JP2006249568A - Method for producing molten iron having low phosphorus - Google Patents

Method for producing molten iron having low phosphorus Download PDF

Info

Publication number
JP2006249568A
JP2006249568A JP2005072070A JP2005072070A JP2006249568A JP 2006249568 A JP2006249568 A JP 2006249568A JP 2005072070 A JP2005072070 A JP 2005072070A JP 2005072070 A JP2005072070 A JP 2005072070A JP 2006249568 A JP2006249568 A JP 2006249568A
Authority
JP
Japan
Prior art keywords
secondary combustion
hot metal
dephosphorization
slag
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005072070A
Other languages
Japanese (ja)
Other versions
JP4487812B2 (en
Inventor
Akitoshi Matsui
章敏 松井
Eiju Matsuno
英寿 松野
Ikuhiro Sumi
郁宏 鷲見
Ryohei Takehama
良平 竹濱
Isao Shimoda
勲 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005072070A priority Critical patent/JP4487812B2/en
Publication of JP2006249568A publication Critical patent/JP2006249568A/en
Application granted granted Critical
Publication of JP4487812B2 publication Critical patent/JP4487812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing molten iron having low phosphorus in which when producing the molten iron having low phosphorus, the improvement of an allowance of heat and the dephosphorizing treatment with high efficiency are achieved. <P>SOLUTION: Only in a fixed time at the first half of the whole blowing term, a secondary combustion ratio is raised to ≥10% and a slag basicity at that time, is restrained to ≤1.8. In this way, while performing the high efficient dephosphorization, the damage of a refractory for furnace body is restrained to the minimum and the heat-transmission to the molten iron can efficiently be performed and the allowance of heat in the molten iron effectively be improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶銑の熱余裕度を向上させつつ、高効率な脱燐処理を行うことが可能な低燐溶銑の製造方法に関するものである。   The present invention relates to a method for producing a low phosphorus hot metal that can perform a highly efficient dephosphorization process while improving the thermal margin of the hot metal.

近年、溶銑段階で予め脱燐処理(予備脱燐処理)を行い、溶銑中の燐をある程度除去してから転炉で脱炭精錬を行う製鋼方法が発展してきた。脱燐処理においては、溶銑中Si濃度が低いほど発生スラグ量が少なく効率的な脱燐を行うことができるため、高炉鋳床樋やトーピードカー、溶銑鍋などの溶銑保持容器内にて酸素ガス又は酸化鉄などの酸素源を供給して脱珪処理を行い、脱燐処理前の溶銑中Si濃度を低くする方法が採られている。しかしながら、脱珪処理では溶銑を酸素源によって酸化精錬するので、溶銑中の炭素が酸化されて減少する、所謂脱炭反応が脱珪反応と併行して起こる。また、脱珪処理を施すため、当然のことながら脱燐処理前の溶銑中Si濃度は低くなる。したがって、脱燐処理時における溶銑の熱余裕度が低くなるためスクラップ溶解量が制約され、生産の上方弾力性を確保することが困難となる。   In recent years, a steelmaking method has been developed in which dephosphorization treatment (preliminary dephosphorization treatment) is performed in advance in the hot metal stage, and phosphorus in the hot metal is removed to some extent and decarburization refining is performed in a converter. In the dephosphorization process, the lower the Si concentration in the hot metal, the lower the amount of generated slag and the more efficient dephosphorization can be carried out. Therefore, oxygen gas or A method has been adopted in which an oxygen source such as iron oxide is supplied to carry out a desiliconization process to lower the Si concentration in the hot metal before the dephosphorization process. However, since the hot metal is oxidized and refined with an oxygen source in the desiliconization process, a so-called decarburization reaction in which the carbon in the hot metal is oxidized and reduced occurs in parallel with the desiliconization reaction. Further, since the silicon removal treatment is performed, the Si concentration in the hot metal before the phosphorus removal treatment is naturally reduced. Therefore, since the thermal margin of the hot metal during the dephosphorization process is reduced, the amount of scrap melting is restricted, and it becomes difficult to ensure the upward elasticity of production.

このような問題を解決するため、従来、様々な手法が提案されている。例えば特許文献1には、転炉内にてまず脱燐吹錬を行い、脱燐スラグを排滓した後に引き続き脱炭吹錬を行い、脱炭吹錬後のスラグを炉内に残留させた状態で次チャージの脱燐吹錬を開始するという方法が開示されている。また、特許文献2では、脱燐処理時の二次燃焼率を12%以上として、熱余裕度を高める方法が開示されている。
特許第2582692号公報 特開2002−167614号公報
In order to solve such a problem, various methods have been conventionally proposed. For example, in Patent Document 1, dephosphorization blowing is first performed in a converter, and after dephosphorization slag is discharged, decarburization blowing is subsequently performed, and the slag after decarburization blowing is left in the furnace. The method of starting the dephosphorization blowing of the next charge in the state is disclosed. Patent Document 2 discloses a method of increasing the thermal margin by setting the secondary combustion rate during the dephosphorization process to 12% or more.
Japanese Patent No. 2558292 JP 2002-167614 A

特許文献1の方法は、1基の転炉にて脱燐、脱炭吹錬を行い、且つ脱炭スラグを熱間リサイクルするものであるため、処理時の熱ロスは少なく熱余裕度の向上を図ることができる。しかし、脱燐処理後のスラグを完全に排滓することは困難であり、脱炭吹錬時に脱燐スラグからの復燐が生じるという問題がある。また、低塩基度(1.0〜2.0)で脱燐処理を行うため、効率的な脱燐を行うこと自体も困難である。
また、特許文献2の方法のように長期間二次燃焼率を高めた場合、炉体耐火物への影響が大きく、熱による損傷により耐火物寿命が短くなり、却ってコスト高を招く恐れがある。
In the method of Patent Document 1, since dephosphorization and decarburization blowing are performed in one converter and decarburization slag is recycled hot, there is little heat loss at the time of processing, and the heat margin is improved. Can be achieved. However, it is difficult to completely remove the slag after the dephosphorization treatment, and there is a problem that dephosphorization from the dephosphorization slag occurs during decarburization blowing. Moreover, since dephosphorization is performed at a low basicity (1.0 to 2.0), it is difficult to perform efficient dephosphorization itself.
In addition, when the secondary combustion rate is increased for a long period of time as in the method of Patent Document 2, the influence on the furnace refractory is large, and the life of the refractory is shortened due to heat damage, which may lead to an increase in cost. .

したがって本発明の目的は、以上のような従来技術の課題を解決し、熱余裕度の向上と高効率な脱燐処理を両立させることができる低燐溶銑の製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems of the prior art and to provide a method for producing a low phosphorus hot metal that can achieve both improvement in thermal margin and high-efficiency dephosphorization.

本発明者らは、上記課題を解決することができる脱燐処理条件を見出すべく検討を重ね、その結果、全吹錬期間の前半の一定期間内でのみ二次燃焼率を高め、且つその際のスラグ塩基度を所定のレベル以下に抑えることにより、高効率な脱燐を行いつつ、炉体耐火物の損傷を最小限に抑えて溶銑への熱付与を効率的に行うことができ、溶銑の熱余裕度を効果的に向上させ得ることを見出した。さらに、このような溶銑脱燐処理において、(1)脱燐剤であるCaO源の供給方法として、粉状のCaO源を上吹きランスから溶銑浴面に吹き付ける方法を採ること、(2)処理終了時のスラグ塩基度を所定レベル以上にまで高めること、によりさらに高効率な脱燐を行うことができることを見出した。   The inventors of the present invention have repeatedly studied to find the dephosphorization treatment conditions that can solve the above-mentioned problems. As a result, the secondary combustion rate is increased only within a certain period of the first half of the total blowing period, and in that case, By suppressing the slag basicity to a predetermined level or less, it is possible to efficiently apply heat to the hot metal while minimizing damage to the furnace refractory while performing highly efficient dephosphorization. It has been found that the thermal margin of can be effectively improved. Further, in such hot metal dephosphorization treatment, (1) as a method of supplying a CaO source as a dephosphorizing agent, a method of spraying a powdered CaO source from the top blowing lance onto the hot metal bath surface, (2) treatment It has been found that dephosphorization can be performed more efficiently by increasing the slag basicity at the end to a predetermined level or more.

本発明は以上のような知見に基づきなされたもので、その要旨は以下のとおりである。
(1)転炉型容器内に収容された溶銑に対して、脱燐剤であるCaO源と酸素源を添加して脱燐処理を施す際に、全吹錬期間のうち、前半50%の期間内であって且つ全吹錬期間の20%以上に相当する長さの期間内においては、CO/(CO+CO)で定義される二次燃焼率を10%以上とするとともに、スラグ塩基度(CaO/SiO)を1.8以下とし、他の期間内においては、前記二次燃焼率を10%未満とすることを特徴とする低燐溶銑の製造方法。
(2)上記(1)の製造方法において、上吹きランスを通じて、酸素ガス又は酸素含有ガスと脱燐剤の少なくとも一部を溶銑浴面に吹き付けて脱燐処理を行うことを特徴とする低燐溶銑の製造方法。
The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
(1) When hot metal contained in a converter-type vessel is subjected to dephosphorization treatment by adding a CaO source and an oxygen source as dephosphorization agents, 50% of the first half of the total blowing period Within the period and within a period corresponding to 20% or more of the total blowing period, the secondary combustion rate defined by CO 2 / (CO + CO 2 ) is set to 10% or more, and slag base A method for producing low phosphorus hot metal, characterized in that the degree (CaO / SiO 2 ) is 1.8 or less, and the secondary combustion rate is less than 10% in other periods.
(2) In the production method of (1), the phosphorus removal treatment is performed by spraying at least part of the oxygen gas or the oxygen-containing gas and the dephosphorizing agent onto the hot metal bath surface through an upper blowing lance. Hot metal manufacturing method.

(3)上記(1)又は(2)の製造方法において、脱燐処理終了時のスラグ塩基度(CaO/SiO)を2.0以上とすることを特徴とする低燐溶銑の製造方法。
(4)上記(1)〜(3)のいずれかの製造方法において、先端部に、鉛直下向き又は斜め下向きに開口した吹錬用ガス供給ノズルを有し、該吹錬用ガス供給ノズルよりも上方位置の側面に、水平又は斜め下向き開口した二次燃焼用酸素供給ノズルを有する上吹きランスを用いて吹錬することを特徴とする低燐溶銑の製造方法。
(3) A method for producing low phosphorus hot metal, characterized in that, in the production method of (1) or (2), the slag basicity (CaO / SiO 2 ) at the end of dephosphorization treatment is 2.0 or more.
(4) In the manufacturing method according to any one of (1) to (3), the tip has a blowing gas supply nozzle that opens vertically downward or obliquely downward, than the blowing gas supply nozzle. A method for producing low-phosphorus hot metal, characterized by performing blowing using an upper blowing lance having an oxygen supply nozzle for secondary combustion opened horizontally or obliquely downward on a side surface at an upper position.

本発明によれば、全吹錬期間の前半の一定期間内でのみ二次燃焼率を高め、且つその際のスラグ塩基度を所定のレベル以下に抑えることでスラグをフォーミングさせることにより、二次燃焼熱を効率よく溶銑に着熱させ、炉体耐火物の損傷を最小限に抑えつつ溶銑への熱付与を効果的に行い、熱余裕度を向上させることができる。しかも、このような熱余裕度の向上と高効率な脱燐処理とを両立させることができる。その結果、従来に較べて多量のスクラップを溶解させつつ高効率な脱燐処理を行うことができ、低燐溶銑の生産量を格段に増大させることができる。   According to the present invention, the secondary combustion rate is increased only within a certain period of the first half of the entire blowing period, and the slag is formed by suppressing the slag basicity at a predetermined level or less, thereby forming the secondary slag. The heat of combustion can be efficiently applied to the hot metal, heat can be effectively applied to the hot metal while minimizing damage to the furnace refractory, and the heat margin can be improved. Moreover, it is possible to achieve both the improvement of the thermal margin and the highly efficient dephosphorization treatment. As a result, it is possible to perform a highly efficient dephosphorization process while dissolving a large amount of scrap as compared with the conventional case, and it is possible to significantly increase the production amount of low phosphorus hot metal.

転炉型容器を用い、溶銑に脱燐剤であるCaO源と酸素源を添加して種々の条件下で脱燐処理を行い、熱余裕度の向上と高効率な脱燐処理を可能とする最適な脱燐条件について調査・検討を行った結果を以下に説明する。
さきに述べたように、溶銑の脱燐処理において高効率に脱燐反応を進行させてスラグ発生量を低下させるためには、脱燐処理前の溶銑中Si濃度を低くする必要がある。しかし、そのために脱珪処理を事前に施すと溶銑の熱余裕度が下がるため、生産量の上方弾力性を確保するには何らかの熱補償が必要となる。熱補償の代表的なものとしては炭材の添加が考えられるが、溶銑の脱燐処理はスラグ中の(FeO)濃度を高めてスラグの酸素ポテンシャルを高く維持することが重要な要素の一つであり、炭材を添加するとスラグ中(FeO)が還元され、脱燐反応が阻害される恐れがある。
Using a converter-type vessel, adding a CaO source, which is a dephosphorization agent, and an oxygen source to the hot metal, and performing dephosphorization treatment under various conditions, it is possible to improve the thermal margin and achieve high-efficiency dephosphorization treatment. The results of investigating and examining optimum dephosphorization conditions are described below.
As described above, in order to advance the dephosphorization reaction with high efficiency in the hot metal dephosphorization process and reduce the amount of slag generated, it is necessary to reduce the Si concentration in the hot metal before the dephosphorization process. However, if the silicon removal treatment is performed in advance, the thermal margin of the hot metal is lowered, so that some thermal compensation is required to ensure the upward elasticity of the production amount. As a typical heat compensation, the addition of charcoal is considered, but the dephosphorization of hot metal is one of the important factors to maintain the slag oxygen potential high by increasing the (FeO) concentration in the slag. If carbonaceous material is added, the slag (FeO) may be reduced and the dephosphorization reaction may be hindered.

そこで本発明者らは、脱燐反応を阻害することなく溶銑の熱余裕度を高める手段として、二次燃焼に着目して検討を行った。その結果、以下のような事実を知見した。
まず、本発明者らは、脱燐処理中に二次燃焼率を高めた実験を行った。ここで、二次燃焼率とはCO/(CO+CO)で定義される値(CO,COはvol%である)である。しかし、脱燐処理中終始二次燃焼率を高めた操業を行うと熱による炉体耐火物のダメージがかなり大きく、耐火物の損傷(溶損)が見られたため、二次燃焼率を終始高めた状態で操業を継続することは困難であることが明らかとなった。そこで、吹錬初期のある一定期間のみにおいて二次燃焼率を高める方法について検討を行った。その結果、全吹錬期間の前半の一定期間内でのみ二次燃焼率を高め、且つその際のスラグ塩基度を所定のレベル以下に抑えることにより、高効率の脱燐を行いつつ、且つ炉体耐火物の損傷を最小限に抑えつつ溶銑への熱付与を効率的に行うことができ、熱余裕度が大きく向上することが判った。具体的には、全吹錬期間のうち、前半50%の期間内であって且つ全吹錬期間の20%以上に相当する長さの期間内においてのみ二次燃焼率を10%以上とするとともに、スラグ塩基度(CaO/SiO)を1.8以下とするものである。ここで、スラグ塩基度のCaO,SiOはmass%である。
Accordingly, the present inventors have studied focusing on secondary combustion as means for increasing the thermal margin of the hot metal without inhibiting the dephosphorization reaction. As a result, the following facts were found.
First, the inventors conducted an experiment in which the secondary combustion rate was increased during the dephosphorization process. Here, the secondary combustion rate is a value defined by CO 2 / (CO + CO 2 ) (CO and CO 2 are vol%). However, when the operation with the secondary combustion rate increased throughout the dephosphorization process, the furnace refractory was significantly damaged by heat, and the refractory was damaged (melting). It became clear that it was difficult to continue the operation in this state. Therefore, a method for increasing the secondary combustion rate only during a certain period in the early stage of blowing was studied. As a result, the secondary combustion rate is increased only within a certain period of the first half of the entire blowing operation, and the slag basicity at that time is suppressed to a predetermined level or less, thereby performing high-efficiency dephosphorization and the furnace. It was found that heat could be efficiently applied to the hot metal while minimizing damage to the body refractory, and the heat margin was greatly improved. Specifically, the secondary combustion rate is set to 10% or more only within the first 50% of the total blowing period and the length corresponding to 20% or more of the total blowing period. In addition, the slag basicity (CaO / SiO 2 ) is set to 1.8 or less. Here, the slag basicity CaO, SiO 2 is mass%.

一方、本発明では、上記のように二次燃焼率を高める期間(以下、「高二次燃焼率期間」という)以外の期間(最短の期間で全吹錬期間の50%)においては、二次燃焼率を10%未満とするものである。また、高二次燃焼率期間以外の期間中のスラグ塩基度(CaO/SiO)については特に制限はないが、後述するような条件とすることが好ましい。
ここで、上記高二次燃焼率期間を全吹錬期間の前半とするのは、吹錬期間の初期段階から溶銑への熱付与を行うことにより、スクラップへの伝熱を促進し、多量のスクラップを溶解させるためであり、一方、全吹錬期間の50%以内に限定するのは、その期間が50%を超えると熱による炉体耐火物の損傷が顕著になるためである。また、高二次燃焼率期間を全吹錬期間の20%以上とするのは、20%未満の期間では溶銑への熱付与を十分に行うことができないためである。なお、この高二次燃焼率期間は、全吹錬期間の前半50%の範囲内であればよく、したがって、その期間は吹錬開始時からでなくてよい。
高二次燃焼率期間での二次燃焼率は10%以上とする。これにより溶銑への熱付与を行い、熱余裕度を十分に確保することができる。但し、二次燃焼率があまり高すぎると熱による耐火物ダメージが大きく、操業性悪化の懸念があるため、二次燃焼率は30%以下に抑えることが望ましい。
On the other hand, in the present invention, in the period (the shortest period and 50% of the total blowing period) other than the period for increasing the secondary combustion rate (hereinafter referred to as “high secondary combustion rate period”) as described above, The combustion rate is less than 10%. No particular limitation is imposed on the slag basicity in the high post combustion ratio period other than the period (CaO / SiO 2), preferably in the conditions as described below.
Here, the high secondary combustion rate period is defined as the first half of the total blowing period because heat transfer to the scrap metal is promoted by applying heat from the initial stage of the blowing period to a large amount of scrap. On the other hand, the reason why it is limited to 50% of the total blowing period is that if the period exceeds 50%, damage to the furnace refractory due to heat becomes remarkable. The reason why the high secondary combustion rate period is set to 20% or more of the total blowing period is that heat application to the molten iron cannot be sufficiently performed in a period of less than 20%. The high secondary combustion rate period may be within the range of the first half 50% of the entire blowing period, and therefore the period may not be from the start of blowing.
The secondary combustion rate in the high secondary combustion rate period is 10% or more. As a result, heat is applied to the hot metal, and a sufficient heat margin can be secured. However, if the secondary combustion rate is too high, the refractory damage due to heat is large, and there is a concern of operability deterioration. Therefore, it is desirable to suppress the secondary combustion rate to 30% or less.

また、高二次燃焼率期間において、スラグ塩基度(CaO/SiO)を1.8以下とすることにより、二次燃焼熱の溶銑への着熱効率が向上する。これはスラグ塩基度を低くすることにより、スラグがフォーミングするためであると考えられる。二次燃焼は、脱炭反応により浴面から発生したCOガスが、未反応の酸素ガスや炉内に巻込んだ空気中の酸素と結合してCOガスになる反応であり、炉内の比較的上方の位置、少なくともスラグ面よりも上方に燃焼領域があると考えられている。溶銑脱燐反応では元々生成スラグ量が少ないが、このようにスラグ量が少ないと燃焼領域に着熱媒体となり得るものが存在しないため、燃焼熱は溶銑へ着熱することなく、排ガスへと持ち去られてしまう。これに対して、スラグがフォーミングすることによって、燃焼領域にスラグが存在すると、燃焼熱はスラグに着熱し、そのスラグが伝熱媒体となって溶銑へと着熱するものと考えられる。スラグ塩基度が1.8を超えるとスラグがフォーミングし難くなり、上記のような着熱性の向上効果を得ることができず、結果として、溶銑への熱付与を効果的に行うことができない。つまり、高二次燃焼率期間においては、上記のような二次燃焼率とスラグ塩基度の制御を組み合わせることによってはじめて、溶銑への熱付与を効果的に行うことができる。 In addition, by setting the slag basicity (CaO / SiO 2 ) to 1.8 or less during the high secondary combustion rate period, the efficiency of heat application of the secondary combustion heat to the hot metal is improved. This is considered to be because slag forms by lowering slag basicity. The secondary combustion is a reaction in which CO gas generated from the bath surface by the decarburization reaction is combined with unreacted oxygen gas or oxygen in the air entrained in the furnace to become CO 2 gas. It is considered that there is a combustion region at a relatively upper position, at least above the slag surface. In the hot metal dephosphorization reaction, the amount of generated slag is originally small, but if there is such a small amount of slag, there is nothing that can be a heat receiving medium in the combustion region, so the combustion heat does not reach the hot metal and is taken away into the exhaust gas. It will be. On the other hand, if slag exists in the combustion region due to slag forming, the combustion heat is applied to the slag, and the slag becomes a heat transfer medium and is applied to the molten iron. When the slag basicity exceeds 1.8, it becomes difficult to form the slag, the effect of improving the heat receiving property as described above cannot be obtained, and as a result, the heat application to the molten iron cannot be performed effectively. That is, in the high secondary combustion rate period, heat application to the hot metal can be effectively performed only by combining the control of the secondary combustion rate and the slag basicity as described above.

なお、スラグ塩基度が1.0未満の領域では炉口からのスラグの噴出が発生する場合もあるため、高二次燃焼率期間でのスラグ塩基度は1.0〜1.8の範囲にすることが望ましい。
スラグ塩基度(CaO/SiO)は、溶銑中Si濃度から計算される生成SiO量と添加するCaO量から求めてもよいし、スラグを採取して実測により求めてもよい。
以上のように高二次燃焼率期間において二次燃焼率を高め、且つスラグ塩基度を制御して二次燃焼熱の着熱性を高めることにより、溶銑への熱付与を効率的に行うことができ、これによりスクラップへの伝熱が飛躍的に促進され、スクラップを迅速に溶解させることができ、結果として大量のスクラップを溶解させることが可能となる。また、吹錬期間前半の限られた期間内でのみ二次燃焼率を高めるので、炉体耐火物の損傷も最小限に抑えることができ、安定した操業を継続することが可能となる。
In addition, in the area | region where slag basicity is less than 1.0, since the ejection of slag from a furnace port may generate | occur | produce, the slag basicity in the period of a high secondary combustion rate shall be the range of 1.0-1.8. It is desirable.
The slag basicity (CaO / SiO 2 ) may be obtained from the amount of generated SiO 2 calculated from the Si concentration in the hot metal and the amount of CaO to be added, or may be obtained by actual measurement by collecting slag.
As described above, by increasing the secondary combustion rate during the high secondary combustion rate period and controlling the slag basicity to increase the heat receiving property of the secondary combustion heat, it is possible to efficiently apply heat to the hot metal. As a result, heat transfer to the scrap is dramatically promoted, and the scrap can be rapidly melted. As a result, a large amount of scrap can be melted. In addition, since the secondary combustion rate is increased only within a limited period of the first half of the blowing period, damage to the furnace refractory can be minimized, and stable operation can be continued.

一方、脱燐反応に関しては、一般にスラグ塩基度を高くするほど燐濃度を低減できることが知られている。この点、本発明では吹錬前半の高二次燃焼率期間にスラグ塩基度を低位にするため、スラグ中に燐酸を固定することができず、復燐反応を生じて脱燐反応が悪化することが懸念された。しかしながら、本発明における脱燐効率は従来レベルよりも若干ではあるが高くなる結果となった。これは、吹錬前半に二次燃焼率を高めることでスラグ温度が上昇し、スラグの滓化が促進されることにより脱燐反応が促進されたためであると考えられる。   On the other hand, with regard to the dephosphorization reaction, it is generally known that the phosphorus concentration can be reduced as the slag basicity is increased. In this regard, in the present invention, since the slag basicity is lowered during the high secondary combustion rate period in the first half of the blowing, phosphoric acid cannot be fixed in the slag, and the dephosphorization reaction is deteriorated due to the dephosphorization reaction. There was concern. However, the dephosphorization efficiency in the present invention was slightly higher than the conventional level. This is thought to be because the dephosphorization reaction was promoted by increasing the secondary combustion rate in the first half of blowing and increasing the slag temperature and promoting slag hatching.

また、脱燐効率をより高めて燐濃度をさらに低減させるために、上吹きランスを通じて、酸素ガス又は酸素含有ガスと粉状の脱燐剤(CaO源)の少なくとも一部を溶銑浴面に吹き付けて脱燐処理を行うことが好ましいことが判った。粉状の脱燐剤は塊状脱燐剤と較べて溶融速度が速く、さらに二次燃焼熱によるスラグ温度の上昇・滓化促進効果と相俟って脱燐反応を促進することができる。なお、上吹きランスから吹き付けられる酸素ガス又は酸素含有ガスとしては、純酸素、空気、酸素富化空気等が使用できるが、熱効率や脱燐速度を考慮して、一般には工業用純酸素が使用される。
さらに、脱燐剤の添加速度を調整し、高二次燃焼率期間が終了した後に徐々にスラグ塩基度を高めることで復燐を抑制し、従来と同等の時間で燐濃度を低減させることができた。この時、処理後のスラグ塩基度は2.0以上あれば十分に低い濃度まで燐を低減し得ることが判った。したがって、脱燐処理終了時のスラグ塩基度(CaO/SiO)は2.0以上とすることが好ましい。一方、スラグ塩基度が高くなりすぎると、スラグの滓化性を悪化させる恐れがあるため、スラグ塩基度は3.5以下程度が望ましい。
In order to further improve the dephosphorization efficiency and further reduce the phosphorus concentration, oxygen gas or oxygen-containing gas and at least a part of powdered dephosphorization agent (CaO source) are sprayed on the hot metal bath surface through an upper blowing lance. Thus, it has been found preferable to perform the dephosphorization treatment. The powdered dephosphorizing agent has a higher melting rate than the bulk dephosphorizing agent, and can promote the dephosphorization reaction in combination with the effect of increasing the slag temperature and promoting the hatching by the secondary combustion heat. As oxygen gas or oxygen-containing gas blown from the top blowing lance, pure oxygen, air, oxygen-enriched air, etc. can be used, but in view of thermal efficiency and dephosphorization rate, industrial pure oxygen is generally used. Is done.
Furthermore, by adjusting the rate of addition of the dephosphorization agent and gradually increasing the slag basicity after the end of the high secondary combustion rate period, it is possible to suppress the recovery and reduce the phosphorus concentration in the same time as before. It was. At this time, it was found that if the slag basicity after the treatment is 2.0 or more, phosphorus can be reduced to a sufficiently low concentration. Therefore, the slag basicity (CaO / SiO 2 ) at the end of the dephosphorization treatment is preferably 2.0 or more. On the other hand, if the slag basicity becomes too high, the hatchability of the slag may be deteriorated, so the slag basicity is preferably about 3.5 or less.

また、二次燃焼率を高める方法として、上吹きランスと溶銑浴面間の距離を大きくとる方法が知られているが、上吹きランスのランス先端から所定の間隔をおいた上方位置の側面に水平又は斜め下向き方向のノズルを設けて、そこから二次燃焼用の酸素ガスを供給することで、転炉型容器内の二次燃焼率を容易に高められることが判った。すなわち、先端部に、鉛直下向き又は斜め下向きに開口した吹錬用ガス供給ノズルを有し、この吹錬用ガス供給ノズルと所定の間隔をおいた上方位置の側面に、水平又は斜め下向きに開口した二次燃焼用酸素供給ノズルを有する上吹きランスを用い、高二次燃焼率期間において前記二次燃焼用酸素供給ノズルから酸素ガスを供給することにより、容易に所望の二次燃焼率を得ることができる。   As a method for increasing the secondary combustion rate, a method of increasing the distance between the upper blowing lance and the hot metal bath surface is known, but it is provided on the side surface at a predetermined distance from the lance tip of the upper blowing lance. It was found that the secondary combustion rate in the converter vessel can be easily increased by providing a nozzle in the horizontal or diagonally downward direction and supplying oxygen gas for secondary combustion therefrom. That is, it has a blowing gas supply nozzle that opens vertically or obliquely downward at the tip, and opens horizontally or obliquely downward on the side surface at a predetermined distance from this blowing gas supply nozzle. A desired secondary combustion rate can be easily obtained by supplying an oxygen gas from the secondary combustion oxygen supply nozzle during a high secondary combustion rate period using an upper blow lance having a secondary combustion oxygen supply nozzle. Can do.

以下、図面に基づいて本発明の詳細をさらに具体的に説明する。
図1は、本発明法の実施に供される転炉型精錬設備の一実施形態を示している。この転炉型精錬設備1は、外殻が鉄皮2で構成され、鉄皮2の内側に耐火物3が配された炉本体4と、この炉本体4内に挿入され、上下方向に移動可能な鋼製の上吹きランス5とを備えている。前記炉本体4の上部には、収容した溶銑6を出湯するための出湯口7が設けられ、また、炉本体4の炉底には、撹拌用ガスを吹き込むための底吹き羽口8が設けられ、この底吹き羽口8にはガス導入管9が接続されている。前記上吹きランス5には酸素ガス配管10が接続されており、気体酸素源である酸素ガス又は酸素含有ガス(以下、便宜上「酸素ガス」という)が、この酸素ガス配管10を介して任意の流量で上吹きランス5から炉本体4内に供給されるようになっている。
Hereinafter, the details of the present invention will be described more specifically based on the drawings.
FIG. 1 shows an embodiment of a converter-type refining facility used for carrying out the method of the present invention. This converter-type refining equipment 1 has an outer shell composed of an iron shell 2 and a furnace body 4 in which a refractory 3 is arranged inside the iron shell 2, and is inserted into the furnace body 4 to move up and down. It is equipped with an upper blow lance 5 made of steel. At the upper part of the furnace body 4, a hot water outlet 7 for pouring out the molten iron 6 accommodated is provided, and at the bottom of the furnace body 4, a bottom blowing tuyere 8 for injecting stirring gas is provided. A gas introduction pipe 9 is connected to the bottom blowing tuyere 8. An oxygen gas pipe 10 is connected to the upper blow lance 5, and an oxygen gas or an oxygen-containing gas (hereinafter referred to as “oxygen gas” for convenience) as a gaseous oxygen source can be freely passed through the oxygen gas pipe 10. It is supplied into the furnace body 4 from the top blowing lance 5 at a flow rate.

前記酸素ガス配管10から分岐した酸素ガス配管10Aは、CaO源である脱燐剤11を収容したディスペンサー12に接続されており、一方、このディスペンサー12と上吹きランス5に通じる酸素ガス配管10間には脱燐剤移送配管13が接続されている。したがって、ディスペンサー12内に供給された酸素ガスをディスペンサー12内の脱燐剤11のキャリアガスとすることができ、ディスペンサー12内の脱燐剤11を脱燐剤移送配管13を経由して上吹きランス5に移送し、その先端から炉本体4内の溶銑浴面に吹き付けるようにして供給することができる。   An oxygen gas pipe 10A branched from the oxygen gas pipe 10 is connected to a dispenser 12 containing a dephosphorization agent 11 as a CaO source. On the other hand, between the oxygen gas pipe 10 leading to the dispenser 12 and the upper blowing lance 5 A dephosphorizing agent transfer pipe 13 is connected to. Therefore, the oxygen gas supplied into the dispenser 12 can be used as a carrier gas for the dephosphorizing agent 11 in the dispenser 12, and the dephosphorizing agent 11 in the dispenser 12 is blown up via the dephosphorizing agent transfer pipe 13. It can be supplied by being transferred to the lance 5 and sprayed onto the hot metal bath surface in the furnace body 4 from its tip.

前記酸素ガス配管10,10Aには流量調整弁14,15が設けられており、酸素ガスを上吹きランス5から直接吹き込むことも、また、ディスペンサー12を経由して吹き込むことも任意に調整できるようになっている。
なお、本発明法を実施する場合、上吹きランス5は脱燐剤11の供給流路を兼ねる必要はなく、上吹きランス5とは別に脱燐剤11の供給用ランスを設置してもよい。但し、炉本体4の上方部における設備配置が煩雑になるので、これを防止するためには、上吹きランス5が脱燐剤11の供給流路を兼ねることが好ましい。また、脱燐剤11のキャリアガスは酸素ガスである必要はなく、例えば、窒素ガスなどの不活性ガスを用いても構わないが、その場合には別系統の配管が必要である。
また、炉本体4の上方には、その他の各種精錬剤16を炉本体4内に投入するための添加装置17が設置されている。添加装置17としては、例えば、ホッパー、シュート、秤量機、切り出し装置などからなる慣用の原料供給装置を使用することができ、精錬剤11をその添加装置17から供給してもよい。
The oxygen gas pipes 10 and 10A are provided with flow rate adjustment valves 14 and 15 so that the oxygen gas can be arbitrarily adjusted to be blown directly from the top blowing lance 5 or through the dispenser 12. It has become.
When carrying out the method of the present invention, the upper blowing lance 5 does not have to serve as a supply flow path for the dephosphorizing agent 11, and a lance for supplying the dephosphorizing agent 11 may be provided separately from the upper blowing lance 5. . However, since the equipment arrangement in the upper part of the furnace body 4 becomes complicated, in order to prevent this, it is preferable that the top blowing lance 5 also serves as a supply path for the dephosphorization agent 11. Further, the carrier gas of the dephosphorizing agent 11 does not need to be an oxygen gas, and for example, an inert gas such as a nitrogen gas may be used. In that case, a separate piping is necessary.
Further, an addition device 17 for introducing various other refining agents 16 into the furnace body 4 is installed above the furnace body 4. As the addition device 17, for example, a conventional raw material supply device including a hopper, a chute, a weighing machine, a cutting device, and the like can be used, and the refining agent 11 may be supplied from the addition device 17.

図2は、本発明の実施に好適な上吹きランスを示す縦断面図である。
この上吹きランス5は、円筒状のランス本体21と、このランス本体21の下端に溶接などにより接続された銅製のランスノズル22とで構成されており、ランス本体21は、外側から外管23、中管24、内管25、最内管26が同心円状に配された四重管構造を有している。キャリアガス配管は最内管26に連結し、酸素ガス配管は内管25に連結しており、したがって、CaO源である脱燐剤を上吹きランスから吹き込む場合には、脱燐剤がキャリアガスとともに最内管26の内部に供給され、また、酸素ガスが最内管26と内管25との間の流路(間隙)に供給されるようになっている。また、内管25と中管24との間隙及び中管24と外管23との間隙は、冷却水の給排水流路となっている。
FIG. 2 is a longitudinal sectional view showing an upper blowing lance suitable for carrying out the present invention.
The upper blow lance 5 is composed of a cylindrical lance main body 21 and a copper lance nozzle 22 connected to the lower end of the lance main body 21 by welding or the like. The middle tube 24, the inner tube 25, and the innermost tube 26 have a quadruple tube structure in which concentric circles are arranged. The carrier gas pipe is connected to the innermost pipe 26, and the oxygen gas pipe is connected to the inner pipe 25. Therefore, when the dephosphorizing agent as the CaO source is blown from the top blowing lance, the dephosphorizing agent is used as the carrier gas. At the same time, the gas is supplied to the inside of the innermost pipe 26, and oxygen gas is supplied to the flow path (gap) between the innermost pipe 26 and the inner pipe 25. Further, the gap between the inner pipe 25 and the middle pipe 24 and the gap between the middle pipe 24 and the outer pipe 23 serve as a cooling water supply / drain passage.

最内管26はランスノズル22のほぼ中心位置に配置された中心孔28と連通し、最内管26と内管25との間の流路は前記中心孔28の周囲に複数個設置された周孔29に連通している。これら中心孔28及び周孔29は、鉛直下向き又は斜め下向きに開口した吹錬用ガス供給ノズルであり、このノズルは、断面が縮小する部分と拡大する部分の2つの円錐体で構成された所謂ラバールノズルの形状であってもよいし、或いはストレート形状であってもよい。また、ランス先端より所定の間隔をおいた上方位置の側面には、二次燃焼用酸素を供給するための二次燃焼用酸素ノズル27が設けられており、この二次燃焼用酸素ノズル27は酸素ガスの流路と連通している。なお、図2の実施形態では、二次燃焼用酸素ノズル27は斜め下向きに開口しているが、水平方向に開口していてもよい。   The innermost tube 26 communicates with a center hole 28 disposed at substantially the center position of the lance nozzle 22, and a plurality of flow paths between the innermost tube 26 and the inner tube 25 are provided around the center hole 28. It communicates with the peripheral hole 29. The central hole 28 and the peripheral hole 29 are blowing gas supply nozzles that are opened vertically downward or obliquely downward, and the nozzles are so-called so-called two cones having a section that is reduced and an area that is enlarged. The shape of a Laval nozzle may be sufficient, or a straight shape may be sufficient. Further, a secondary combustion oxygen nozzle 27 for supplying secondary combustion oxygen is provided on a side surface at a position above the lance tip at a predetermined interval. It communicates with the oxygen gas flow path. In the embodiment of FIG. 2, the secondary combustion oxygen nozzle 27 is opened obliquely downward, but may be opened horizontally.

以上のような転炉型精錬設備を用いた本発明法の一実施形態について説明する。図1において、6は溶銑、20はスラグ、18はスクラップである。
まず、炉本体4内にスクラップ18をスクラップシュート19から装入し、次いで、溶銑6を装入する。この溶銑6は事前に脱硫処理や脱珪処理が施されたものであってもよい。脱硫処理とは、溶銑に石灰を添加し、主として硫黄を除去する処理である。また、脱珪処理とは、溶銑に酸素ガスや酸化鉄を添加し、主として溶銑中の珪素を除去する処理である。脱燐処理前の溶銑の化学成分は、一般には、C:3.8〜5.0mass%、Si:0.2mass%以下、S:0.05mass%以下、P:0.08〜0.2mass%程度である。前述したように、脱燐処理時に炉本体4内のスラグ量が多くなると脱燐効率が低下するので、炉内のスラグ量を少なくして脱燐効率を高めるために、予め脱珪処理等により溶銑中の珪素濃度を0.1mass%以下まで低減しておくことが好ましい。また、溶銑温度は1200〜1350℃の範囲であれば問題なく脱燐処理することができる。
An embodiment of the method of the present invention using the above converter type refining equipment will be described. In FIG. 1, 6 is hot metal, 20 is slag, and 18 is scrap.
First, the scrap 18 is charged from the scrap chute 19 into the furnace body 4, and then the hot metal 6 is charged. The hot metal 6 may be subjected to desulfurization treatment or desiliconization treatment in advance. A desulfurization process is a process which mainly adds sulfur to hot metal, and removes sulfur. The desiliconization process is a process in which oxygen gas or iron oxide is added to the hot metal to mainly remove silicon in the hot metal. The chemical components of the hot metal before dephosphorization are generally C: 3.8 to 5.0 mass%, Si: 0.2 mass% or less, S: 0.05 mass% or less, P: 0.08 to 0.2 mass. %. As described above, when the amount of slag in the furnace body 4 increases during the dephosphorization process, the dephosphorization efficiency decreases. Therefore, in order to increase the dephosphorization efficiency by reducing the amount of slag in the furnace, a desiliconization process or the like is performed in advance. It is preferable to reduce the silicon concentration in the hot metal to 0.1 mass% or less. Moreover, if the hot metal temperature is in the range of 1200 to 1350 ° C., dephosphorization can be performed without any problem.

脱燐処理は、溶銑6に対して脱燐剤を添加し、底吹き羽口8から窒素ガス等の非酸化性ガス又はArガス等の希ガスを撹拌用ガスとして溶銑6中に吹き込みながら、上吹きランス5から酸素ガスを供給して行う。脱燐剤は、炉上に設置された添加装置17を通じて塊状CaOを上置添加することもできるが、粉状の脱燐剤11を上吹きランス5を介して溶銑6の浴面に吹き付けることが好ましい。
全吹錬期間のうち、前半50%の期間内であって且つ全吹錬期間の20%以上に相当する長さの期間(高二次燃焼率期間)内においては、上吹きランス5からの酸素ガスの供給速度、ランス高さなどを制御することで二次燃焼率を10%以上とし、且つ溶銑中Si濃度に応じて脱燐剤11を添加することでスラグ塩基度を1.8以下にし、溶銑への熱付与を行う。そして、このような高二次燃焼率期間以降は、二次燃焼率を10%未満とし、且つスラグ塩基度を上昇させるべく脱燐剤11を添加し、脱燐終了後のスラグ塩基度が2.0以上になるように吹錬を行う。
In the dephosphorization treatment, a dephosphorizing agent is added to the hot metal 6 and a non-oxidizing gas such as nitrogen gas or a rare gas such as Ar gas is blown into the hot metal 6 from the bottom blowing tuyere 8 as a stirring gas. Oxygen gas is supplied from the top blowing lance 5. As the dephosphorizing agent, bulk CaO can be added on top through an addition device 17 installed on the furnace, but the powdered dephosphorizing agent 11 is sprayed onto the bath surface of the hot metal 6 through the upper blowing lance 5. Is preferred.
Of the total blowing period, the oxygen from the top blowing lance 5 is within the period of the first 50% and within a period corresponding to 20% or more of the total blowing period (high secondary combustion rate period). By controlling the gas supply speed, the lance height, etc., the secondary combustion rate is set to 10% or more, and the dephosphorization agent 11 is added according to the Si concentration in the hot metal to reduce the slag basicity to 1.8 or less. Apply heat to the hot metal. Then, after such a high secondary combustion rate period, the secondary combustion rate is set to less than 10%, and the dephosphorization agent 11 is added to increase the slag basicity, and the slag basicity after the completion of the dephosphorization is 2. Blowing is performed so that it becomes 0 or more.

CaO源である脱燐剤11としては、一般に生石灰を使用する。生石灰にアルミナ等を媒溶剤として加えてもよいが、本発明においては二次燃焼によってスラグ温度が上昇し、滓化性も良くなるため、生石灰単体であっても十分に滓化するので、アルミナ等の媒溶剤は用いなくても十分に脱燐することができる。特に、スラグ20からのフッ素の溶出量を抑えて環境を保護する観点から、蛍石等のフッ素含有物質は造滓剤として使用しないことが好ましい。
脱燐処理時の酸素源が気体の酸素ガスのみでは溶銑温度が上昇し過ぎて脱燐反応が阻害される場合もあるので、必要に応じて固体酸素源としてミルスケールや鉄鉱石等を添加してもよい。気体酸素源の添加量と固体酸素源の添加量との比は、溶銑6中の珪素濃度、燐濃度、炭素濃度等に応じて適宜選択すればよい。また、脱燐剤11の投入量は、溶銑6中の珪素濃度及び燐濃度に応じて選択されるが、最大でも溶銑トン当たり40kg程度であれば十分である。
As the dephosphorization agent 11 that is a source of CaO, quick lime is generally used. Alumina or the like may be added to the quicklime as a solvent, but in the present invention, the slag temperature is increased by secondary combustion and the hatchability is improved, so that even quicklime alone is sufficiently hatched. It is possible to sufficiently remove phosphorous without using a solvent such as a solvent. In particular, from the viewpoint of protecting the environment by suppressing the amount of fluorine eluted from the slag 20, it is preferable not to use a fluorine-containing substance such as fluorite as a slagging agent.
If only oxygen gas is used as the oxygen source during the dephosphorization process, the hot metal temperature will rise too much and the dephosphorization reaction may be inhibited. Therefore, mill scale or iron ore can be added as a solid oxygen source as necessary. May be. The ratio between the addition amount of the gaseous oxygen source and the addition amount of the solid oxygen source may be appropriately selected according to the silicon concentration, phosphorus concentration, carbon concentration, etc. in the molten iron 6. The amount of the dephosphorization agent 11 is selected according to the silicon concentration and the phosphorus concentration in the hot metal 6, but about 40 kg per ton of hot metal is sufficient.

以上説明したような本発明法によれば、全吹錬期間の前半の一定期間内でのみ二次燃焼率を高め、且つその際のスラグ塩基度を所定のレベル以下に抑えることでスラグをフォーミングさせることにより、二次燃焼熱を効率よく溶銑に着熱させ、炉体耐火物の損傷を最小限に抑えつつ溶銑への熱付与を効果的に行い、熱余裕度を向上させることができる。この結果、スクラップの溶解速度を高めてその添加量を多くすることができ、処理時間を延長することなく生産量を増大させることができる。
なお、二次燃焼率の測定は、炉内の二次燃焼領域から排ガスをサンプリングして行うのが望ましいが、高温場のため測定が困難である場合には、炉頂付近のガスを分析し、巻込んだ空気中の窒素分及び酸素分を補正して二次燃焼率を算出してもよい。
According to the method of the present invention as described above, the slag is formed by increasing the secondary combustion rate only within a certain period of the first half of the total blowing period and suppressing the slag basicity at a predetermined level or less. By doing so, the secondary combustion heat can be efficiently applied to the hot metal, heat can be effectively applied to the hot metal while minimizing damage to the furnace refractory, and the heat margin can be improved. As a result, the dissolution rate of scrap can be increased and the amount added can be increased, and the production amount can be increased without extending the processing time.
It is desirable to measure the secondary combustion rate by sampling exhaust gas from the secondary combustion area in the furnace, but if it is difficult to measure due to the high temperature field, analyze the gas near the top of the furnace. Alternatively, the secondary combustion rate may be calculated by correcting the nitrogen content and oxygen content in the entrained air.

図1に示すような転炉型精錬設備(炉容量300トン)を用い、炉内に溶銑とともにスクラップ装入し、溶銑の脱燐処理を行った。この溶銑の脱燐処理では、上吹きランスから酸素ガスを吹き付けつつ、(1)上置:炉上ホッパーより塊状の脱燐剤(CaO)を添加する方法、(2)投射:キャリアガスを用いて粉状の脱燐剤(CaO)を上吹きランスから溶銑浴面に吹き付ける方法、のいずれかにより脱燐剤を添加し、同時に、底吹き羽口から窒素ガスを0.05〜0.15Nm /min・t-pigの供給量で吹き込み、溶銑を攪拌した。酸素ガス供給速度は1.0〜2.0Nm/min・t-pigの範囲で、また、脱燐剤(CaO)の供給速度は0.3〜1.5kg/min・t-pigの範囲で、それぞれ制御した。処理前後の溶銑温度は1270〜1360℃の範囲に調整した。処理中は、排ガス分析計により炉内二次燃焼率を測定した。また、スラグのフォーミング高さは、マイクロ波を用いて測定した。 Using a converter-type refining facility (furnace capacity 300 tons) as shown in FIG. 1, scrap was introduced into the furnace together with hot metal, and the hot metal was dephosphorized. In this hot metal dephosphorization, oxygen gas is blown from the top blowing lance, (1) Placement: a method of adding a bulk dephosphorization agent (CaO) from the furnace hopper, (2) Projection: using carrier gas The dephosphorizing agent is added by any one of a method of spraying a powdered dephosphorizing agent (CaO) from the top blowing lance to the hot metal bath surface, and at the same time, nitrogen gas is added from the bottom blowing tuyere to 0.05 to 0.15 Nm. The hot metal was stirred by blowing at a supply rate of 3 / min · t-pig. The oxygen gas supply rate is in the range of 1.0 to 2.0 Nm 3 / min · t-pig, and the dephosphorization agent (CaO) supply rate is in the range of 0.3 to 1.5 kg / min · t-pig. And controlled each. The hot metal temperature before and after the treatment was adjusted to a range of 1270 to 1360 ° C. During the treatment, the secondary combustion rate in the furnace was measured with an exhaust gas analyzer. Moreover, the forming height of the slag was measured using a microwave.

また、着熱効率は下式により計算した。
[着熱効率]=([熱バランスから算出される不明熱分]/[排ガス測定による二次燃焼率から算出される二次燃焼熱])×100
なお、上記式の分子は図12に示すInput熱量のうち[熱バランスから算出される不明熱分]であり、分母の値は下式により求めた。
[排ガス測定による二次燃焼率から算出される二次燃焼熱]=([排ガス測定による二次燃焼率(%)]/100)×[ΔC(kg/t-pig)]×5.63
この式においてΔCは溶銑の脱炭量、“5.63”はCO→CO時の発熱量(Mcal/kg−C)である。
Moreover, the heat receiving efficiency was calculated by the following formula.
[Heat absorption efficiency] = ([Unknown heat calculated from heat balance] / [Secondary combustion heat calculated from secondary combustion rate by exhaust gas measurement]) × 100
In addition, the numerator of the above formula is [Unknown heat component calculated from heat balance] in the input calorie shown in FIG. 12, and the value of the denominator was obtained by the following equation.
[Secondary combustion heat calculated from secondary combustion rate by exhaust gas measurement] = ([Secondary combustion rate by exhaust gas measurement (%)] / 100) × [ΔC (kg / t-pig)] × 5.63
In this equation, ΔC is the amount of decarburized hot metal, and “5.63” is the calorific value (Mcal / kg-C) when CO → CO 2 .

本発明例1〜14及び比較例1〜13における操業条件及び操業結果を表1〜表4に示す。なお、表2,4において、「ランス側孔」とは、上吹きランスの吹錬用酸素供給ノズルよりも上方位置の側面に設けられた二次燃焼用酸素供給ノズルのことであり、このような二次燃焼用酸素供給ノズルを備えた上吹きランスを用いた場合を“有り”、二次燃焼用酸素供給ノズルを有しない上吹きランスを用いた場合を“無し”とした。また、「耐火物状況」は、炉内耐火物に激しい損耗が見られた場合を“×”、損耗が確認されなかった場合を“○”とした。また、二次燃焼率、スラグ塩基度、スラグ高さは平均値を示している。   Tables 1 to 4 show the operation conditions and operation results in Examples 1 to 14 of the present invention and Comparative Examples 1 to 13. In Tables 2 and 4, the “lance side hole” is a secondary combustion oxygen supply nozzle provided on the side surface at a position higher than the blowing oxygen supply nozzle of the top blowing lance. A case where an upper blow lance equipped with a secondary combustion oxygen supply nozzle was used was “present”, and a case where an upper blow lance without a secondary combustion oxygen supply nozzle was used was designated “none”. In addition, regarding the “refractory status”, “X” indicates that the refractory in the furnace is severely worn, and “◯” indicates that no wear is confirmed. Moreover, the secondary combustion rate, slag basicity, and slag height show average values.

Figure 2006249568
Figure 2006249568

Figure 2006249568
Figure 2006249568

Figure 2006249568
Figure 2006249568

Figure 2006249568
Figure 2006249568

比較例1におけるスラグフォーミング高さ、二次燃焼率およびスラグ塩基度の経時変化を図3に、本発明例1におけるスラグフォーミング高さ、二次燃焼率およびスラグ塩基度の経時変化を図4に、それぞれ示す。比較例1は高二次燃焼率期間がなく、スラグ塩基度も高い。一方、本発明例1では、全吹錬期間の30%に相当する吹錬初期が高二次燃焼率期間であり、この高二次燃焼率期間ではスラグフォーミングしやすいようスラグ塩基度が1.8以下に制御されている。また、高二次燃焼率期間以降は徐々に高いスラグ塩基度へと推移させている。
比較例2,3は、全吹錬期間中にて二次燃焼率を高めた例であるが、耐火物の損耗が認められる。
FIG. 3 shows changes with time in the slag forming height, secondary combustion rate, and slag basicity in Comparative Example 1, and FIG. 4 shows changes with time in the slag forming height, secondary combustion rate, and slag basicity in Example 1 of the present invention. , Respectively. Comparative Example 1 does not have a high secondary combustion rate period and has a high slag basicity. On the other hand, in Example 1 of the present invention, the initial stage of blowing, which corresponds to 30% of the total blowing period, is a high secondary combustion rate period, and the slag basicity is 1.8 or less so that slag forming is easy in this high secondary combustion rate period. Is controlled. In addition, after the high secondary combustion rate period, the slag basicity is gradually increased.
Comparative Examples 2 and 3 are examples in which the secondary combustion rate was increased during the entire blowing period, but refractory wear was observed.

比較例4,5と本発明例1〜14について、吹錬前半での高二次燃焼率期間における二次燃焼率(但し、比較例4,5は高二次燃焼率期間がないので、全吹錬期間の前半50%の期間での二次燃焼率)とスクラップ添加量との関係を図5に示す。比較例4,5と本発明例1〜14は、いずれも高二次燃焼率期間(但し、比較例4,5は高二次燃焼率期間がないので、全吹錬期間の前半50%の期間)においてスラグ塩基度を1.8以下にしているが、比較例4,5は二次燃焼率が10%を下回っているため、スクラップ添加量は少ない。   For Comparative Examples 4 and 5 and Invention Examples 1 to 14, the secondary combustion rate in the high secondary combustion rate period in the first half of blowing (however, Comparative Examples 4 and 5 have no high secondary combustion rate period, FIG. 5 shows the relationship between the secondary combustion rate in the first 50% of the period and the amount of scrap added. Comparative Examples 4 and 5 and Invention Examples 1 to 14 are both high secondary combustion rate periods (however, Comparative Examples 4 and 5 have no high secondary combustion rate period, so the first 50% of the total blowing period) In Comparative Example 4 and 5, since the secondary combustion rate is less than 10%, the amount of scrap added is small.

比較例6〜9と本発明例1〜14について、高二次燃焼率期間の全吹錬期間に対する時間割合とスクラップ添加量との関係を図6に示す。比較例6〜9はいずれも高二次燃焼率期間の二次燃焼率を10%以上に制御しているものの、比較例6,7は高二次燃焼率期間の時間割合が20%を下回っているため、熱余裕度を高める効果が十分に得られず、このためスクラップ添加量は少ない。一方、比較例8,9は高二次燃焼率期間の時間割合が50%を超えているため、熱余裕度は高まったものの、耐火物の損耗が見受けられる。
比較例10〜13と本発明例1〜14について、高二次燃焼率期間のスラグフォーミング高さとスクラップ添加量との関係を図7に示す。比較例10〜13は、高二次燃焼率期間の時間割合が20〜50%で二次燃焼率が10%以上であるが、スラグ塩基度が1.8を超えているためスラグフォーミング高さが低く、着熱が不十分であるためスクラップ添加量が少ない。
About Comparative Examples 6-9 and this invention Examples 1-14, the relationship between the time ratio with respect to the whole blowing period of a high secondary combustion rate period and scrap addition amount is shown in FIG. In Comparative Examples 6 to 9, the secondary combustion rate during the high secondary combustion rate period is controlled to 10% or more, but in Comparative Examples 6 and 7, the time ratio during the high secondary combustion rate period is less than 20%. Therefore, the effect of increasing the heat margin cannot be obtained sufficiently, and therefore the amount of scrap added is small. On the other hand, in Comparative Examples 8 and 9, since the time ratio of the high secondary combustion rate period exceeds 50%, although the thermal margin is increased, the wear of the refractory is observed.
For Comparative Examples 10 to 13 and Invention Examples 1 to 14, the relationship between the slag forming height and the scrap addition amount during the high secondary combustion rate period is shown in FIG. In Comparative Examples 10 to 13, the time ratio of the high secondary combustion rate period is 20 to 50% and the secondary combustion rate is 10% or more. However, since the slag basicity exceeds 1.8, the slag forming height is high. Low scrap addition due to insufficient heat build-up.

スラグフォーミング高さと着熱効率には図8のような相関関係があり、スラグフォーミング高さが低いとスラグが二次燃焼熱を溶銑へと着熱させる媒体になり得ないため、着熱効率が低下するものと考えられる。また、スラグ塩基度とスラグフォーミング高さには図9のような関係があり、スラグフォーミング高さを大きくするには、スラグ塩基度を1.8以下にする必要がある。但し、先にも述べたように、スラグ塩基度が1.0未満の範囲では炉口からのスラグ噴出の恐れもあるため、スラグ塩基度は1.0〜1.8の範囲にすることがより好ましい。   There is a correlation between the slag forming height and the heat receiving efficiency as shown in FIG. 8, and if the slag forming height is low, the slag cannot be a medium that heats the secondary combustion heat to the molten iron, so the heat receiving efficiency is lowered. It is considered a thing. Further, there is a relationship as shown in FIG. 9 between the slag basicity and the slag forming height. To increase the slag forming height, the slag basicity needs to be 1.8 or less. However, as described above, since the slag basicity is in the range of less than 1.0, there is a risk of slag ejection from the furnace port, so the slag basicity should be in the range of 1.0 to 1.8. More preferred.

本発明例1〜14及び比較例1〜13について、脱燐処理終了時のスラグ塩基度と処理後の溶銑中燐濃度との関係を図10示す。処理終了時のスラグ塩基度が低いと、処理後の溶銑中燐濃度はやや高くなる傾向にあることが判る。比較例は塊状の脱燐剤(CaO)を上置添加したものであるが、「高二次燃焼期間の時間割合:全吹錬期間の20〜50%、二次燃焼率:10%以上、スラグ塩基度:1.8以下」という条件を満たしていないため、燐濃度は比較的高い値となっている。これに対し、塊状の脱燐剤(CaO)を上置添加した本発明例(本発明例13、14)においては、比較例よりも溶銑中燐濃度は低くなっている。また、粉状の脱燐剤を上吹きランスから溶銑浴面に吹き付けた(投射)本発明例では、溶銑中燐濃度がさらに低減している。なお、上吹きランスから脱燐剤を投射した本発明例の一部においては、塊状の精錬剤(CaO)の上置添加を併用した場合もあったが、極端に塊状CaOが多くならない程度であれば、併用してもなんら問題はない。また、処理後の塩基度を2.0以上とすることで、処理後の溶銑中燐濃度を0.02mass%以下まで低減可能であることが判る。   FIG. 10 shows the relationship between the slag basicity at the end of the dephosphorization treatment and the phosphorus concentration in the hot metal after the treatment for Invention Examples 1 to 14 and Comparative Examples 1 to 13. It can be seen that when the slag basicity at the end of the treatment is low, the phosphorus concentration in the hot metal after the treatment tends to be slightly high. In the comparative example, a bulk dephosphorization agent (CaO) was added on top, but “time ratio of high secondary combustion period: 20 to 50% of total blowing period, secondary combustion rate: 10% or more, slag Since the condition “basicity: 1.8 or less” is not satisfied, the phosphorus concentration is relatively high. On the other hand, in the present invention examples (invention examples 13 and 14) in which a bulk dephosphorizing agent (CaO) was added, the phosphorus concentration in the hot metal was lower than that in the comparative examples. Further, in the present invention example in which a powdered dephosphorizing agent was sprayed from the top blowing lance onto the hot metal bath surface (projection), the phosphorus concentration in the hot metal was further reduced. In addition, in some examples of the present invention in which the dephosphorizing agent was projected from the top blowing lance, there was a case where a bulk refining agent (CaO) was added on top, but the amount of massive CaO was not increased excessively. If there is, there is no problem even if used together. Moreover, it turns out that the phosphorus density | concentration in hot metal after a process can be reduced to 0.02 mass% or less by making the basicity after a process into 2.0 or more.

図11に、上吹きランスの側孔(二次燃焼用酸素ガス供給ノズル)の有無による二次燃焼率の差を示す。二次燃焼率は実施例の平均値をとったものである。側孔が無くても二次燃焼率を10%以上に制御することは可能であるが、側孔を有するランスを用いた方が二次燃焼率を容易に高めることができるため、熱余裕度向上には側孔を有する上吹きランスを使うことが好ましい。   FIG. 11 shows the difference in the secondary combustion rate depending on the presence or absence of the side holes (secondary combustion oxygen gas supply nozzle) of the top blowing lance. The secondary combustion rate is the average of the examples. Although it is possible to control the secondary combustion rate to 10% or more without side holes, the use of a lance having side holes can easily increase the secondary combustion rate, so the thermal margin For improvement, it is preferable to use an upper blowing lance having a side hole.

本発明法の実施に供される転炉型精錬設備の一実施形態を示す説明図Explanatory drawing which shows one Embodiment of the converter type refining equipment used for implementation of this invention method 本発明の実施に好適な上吹きランスを示す縦断面図The longitudinal cross-sectional view which shows the top blowing lance suitable for implementation of this invention 実施例の比較例1におけるスラグフォーミング高さ、二次燃焼率およびスラグ塩基度の経時変化を示すグラフThe graph which shows the time-dependent change of the slag forming height, the secondary combustion rate, and the slag basicity in the comparative example 1 of an Example. 実施例の本発明例1におけるスラグフォーミング高さ、二次燃焼率およびスラグ塩基度の経時変化を示すグラフThe graph which shows the time-dependent change of the slag forming height, secondary combustion rate, and slag basicity in the example 1 of this invention of an Example. 実施例の比較例4,5と本発明例1〜14について、吹錬前半での高二次燃焼率期間における二次燃焼率とスクラップ添加量との関係を示すグラフThe graph which shows the relationship between the secondary combustion rate and scrap addition amount in the high secondary combustion rate period in the first half of blowing for Comparative Examples 4 and 5 and Examples 1 to 14 of the Examples 実施例の比較例6〜9と本発明例1〜14について、高二次燃焼率期間の全吹錬期間に対する時間割合とスクラップ添加量との関係を示すグラフThe graph which shows the relationship between the time ratio with respect to the total blowing period of a high secondary combustion rate period, and scrap addition amount about the comparative examples 6-9 of this Example, and the invention examples 1-14. 実施例の比較例10〜13と本発明例1〜14について、高二次燃焼率期間のスラグフォーミング高さとスクラップ添加量との関係を示すグラフThe graph which shows the relationship between the slag forming height of a high secondary combustion rate period, and the amount of scrap addition about the comparative examples 10-13 of an Example, and the invention examples 1-14. 高二次燃焼率期間(吹錬前半)におけるスラグフォーミング高さと着熱効率との相関関係を示すグラフGraph showing the correlation between slag forming height and heat receiving efficiency during the high secondary combustion rate period (first half of blowing) 高二次燃焼率期間(吹錬前半)におけるスラグ塩基度とスラグフォーミング高さとの相関関係を示すグラフGraph showing the correlation between slag basicity and slag forming height during the high secondary combustion rate period (first half of blowing) 本発明例1〜14及び比較例1〜13について、脱燐処理終了時のスラグ塩基度と処理後の溶銑中燐濃度との関係を示すグラフAbout the invention examples 1-14 and comparative examples 1-13, the graph which shows the relationship between the slag basicity at the time of completion | finish of a dephosphorization process, and the phosphorus concentration in hot metal after a process 上吹きランスの側孔(二次燃焼用酸素ガス供給ノズル)の有無による二次燃焼率の差を示すグラフThe graph which shows the difference of the secondary combustion rate with the presence or absence of the side hole (the oxygen gas supply nozzle for secondary combustion) of the top blow lance 脱燐処理におけるInput熱量とOutput熱量の内訳を示す図面Drawing showing the breakdown of Input calorific value and Output calorific value in dephosphorization process

符号の説明Explanation of symbols

1 転炉型精錬設備
2 鉄皮
3 耐火物
4 炉本体
5 上吹きランス
6 溶銑
7 出湯孔
8 底吹き羽口
9 ガス導入管
10,10A 酸素ガス配管
11 脱燐剤
12 ディスペンサー
13 脱燐剤移送配管
14 流量調整弁
15 流量調整弁
16 精錬剤
17 添加装置
18 スクラップ
19 スクラップシュート
20 スラグ
21 ランス本体
22 ランスノズル
23 外管
24 中管
25 内管
26 最内管
27 二次燃焼用酸素供給ノズル
28 中心孔
29 周孔
DESCRIPTION OF SYMBOLS 1 Converter type refining equipment 2 Iron skin 3 Refractory 4 Furnace main body 5 Top blowing lance 6 Hot metal 7 Hot water outlet 8 Bottom blowing tuyere 9 Gas introduction pipe 10, 10A Oxygen gas piping 11 Dephosphorization agent 12 Dispenser 13 Dephosphorization agent transfer Piping 14 Flow adjustment valve 15 Flow adjustment valve 16 Refining agent 17 Addition device 18 Scrap 19 Scrap chute 20 Slag 21 Lance body 22 Lance nozzle 23 Outer pipe 24 Middle pipe 25 Inner pipe 26 Innermost pipe 27 Oxygen supply nozzle for secondary combustion 28 Center hole 29 Perimeter hole

Claims (4)

転炉型容器内に収容された溶銑に対して、脱燐剤であるCaO源と酸素源を添加して脱燐処理を施す際に、全吹錬期間のうち、前半50%の期間内であって且つ全吹錬期間の20%以上に相当する長さの期間内においては、CO/(CO+CO)で定義される二次燃焼率を10%以上とするとともに、スラグ塩基度(CaO/SiO)を1.8以下とし、他の期間内においては、前記二次燃焼率を10%未満とすることを特徴とする低燐溶銑の製造方法。 When hot metal contained in a converter type vessel is subjected to dephosphorization treatment by adding a CaO source and an oxygen source as dephosphorization agents, within the first 50% of the total blowing period. In addition, within a period corresponding to 20% or more of the total blowing period, the secondary combustion rate defined by CO 2 / (CO + CO 2 ) is set to 10% or more, and slag basicity (CaO / SiO 2 ) is set to 1.8 or less, and the secondary combustion rate is set to less than 10% in other periods, the method for producing low phosphorus hot metal. 上吹きランスを通じて、酸素ガス又は酸素含有ガスと脱燐剤の少なくとも一部を溶銑浴面に吹き付けて脱燐処理を行うことを特徴とする請求項1に記載の低燐溶銑の製造方法。   2. The method for producing low phosphorus hot metal according to claim 1, wherein the dephosphorization treatment is performed by spraying at least a part of the oxygen gas or the oxygen-containing gas and the dephosphorizing agent onto the hot metal bath surface through an upper blowing lance. 脱燐処理終了時のスラグ塩基度(CaO/SiO)を2.0以上とすることを特徴とする請求項1又は2に記載の低燐溶銑の製造方法。 The method for producing a low phosphorus hot metal according to claim 1 or 2, wherein the slag basicity (CaO / SiO 2 ) at the end of the dephosphorization treatment is 2.0 or more. 先端部に、鉛直下向き又は斜め下向きに開口した吹錬用ガス供給ノズルを有し、該吹錬用ガス供給ノズルよりも上方位置の側面に、水平又は斜め下向き開口した二次燃焼用酸素供給ノズルを有する上吹きランスを用いて吹錬することを特徴とする請求項1〜3のいずれかに記載の低燐溶銑の製造方法。   A secondary combustion oxygen supply nozzle having a blowing gas supply nozzle that opens vertically or obliquely downward at the tip, and that opens horizontally or obliquely downward on the side surface above the blowing gas supply nozzle. The method for producing a low phosphorus hot metal according to any one of claims 1 to 3, wherein the blown blasting is performed using an upper blowing lance having the following.
JP2005072070A 2005-03-14 2005-03-14 Method for producing low phosphorus hot metal Active JP4487812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005072070A JP4487812B2 (en) 2005-03-14 2005-03-14 Method for producing low phosphorus hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072070A JP4487812B2 (en) 2005-03-14 2005-03-14 Method for producing low phosphorus hot metal

Publications (2)

Publication Number Publication Date
JP2006249568A true JP2006249568A (en) 2006-09-21
JP4487812B2 JP4487812B2 (en) 2010-06-23

Family

ID=37090360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072070A Active JP4487812B2 (en) 2005-03-14 2005-03-14 Method for producing low phosphorus hot metal

Country Status (1)

Country Link
JP (1) JP4487812B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266666A (en) * 2007-04-16 2008-11-06 Jfe Steel Kk Method for dephosphorizing molten pig iron
JP2010150574A (en) * 2008-12-24 2010-07-08 Nippon Steel Corp Method for desiliconizing-dephosphorizing molten iron
JP2013057131A (en) * 2012-11-22 2013-03-28 Jfe Steel Corp Method for dephosphorizing molten pig iron
CN103060508A (en) * 2013-01-17 2013-04-24 莱芜钢铁集团有限公司 Smelting method for improving phosphorus removal rate of converter
JP2013167017A (en) * 2012-01-19 2013-08-29 Jfe Steel Corp Method for refining molten iron

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266666A (en) * 2007-04-16 2008-11-06 Jfe Steel Kk Method for dephosphorizing molten pig iron
JP2010150574A (en) * 2008-12-24 2010-07-08 Nippon Steel Corp Method for desiliconizing-dephosphorizing molten iron
JP2013167017A (en) * 2012-01-19 2013-08-29 Jfe Steel Corp Method for refining molten iron
JP2013057131A (en) * 2012-11-22 2013-03-28 Jfe Steel Corp Method for dephosphorizing molten pig iron
CN103060508A (en) * 2013-01-17 2013-04-24 莱芜钢铁集团有限公司 Smelting method for improving phosphorus removal rate of converter

Also Published As

Publication number Publication date
JP4487812B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
JP4715384B2 (en) Method for dephosphorizing hot metal and top blowing lance for dephosphorization
JP4487812B2 (en) Method for producing low phosphorus hot metal
JP6011728B2 (en) Hot metal dephosphorization method
JP5867520B2 (en) Hot metal pretreatment method
JP2006249569A (en) Method for producing molten iron having low phosphorus
JP5983492B2 (en) Hot metal pretreatment method
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP4894325B2 (en) Hot metal dephosphorization method
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
JP5870584B2 (en) Hot metal dephosphorization method
JP4419594B2 (en) Hot metal refining method
JP2011084789A (en) Converter blowing method
JP4979514B2 (en) Hot metal dephosphorization method
JP2005089839A (en) Method for refining molten steel
JPH08104911A (en) Method for melting phosphorus-containing steel
JP4513340B2 (en) Hot metal dephosphorization method
JP4423927B2 (en) Hot metal dephosphorization method
JPH0471965B2 (en)
JP4981248B2 (en) Hot metal processing method
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP2005068533A (en) Method for dephosphorizing molten pig iron
JP4857830B2 (en) Converter steelmaking method
JP4025713B2 (en) Dephosphorization method of hot metal
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4487812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250