduced. Further, since the decarburization was performed from the state where the C concentration was 1.0% by mass, the amount of decarburization was smaller than that of the two-firer method, and the amount of CO 2 generated could be reduced. Specifically, it is as follows.

本実施例では、C濃度が1.0質量%の溶融鉄300tを0.05質量%まで脱炭したため、
300×(1−0.05)/100/12×22.4=5.3Nm3
のCO2が発生したことになる。
一方、2炉方式の場合、DRIの還元時はC濃度を3.0質量%で実施し、その溶銑を出銑して別炉で脱炭処理を行うものとする。C濃度を3.0質量%としたのは、3.0質量%より低いと、移し替え時の熱ロスがあるため、脱炭処理のC燃焼による発熱だけでは脱炭処理終了時の所定温度に達しないためである。本実施例では280tの溶鋼を出鋼したため、2炉方式では280tの溶銑を脱炭すれば良い。したがって、CO2発生量は、
280×(3−0.05)/100/12×22.4=16.5Nm3
となる。
以上のように本実施例の場合は、2炉方式に比べてCO2発生量を削減できたことが確認できた。
In this example, 300 tons of molten iron having a C concentration of 1.0% by mass was decarburized to 0.05% by mass.
300 x (1-0.05) / 100/12 x 22.4 = 5.3 Nm 3
CO 2 has been generated.
On the other hand, in the case of the two-firer method, when the DRI is reduced, the C concentration is 3.0% by mass, the hot metal is tapped, and the decarburization treatment is performed in another furnace. The reason why the C concentration is set to 3.0% by mass is that if it is lower than 3.0% by mass, there is a heat loss at the time of transfer. This is because it does not reach. In this embodiment, 280 tons of molten steel is discharged, so in the two-firer method, 280 tons of hot metal may be decarburized. Therefore, the amount of CO 2 generated is
280 x (3-0.05) / 100/12 x 22.4 = 16.5 Nm 3
Will be.
As described above, in the case of this example, it was confirmed that the amount of CO 2 generated could be reduced as compared with the two-firer method.

(比較例)
まず、前chにおいて、中空電極を有した炉径6mの直流電気炉から溶鋼を出鋼し、20tの溶鋼を直流電気炉に種湯として残した。前chで製造された溶鋼のC濃度は0.05質量%であった。続いて、第1工程を省略し、第2工程において、金属化率75%のDRIを添加し、溶解還元を行った。この時、操業温度が1640℃と高温にする必要があった上に、溶解還元時間は60分かかってしまった。その後は、実施例と同様の条件により、脱硫処理、脱炭処理などを行った。
(Comparison example)
First, in the front channel, molten steel was ejected from a DC electric furnace having a hollow electrode and having a furnace diameter of 6 m, and 20 tons of molten steel was left in the DC electric furnace as a seed bath. The C concentration of the molten steel produced in the previous channel was 0.05% by mass. Subsequently, the first step was omitted, and in the second step, DRI having a metallization rate of 75% was added to carry out dissolution reduction. At this time, the operating temperature had to be as high as 1640 ° C., and the dissolution-reduction time was 60 minutes. After that, desulfurization treatment, decarburization treatment and the like were carried out under the same conditions as in the examples.

以上のように比較例では、溶解還元時間が実施例と比べて倍の時間がかかってしまったため、生産性が低下した結果となった。 As described above, in the comparative example, the dissolution-reduction time was twice as long as that in the example, resulting in a decrease in productivity.

本発明によれば、電気炉等の溶解炉で特に金属化率が低いDRIを溶解・還元する際に、生産性が高くて熱ロスが少なく、かつCO2発生量の少ない溶鋼の製造方法を提供することができ、工業的価値が大きい。According to the present invention, a method for producing molten steel having high productivity, low heat loss, and low CO 2 generation when melting and reducing DRI having a particularly low metallization rate in a melting furnace such as an electric furnace can be used. It can be provided and has great industrial value.

Claims (3)

前chの出鋼時に種湯として電気炉に残した溶鋼に炭素源を添加して炭素含有溶融鉄を得る第1工程と、
前記第1工程で生成された炭素含有溶融鉄にDRIを添加して溶解還元を行う第2工程と、
次いで、脱酸材を添加して脱硫処理を行う第3工程と、
前記第3工程の脱硫処理によって生成された脱硫スラグを排出する第4工程と、
次いで、酸素を吹き込んで脱炭処理を行う第5工程と、
前記第5工程の脱炭処理によって生成された脱炭スラグを排出する第6工程と、
前記第6工程で前記脱炭スラグを排出した後に、次chの種湯分を残して出鋼を行う第7工程と、
を有することを特徴とする溶鋼の製造方法。
The first step of adding a carbon source to the molten steel left in the electric furnace as a seed hot water when the steel of the previous channel is discharged to obtain carbon-containing molten iron, and
The second step of adding DRI to the carbon-containing molten iron produced in the first step to dissolve and reduce it, and the second step.
Next, the third step of adding a deoxidizing material and performing a desulfurization treatment, and
The fourth step of discharging the desulfurized slag produced by the desulfurization treatment of the third step and
Next, the fifth step of blowing oxygen to perform decarburization treatment and
The sixth step of discharging the decarburized slag produced by the decarburization treatment of the fifth step and
In the sixth step, after discharging the decarburized slag, the seventh step, in which the seed hot water of the next channel is left and the steel is discharged,
A method for producing molten steel, which comprises.
前記電気炉の炉径をD(m)とした場合に、前記第7工程で残す種湯量W(t)は0.3×D2<W<1.6×D2とすることを特徴とする請求項1に記載の溶鋼の製造方法。When the diameter of the electric furnace is D (m), the amount of seed water W (t) left in the seventh step is 0.3 × D 2 <W <1.6 × D 2. The method for producing molten steel according to claim 1. 前記第1工程において、C濃度が0.5質量%以上1.5質量%以下の炭素含有溶融鉄を得ることを特徴とする請求項1又は2に記載の溶鋼の製造方法。 The method for producing molten steel according to claim 1 or 2, wherein in the first step, a carbon-containing molten iron having a C concentration of 0.5% by mass or more and 1.5% by mass or less is obtained.
JP2020514418A 2018-04-17 2019-04-17 Method of manufacturing molten steel Active JP6923075B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018078958 2018-04-17
JP2018078958 2018-04-17
PCT/JP2019/016502 WO2019203278A1 (en) 2018-04-17 2019-04-17 Molten steel production method

Publications (2)

Publication Number Publication Date
JPWO2019203278A1 JPWO2019203278A1 (en) 2021-02-12
JP6923075B2 true JP6923075B2 (en) 2021-08-18

Family

ID=68239702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020514418A Active JP6923075B2 (en) 2018-04-17 2019-04-17 Method of manufacturing molten steel

Country Status (5)

Country Link
JP (1) JP6923075B2 (en)
KR (1) KR102359738B1 (en)
CN (1) CN112004947B (en)
TW (1) TWI698532B (en)
WO (1) WO2019203278A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7094264B2 (en) * 2019-12-25 2022-07-01 株式会社神戸製鋼所 Manufacturing method of molten steel
JP7211454B2 (en) * 2021-06-11 2023-01-24 Jfeスチール株式会社 Method for denitrifying molten steel, method for simultaneous denitrification and desulfurization, and method for manufacturing steel

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411570A (en) * 1993-06-16 1995-05-02 Iscor Limited Steelmaking process
US6149709A (en) * 1997-09-01 2000-11-21 Kabushiki Kaisha Kobe Seiko Sho Method of making iron and steel
JP3509072B2 (en) 1997-09-01 2004-03-22 株式会社神戸製鋼所 Iron and steel making
JP2001316715A (en) * 2000-02-28 2001-11-16 Nkk Corp Method for melting cold iron source
CN101389773B (en) * 2004-10-11 2011-04-13 技术资源有限公司 Electric arc furnace steelmaking
JP5166805B2 (en) * 2007-09-19 2013-03-21 株式会社神戸製鋼所 Method for producing molten iron by arc heating
CN101775460B (en) * 2010-03-23 2012-05-02 武钢集团昆明钢铁股份有限公司 Electric furnace steelmaking method using 100% low-quality tunnel kiln direct reduced iron as raw material
JP2012007225A (en) * 2010-06-28 2012-01-12 Kobe Steel Ltd Method for producing molten steel using particulate metallic iron
JP5382275B1 (en) * 2012-03-15 2014-01-08 Jfeスチール株式会社 Vacuum refining method for molten steel
CN104937116A (en) * 2013-01-18 2015-09-23 杰富意钢铁株式会社 Converter steelmaking process
JP6413710B2 (en) 2014-12-02 2018-10-31 新日鐵住金株式会社 Production method of high purity steel by DC arc electric furnace

Also Published As

Publication number Publication date
CN112004947B (en) 2024-03-26
KR20200130858A (en) 2020-11-20
CN112004947A (en) 2020-11-27
JPWO2019203278A1 (en) 2021-02-12
WO2019203278A1 (en) 2019-10-24
TWI698532B (en) 2020-07-11
KR102359738B1 (en) 2022-02-09
TW201943856A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
JP2001279313A (en) Method for producing molten metallic iron
JP6923075B2 (en) Method of manufacturing molten steel
JP2013047371A (en) Method for refining molten iron
EP2210959B1 (en) Process for producing molten iron
JP4212895B2 (en) Method for generating molten iron in electric furnace
JP2006249568A (en) Method for producing molten iron having low phosphorus
JP6729073B2 (en) Reduction/dissolution method of iron raw material containing iron oxide
AU2018250373A1 (en) Production of ferro-alloys
JP6476940B2 (en) Manufacturing method of molten steel
JP6992604B2 (en) Phosphate slag fertilizer manufacturing method
JP3854482B2 (en) Hot metal pretreatment method and refining method
JP2017186607A (en) Electric furnace refining method
JP2020125541A (en) Converter refining method
JP2005068533A (en) Method for dephosphorizing molten pig iron
JPH0471965B2 (en)
JP6740779B2 (en) Method of melting ferrous material
JPS59113131A (en) Treatment of slag formed in smelting of ferrochromium
JP2022189014A (en) Method for producing molten steel and method for discharging slag
JPH1046226A (en) Production of low nitrogen molten steel with arc electric furnace
KR100884243B1 (en) Method for manufacturing molten steel containing lowphosphorus using pig iron manufactured by finex process
JP2002256324A (en) Method for melting high carbon and high chromium steel
JPH01195211A (en) Method for melting and reducing iron oxide
JPH0478686B2 (en)
JPH0411603B2 (en)
JPS59113157A (en) Method for refining iron-chromium alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R151 Written notification of patent or utility model registration

Ref document number: 6923075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151