JP5870584B2 - Hot metal dephosphorization method - Google Patents

Hot metal dephosphorization method Download PDF

Info

Publication number
JP5870584B2
JP5870584B2 JP2011211733A JP2011211733A JP5870584B2 JP 5870584 B2 JP5870584 B2 JP 5870584B2 JP 2011211733 A JP2011211733 A JP 2011211733A JP 2011211733 A JP2011211733 A JP 2011211733A JP 5870584 B2 JP5870584 B2 JP 5870584B2
Authority
JP
Japan
Prior art keywords
hot metal
carbon source
dephosphorization
refining vessel
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011211733A
Other languages
Japanese (ja)
Other versions
JP2013072111A (en
Inventor
純仁 小澤
純仁 小澤
松野 英寿
英寿 松野
鶴田 秀和
秀和 鶴田
章敏 松井
章敏 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011211733A priority Critical patent/JP5870584B2/en
Publication of JP2013072111A publication Critical patent/JP2013072111A/en
Application granted granted Critical
Publication of JP5870584B2 publication Critical patent/JP5870584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、転炉型精錬容器などの精錬容器に収容された溶銑に脱燐処理を施す方法に関し、詳しくは、灰分の含有量が9質量%以下であるバイオマス由来の炭素源を脱燐処理中の溶銑に添加し、溶銑の脱炭を抑制しながら行う溶銑の脱燐処理方法に関する。   The present invention relates to a method of dephosphorizing hot metal contained in a refining vessel such as a converter-type refining vessel, and more specifically, dephosphorizing a biomass-derived carbon source having an ash content of 9% by mass or less. The present invention relates to a hot metal dephosphorization method that is added to the hot metal in the hot metal while suppressing decarburization of the hot metal.

近年、溶銑段階で予め脱燐処理(「予備脱燐処理」ともいう)を実施し、溶銑中の燐を或る程度除去した後、この溶銑を転炉に装入して転炉で脱炭精錬を実施する製鋼方法が発展してきた。この場合、溶銑の脱燐処理は、トーピードカーや溶銑鍋などの溶銑保持容器或いは転炉などの精錬炉を精錬容器として用い、CaO系脱燐用媒溶剤と酸素ガス及び固体の酸化鉄などの酸素源とを溶銑に添加して、溶銑中の燐を酸素源によって酸化し、酸化反応で生成した燐酸化物(P25)をCaO系脱燐用媒溶剤の滓化によって形成されるスラグ中に取り込み、溶銑中の燐を除去するという方法で行われている。 In recent years, dephosphorization treatment (also referred to as “preliminary dephosphorization treatment”) is performed in advance in the hot metal stage, and after removing a certain amount of phosphorus in the hot metal, the hot metal is charged into a converter and decarburized in the converter. Steelmaking methods for refining have been developed. In this case, the hot metal dephosphorization treatment uses a hot metal holding container such as a torpedo car or hot metal ladle or a refining furnace such as a converter as a refining container, and uses a CaO-based dephosphorization medium solvent, oxygen gas, and oxygen such as solid iron oxide. In the slag formed by adding phosphorus to the hot metal, oxidizing the phosphorus in the hot metal with an oxygen source, and oxidizing the phosphorus oxide (P 2 O 5 ) generated by the oxidation reaction with a CaO-based dephosphorization medium solvent And removing phosphorus in the hot metal.

このように、CaO系脱燐用媒溶剤を用いた溶銑の脱燐処理では、溶銑を酸素源によって酸化精錬するので、溶銑中の炭素が酸化されて減少する所謂脱炭反応が脱燐反応と併行して起こる。溶銑中の炭素の酸化熱は、例えば、後工程の転炉精錬の熱源として鉄スクラップやMn鉱石の溶解に利用されており、従って、溶銑の脱燐処理における脱炭反応の進行は、次工程以降における熱不足をもたらすことになる。   Thus, in the hot metal dephosphorization treatment using the CaO-based dephosphorization medium solvent, the hot metal is oxidized and refined by an oxygen source, so the so-called decarburization reaction in which the carbon in the hot metal is oxidized and reduced is called dephosphorization reaction. It happens in parallel. The oxidation heat of carbon in hot metal is used for melting iron scrap and Mn ore, for example, as a heat source for converter refining in the subsequent process. Therefore, the progress of decarburization reaction in the dephosphorization treatment of hot metal is the next process. This will lead to a lack of heat.

この熱不足を補償する手段として、脱燐処理中に溶銑中にコークスなどの炭素源を添加し、溶銑中の炭素を補う方法或いは炭素源の燃焼熱を溶銑に着熱させる方法が多数提案されている。例えば、特許文献1には、脱燐処理中に溶銑に炭素源を吹き込み、溶銑中の炭素量を飽和濃度以上とすることによって共存するスラグ中に炭素を析出させ、このスラグ中に酸素源を吹き込んで析出した炭素を燃焼させ、熱的余裕度を向上させる脱燐処理方法が提案されている。しかしながら、この方法では、スラグ中に析出する炭素源をスラグ中に吹き込む酸素源によって燃焼しており、そのため、析出した炭素源を十分に燃焼できない場合には、スラグ中に炭素源が残留し、スラグ中のFeOがこの炭素源によって還元され、スラグの酸素ポテンシャルが低下して脱燐反応を阻害する虞がある。   As a means for compensating for this heat shortage, many methods have been proposed in which a carbon source such as coke is added to the hot metal during the dephosphorization process to supplement the carbon in the hot metal or the combustion heat of the carbon source is applied to the hot metal. ing. For example, in Patent Document 1, a carbon source is blown into hot metal during the dephosphorization treatment, and carbon is precipitated in coexisting slag by setting the amount of carbon in the hot metal to a saturated concentration or more, and an oxygen source is added to the slag. There has been proposed a dephosphorization method in which carbon deposited by blowing is burned to improve the thermal margin. However, in this method, the carbon source that precipitates in the slag is burned by the oxygen source that blows into the slag, so if the precipitated carbon source cannot be burned sufficiently, the carbon source remains in the slag, There is a possibility that FeO in the slag is reduced by this carbon source, and the oxygen potential of the slag is lowered to inhibit the dephosphorization reaction.

また、特許文献2には、上底吹きの転炉型精錬容器に装入した溶銑にCaOを脱燐用媒溶剤として添加しつつ、酸素ガスを上吹きして溶銑を脱燐処理する際に、炭素源を転炉型精錬容器の上方から添加するとともに、添加した炭素源の当量分の酸素ガスを吹き込み、炭素源の燃焼熱によってCaOの滓化を促進させる脱燐処理方法が提案されている。しかしながら、この方法では、炭素源の添加量に比例して酸素ガスの添加量が増加するので、大量の炭素源を有効に活用しようとする場合には、酸素ガスの吹き込み時間が長くなり、脱燐設備の処理能力が低下する。更に、脱燐用造滓剤のCaOと炭素源とを、精錬容器の上方から投入して添加するので、脱燐反応の場所と加炭反応の場所とが同じ場所になり、添加した炭素源によって脱燐反応が阻害される虞がある。   Further, in Patent Document 2, when adding hot metal gas to a hot metal charged in a top-bottomed converter type refining vessel and adding CaO as a dephosphorization medium solvent, oxygen gas is blown up to dephosphorize the hot metal. A dephosphorization method has been proposed in which a carbon source is added from above the converter-type refining vessel and oxygen gas equivalent to the amount of the added carbon source is blown to accelerate the hatching of CaO by the combustion heat of the carbon source. Yes. However, in this method, the amount of oxygen gas added increases in proportion to the amount of carbon source added. Therefore, when a large amount of carbon source is to be used effectively, the oxygen gas blowing time becomes longer and the oxygen gas is removed. The processing capacity of the phosphorus facility is reduced. Furthermore, since the dephosphorizing agent CaO and the carbon source are added from above the refining vessel and added, the location of the dephosphorization reaction and the location of the carburization reaction are the same, and the added carbon source There is a possibility that the dephosphorization reaction is hindered.

特開平9−20912号公報JP-A-9-20912 特開2002−69522号公報JP 2002-69522 A

本発明は上記事情に鑑みてなされたもので、その目的とするところは、酸素ガス及びCaO系脱燐用媒溶剤を用いて溶銑を脱燐処理する際に、脱燐反応を阻害することなく且つ脱燐処理能力を低下させることなく、溶銑の脱炭を効率的に抑制することの可能な脱燐処理方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is to prevent dephosphorization reaction from being hindered when dephosphorizing hot metal using oxygen gas and a CaO-based dephosphorization medium solvent. And it is providing the dephosphorization processing method which can suppress decarburization of hot metal efficiently, without reducing the dephosphorization processing capability.

本発明者らは、上記課題を解決すべく、精錬容器として溶銑鍋及び転炉型精錬容器を用い、上吹きランスから酸素ガスを溶銑湯面に吹き付け、CaO系脱燐用媒溶剤を供給して、種々の条件下で溶銑の脱燐試験を実施した。以下に、試験結果を説明する。   In order to solve the above problems, the present inventors used a hot metal ladle and a converter type refining vessel as a refining vessel, sprayed oxygen gas from the top blowing lance onto the hot metal surface, and supplied a CaO-based dephosphorization medium solvent. The hot metal dephosphorization test was conducted under various conditions. The test results will be described below.

酸素ガスなどの気体酸素源またはミルスケールや鉄鉱石などの固体酸素源を用いて溶銑を脱燐処理する際の脱燐反応は、下記の(1)式にしたがって進行する。
2P+5FeO+3CaO=3CaO・P25+5Fe …(1)
この脱燐処理において、酸素ガスなどの気体酸素源または酸化鉄などの固体酸素源を酸素源として供給する理由は、(1)式の左辺第2項のFeOをスラグ中に生成させるためである。
The dephosphorization reaction at the time of dephosphorizing the hot metal using a gaseous oxygen source such as oxygen gas or a solid oxygen source such as mill scale or iron ore proceeds according to the following formula (1).
2P + 5FeO + 3CaO = 3CaO · P 2 O 5 + 5Fe (1)
The reason for supplying a gaseous oxygen source such as oxygen gas or a solid oxygen source such as iron oxide as the oxygen source in this dephosphorization treatment is to generate FeO in the second term on the left side of equation (1) in the slag. .

但し、酸素ガスまたは酸化鉄などの酸素源を溶銑に供給するので、下記の(2)式に示す脱炭反応も進行し、脱燐処理後の溶銑中の炭素濃度が低下する。
C+1/2O2=CO …(2)
そこで、熱余裕の補償手段として、溶銑へ炭素源(「炭材」ともいう)を添加することにより、溶銑中の炭素濃度を増加させることを検討した。
However, since an oxygen source such as oxygen gas or iron oxide is supplied to the hot metal, the decarburization reaction shown in the following formula (2) also proceeds, and the carbon concentration in the hot metal after the dephosphorization process is lowered.
C + 1 / 2O 2 = CO (2)
Therefore, as a means for compensating for the heat margin, the inventors investigated to increase the carbon concentration in the hot metal by adding a carbon source (also referred to as “charcoal”) to the hot metal.

しかし、炭素源の添加方法が適切でない場合には、下記の(3)式に示す反応により、添加した炭素源が脱燐反応に必要なFeOを還元し、脱燐反応が阻害される虞がある。つまり、(1)式の脱燐反応を進行させつつ、(3)式の還元反応が進行しないような効率的な加炭方法を採用する必要がある。
FeO+C=Fe+CO …(3)
本発明者らは、これに対処するために、精錬容器内の脱燐反応の場所と加炭反応の場所とを分離させることを検討した。その結果、以下の事象が判明した。
However, if the method of adding the carbon source is not appropriate, the added carbon source may reduce FeO necessary for the dephosphorylation reaction and the dephosphorization reaction may be hindered by the reaction shown in the following formula (3). is there. That is, it is necessary to employ an efficient carburizing method that does not proceed with the reduction reaction of the formula (3) while the dephosphorization reaction of the formula (1) proceeds.
FeO + C = Fe + CO (3)
In order to cope with this, the present inventors have studied to separate the dephosphorization reaction site and the carburization reaction site in the refining vessel. As a result, the following events were found.

即ち、上吹きランスから吹き付けて供給する酸素ガスの溶銑湯面での衝突位置(「火点」と呼ぶ)でFeOを潤沢に生成させてP25を形成させ、この火点に向けて粉体状のCaO系脱燐用媒溶剤を吹き付けて添加すれば、P25が潤沢に形成される場所にCaO系脱燐用媒溶剤が直接供給されることから、(1)式に示す脱燐反応は効率良く進行することになる。つまり、粉体状のCaO系脱燐用媒溶剤を火点に吹き付けて添加することで、火点を脱燐反応の主たる場所とすることができる。 That is, FeO is generated abundantly at the collision position (referred to as “fire point”) of the oxygen gas supplied by blowing from the upper blow lance on the molten metal surface to form P 2 O 5 , and toward this fire point. If the powdered CaO-based dephosphorization medium solvent is sprayed and added, the CaO-based dephosphorization medium solvent is directly supplied to the place where P 2 O 5 is abundantly formed. The dephosphorization reaction shown proceeds efficiently. That is, by adding the powdered CaO-based dephosphorization medium solvent to the fire point and adding it, the fire point can be made the main place of the dephosphorization reaction.

一方、炭素源は、基本的には火点以外に供給する必要がある。精錬容器として転炉型精錬容器を用いた場合、炭素源を転炉型精錬容器の上方から容器内に上置き投入することにより、投入された炭素源は落下する際に転炉型精錬容器の中心位置に直立する上吹きランスと衝突して分散し、炭素源の落下位置は精錬容器内に分散される。この場合、火点に落下する炭素源も発生するものの、精錬容器内の水平断面における火点の占める面積率は少なく、ほとんどの炭素源は火点とは異なる位置に落下し、その位置で加炭反応が進行するので、炭素源添加による火点での脱燐反応への影響を極めて少なくすることができる。   On the other hand, the carbon source basically needs to be supplied to other than the fire point. When a converter-type smelting vessel is used as a smelting vessel, the carbon source is placed in the vessel from above the converter-type smelting vessel, so that when the input carbon source falls, It collides with the upper blowing lance upright at the center position and disperses, and the falling position of the carbon source is dispersed in the refining vessel. In this case, although a carbon source that falls to the hot spot is also generated, the area ratio of the fire spot in the horizontal section in the refining vessel is small, and most of the carbon source falls to a position different from the hot spot and is added at that position. Since the charcoal reaction proceeds, the influence of the carbon source addition on the dephosphorization reaction at the fire point can be extremely reduced.

つまり、転炉型精錬容器を用いて溶銑の脱燐処理を行う際に、粉体状のCaO系脱燐用媒溶剤を火点に添加し、且つ、炭素源を上置き添加することにより、加炭反応の主たる場所は火点以外の場所となり、脱燐反応の場所と加炭反応の場所とが分離されるので、脱燐反応を効率的に進行させることが可能となる。更に、火点以外に落下した炭素源は酸素ガスによってほとんど燃焼することなく溶銑中に溶解するので、炭素源を燃焼させるための酸素ガスは必要とせず、供給する酸素ガス量を炭素源の添加量に応じて増加する必要がない。そのために、脱燐処理時間を延長させる必要もなく、脱燐処理能力を低下させることもない。   That is, when performing dephosphorization of hot metal using a converter type refining vessel, by adding a powdered CaO-based dephosphorization medium solvent to the hot spot and adding a carbon source on top, The main place of the carburization reaction is a place other than the fire point, and the place of the dephosphorization reaction and the place of the carburization reaction are separated, so that the dephosphorization reaction can proceed efficiently. Furthermore, the carbon source that falls outside the hot spot dissolves in the hot metal with almost no combustion by the oxygen gas, so oxygen gas for burning the carbon source is not necessary, and the amount of oxygen gas to be supplied is added to the carbon source. There is no need to increase the amount. Therefore, it is not necessary to extend the dephosphorization time, and the dephosphorization capacity is not reduced.

一方、精錬容器として溶銑鍋やトーピードカーなどの溶銑保持容器を使用する場合には、精錬容器内の溶銑浴面上に、転炉型精錬容器に比較して、炭素源の投入用シュートや吹き込みランスを配置する余裕があり、炭素源を火点以外に供給することは、炭素源の投入用シュートや吹き込みランスの位置を調整することで容易に実現できる。   On the other hand, when a hot metal holding vessel such as a hot metal ladle or torpedo car is used as a refining vessel, a chute or blowing lance for introducing a carbon source is placed on the hot metal bath surface in the refining vessel as compared with a converter type refining vessel. The supply of the carbon source other than the fire point can be easily realized by adjusting the position of the chute for charging the carbon source and the blowing lance.

また、試験を繰り返すうちに、添加する炭素源の灰分含有量が低いほど、炭素源は溶銑中に迅速に溶解し、脱燐反応への影響が少なくなることが分った。これは、溶銑への溶解速度が速い炭素源は、溶銑に添加された後、直ちに溶銑に溶解するので、添加した炭素源によるFeOの還元が抑制される、或いは、酸素ガスと反応する比率が低くなって少ない添加量で目標とする加炭量を確保することができるなどによるものである。   In addition, as the test was repeated, it was found that the lower the ash content of the carbon source to be added, the faster the carbon source dissolved in the hot metal and the less the influence on the dephosphorization reaction. This is because the carbon source having a high dissolution rate in the hot metal dissolves in the hot metal immediately after being added to the hot metal, so that the reduction of FeO by the added carbon source is suppressed, or the ratio of reacting with oxygen gas is high. This is because the target amount of carburization can be ensured with a small addition amount.

つまり、溶銑鍋やトーピードカーなどを精錬容器として使用した場合に、炭素源を故意に火点に向けて添加するなどしない限り、炭素源の添加位置を調整しないで炭素源を添加し、炭素源の一部が火点に添加されても、灰分含有量の少ない炭素源を使用した場合には、脱燐反応を阻害することなく加炭できることが分った。炭素源中の灰分含有量は、精錬炉で通常加炭材として使用される土壌黒鉛では約18質量%、コークスでは約11質量%であるのに対して、パームヤシ由来のバイオマス炭では9質量%以下である。即ち、添加する炭素源としては灰分含有量の少ないバイオマス炭が最適であることが分った。これらの結果から、本発明では、バイオマス由来の、灰分含有量が9質量%以下である炭素源を加炭材として使用することを必須条件とした。   In other words, when a hot metal ladle or torpedo car is used as a refining vessel, the carbon source is added without adjusting the carbon source addition position unless the carbon source is intentionally added to the fire point. It has been found that even when a part of the carbon source is added to the hot spot, when a carbon source having a low ash content is used, it can be carburized without inhibiting the dephosphorization reaction. The ash content in the carbon source is about 18% by mass for soil graphite and about 11% by mass for coke, which are usually used as a carburizing material in a refining furnace, and 9% by mass for biomass coal derived from palm palm. It is as follows. That is, it was found that biomass charcoal with a low ash content is optimal as the carbon source to be added. From these results, in the present invention, it is an essential condition that a carbon source derived from biomass and having an ash content of 9% by mass or less is used as a carburizing material.

また、試験を繰り返すうちに、炭素源を溶銑中に迅速に溶解させることができる、及び、迅速に溶解させることによって酸素ガスと反応する炭素源を少なくすることができる、更には、炭素源を転炉型の精錬容器内に比較的均一に分散させて添加することができるなどから、炭素源の添加総量が同一であっても、炭素源を連続的に投入することが好ましいことが分った。但し、「連続的に投入する」とは、連続して添加する場合のみならず、2分間程度以下の短い時間間隔で炭素源を断続的に投入する場合も含むものとする。   In addition, as the test is repeated, the carbon source can be quickly dissolved in the hot metal, and the carbon source that reacts with oxygen gas can be reduced by rapidly dissolving the carbon source. It is understood that it is preferable to continuously charge the carbon source even if the total amount of the carbon source is the same, because it can be added in a relatively uniform manner in the converter type refining vessel. It was. However, “continuously charged” includes not only the case of continuous addition but also the case of intermittently charging the carbon source at short time intervals of about 2 minutes or less.

更に、炭素源の投入開始時期が炭素源の加炭歩留まりに影響を及ぼすことも判明した。つまり、炭素源が溶銑中に溶解するには、或る程度の時間が必要であることから、炭素源を脱燐処理の末期に添加しても炭素源は溶銑中に溶け切らず、スラグ中に残留する。従って、脱燐処理の前半までに、炭素源の投入を開始することが好ましいことが分った。   It was also found that the start timing of carbon source input affects the carbon source yield. In other words, since a certain amount of time is required for the carbon source to dissolve in the hot metal, even if the carbon source is added at the end of the dephosphorization process, the carbon source does not completely melt into the hot metal, To remain. Accordingly, it has been found that it is preferable to start charging the carbon source by the first half of the dephosphorization treatment.

脱燐反応を促進させるために、従来、CaOの滓化促進剤である蛍石などの弗素源を添加したCaO系脱燐用媒溶剤が一般的に使用されているが、粉体状のCaO系脱燐用媒溶剤を火点に向けて吹き付けて溶銑を脱燐処理すると、CaO系脱燐用媒溶剤の滓化が促進され、蛍石などの弗素源を添加しなくても、つまり、CaO系脱燐用媒溶剤として生石灰(CaO)などの単体を使用しても、従来と同等の脱燐処理が可能であることも確認できた。この場合、CaO系脱燐用媒溶剤の滓化が促進されることにより、CaO系脱燐用媒溶剤の使用原単位も大幅に低減することが分った。尚、本発明における酸素ガスとは、工業的に純酸素ガスと呼ばれるもので、体積%で数%程度の窒素ガスなどを含有するガスも本発明における酸素ガスに含まれる。   In order to accelerate the dephosphorization reaction, a CaO-based dephosphorization medium added with a fluorine source such as fluorite, which is a CaO hatching accelerator, is generally used. When the hot metal is dephosphorized by spraying the solvent for dephosphorization toward the fire point, the hatching of the solvent for CaO dephosphorization is promoted, that is, without adding a fluorine source such as fluorite, It has also been confirmed that even if a simple substance such as quick lime (CaO) is used as a CaO-based dephosphorization medium solvent, dephosphorization treatment equivalent to the conventional one can be performed. In this case, it was found that the basic unit of use of the CaO-based dephosphorization medium solvent was significantly reduced by promoting the hatching of the CaO-based dephosphorization medium solvent. The oxygen gas in the present invention is industrially referred to as pure oxygen gas, and gas containing about several percent by volume of nitrogen gas or the like is also included in the oxygen gas in the present invention.

本発明はこれらの知見に基づきなされたものであり、その要旨は以下のとおりである。
(1)精錬容器に収容された溶銑の浴面に向けて上吹きランスを介して酸素ガスを吹き付けるとともに、溶銑浴面の酸素ガスの吹き付け面に向けてCaO系脱燐用媒溶剤を吹き付けて溶銑を脱燐処理する際に、前記精錬容器内に、バイオマス由来の、灰分含有量が9質量%以下である炭素源を添加することを特徴とする、溶銑の脱燐処理方法。
(2)前記精錬容器が転炉型精錬容器であり、前記炭素源を、転炉型精錬容器内に直立する上吹きランスに衝突させ、この衝突によって前記炭素源を転炉型精錬容器内に分散させて上置き添加することを特徴とする、上記(1)に記載の溶銑の脱燐処理方法。
(3)前記炭素源が、パームヤシ殻由来のバイオマス炭、パームヤシ空果房由来のバイオマス炭、パームヤシ幹由来のバイオマス炭のうちの何れか1種または2種以上であることを特徴とする、上記(1)または上記(2)に記載の溶銑の脱燐処理方法。
(4)前記炭素源を、連続的に添加することを特徴とする、上記(1)ないし上記(3)の何れか1項に記載の溶銑の脱燐処理方法。
(5)前記炭素源の精錬容器内への添加開始時期を、脱燐処理に要する処理時間の1/2を経過する時点までとすることを特徴とする、上記(1)ないし上記(4)の何れか1項に記載の溶銑の脱燐処理方法。
This invention is made | formed based on these knowledge, The summary is as follows.
(1) While blowing oxygen gas through the top blowing lance toward the hot metal bath surface accommodated in the refining vessel, spraying a CaO-based dephosphorization solvent toward the oxygen gas blowing surface of the hot metal bath surface A method for dephosphorizing hot metal, wherein a carbon source derived from biomass and having an ash content of 9% by mass or less is added to the refining vessel when the hot metal is dephosphorized.
(2) The refining vessel is a converter-type refining vessel, and the carbon source is collided with an upper blowing lance standing upright in the converter-type refining vessel, and the carbon source is brought into the converter-type refining vessel by this collision. The hot metal dephosphorization method according to (1) above, wherein the hot metal is added after being dispersed.
(3) The carbon source is any one or more of biomass charcoal derived from palm coconut shell, biomass charcoal derived from palm palm empty bunch, and biomass charcoal derived from palm palm trunk, (1) or the hot metal dephosphorization method according to (2) above.
(4) The hot metal dephosphorization method according to any one of (1) to (3) above, wherein the carbon source is continuously added.
(5) The above (1) to (4), characterized in that the addition start timing of the carbon source into the refining vessel is until a time point at which half of the processing time required for the dephosphorization processing has elapsed. 4. The hot metal dephosphorization method according to any one of the above.

本発明によれば、CaO系脱燐用媒溶剤を火点に吹き付けつつ、バイオマス由来の、灰分含有量が9質量%以下である炭素源を添加するので、バイオマス由来の、灰分含有量が9質量%以下である炭素源は溶銑への溶解速度が速いことから直ちに溶銑に溶解し、脱燐反応を阻害することなく且つ脱燐処理能力を低下させることなく、溶銑を迅速且つ効率的に加炭することが実現される。また、炭素源を精錬容器内に分散添加する場合には、精錬容器内の脱燐反応の場所と加炭反応の場所とが分離され、より一層脱燐反応を阻害することなく溶銑を加炭することが可能となる。つまり、本発明により、溶銑の脱炭を効率的に抑制することが実現され、その結果、従来に比較して格段に溶銑の熱余裕を高めることができ、次工程の転炉脱炭精錬では、溶銑の配合比率を低くすることや、マンガン鉱石の添加量を多くすることが可能となり、省資源、省エネルギーが達成されるのみならず、転炉脱炭操業の安定化が達成され、工業上有益な効果がもたらされる。   According to the present invention, the carbon source derived from biomass and having an ash content of 9% by mass or less is added while spraying the CaO-based dephosphorization medium solvent on the fire point, so that the biomass-derived ash content is 9%. A carbon source having a mass% or less dissolves immediately in the hot metal because of its high dissolution rate in the hot metal, and the hot metal can be added quickly and efficiently without hindering the dephosphorization reaction and without degrading the dephosphorization capacity. Charging is realized. In addition, when the carbon source is added to the refining vessel in a dispersed manner, the location of the dephosphorization reaction and the location of the carburization reaction in the refining vessel are separated, and the hot metal is carburized without further inhibiting the dephosphorization reaction. It becomes possible to do. That is, according to the present invention, it is possible to efficiently suppress the decarburization of the hot metal, and as a result, it is possible to significantly increase the thermal margin of the hot metal as compared with the conventional case. It is possible to reduce the mixture ratio of hot metal and increase the amount of manganese ore added, which not only saves resources and energy, but also stabilizes converter decarburization operations. It has a beneficial effect.

本発明に係る溶銑の脱燐処理方法を実施する際に用いる転炉型精錬設備の概略断面図である。It is a schematic sectional drawing of the converter type refining equipment used when implementing the hot metal dephosphorization processing method concerning this invention. 本発明例及び比較例における脱炭量と脱燐量との相関を示す図である。It is a figure which shows the correlation with the amount of decarburization in the example of this invention, and a comparative example, and the amount of dephosphorization. 本発明例及び比較例における炭素源中の灰分含有量と脱炭量との相関を示す図である。It is a figure which shows the correlation with the ash content in the carbon source in this invention example and a comparative example, and the amount of decarburization. 本発明例において、炭素源の添加開始時間を脱燐処理時間で除算した値と脱炭量との関係を示す図である。In the example of this invention, it is a figure which shows the relationship between the value which divided the addition start time of the carbon source by the dephosphorization processing time, and the amount of decarburization.

以下、本発明を転炉型精錬設備で実施した場合を例として、添付図面を参照して具体的に説明する。図1は、本発明に係る溶銑の脱燐処理方法を実施する際に用いる転炉型精錬設備の概略断面図である。   Hereinafter, a case where the present invention is implemented in a converter type refining facility will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of a converter-type refining equipment used when carrying out the hot metal dephosphorization method according to the present invention.

図1に示すように、本発明に係る溶銑の脱燐処理で用いる転炉型精錬設備1は、その外殻を鉄皮4で形成され、鉄皮4の内側に耐火物5が施行された炉本体2と、この炉本体2の内部空間に挿入され、上下方向に移動可能な鋼製の上吹きランス3とを備えている。炉本体2の上部には、収容した溶銑15を精錬後に出湯するための出湯口6が設けられ、また、炉本体2の炉底には、撹拌用ガス18を吹き込むための底吹き羽口7が設けられている。この底吹き羽口7はガス導入管8と接続されている。上吹きランス3には、酸素ガス配管9が接続されており、酸素ガス配管9を介して任意の流量で上吹きランス3から炉本体2の内部に酸素ガスが供給されるようになっている。   As shown in FIG. 1, the converter-type refining equipment 1 used in the hot metal dephosphorization process according to the present invention has an outer shell formed of an iron shell 4, and a refractory 5 is enforced inside the iron shell 4. A furnace body 2 and a steel top blowing lance 3 which is inserted into the interior space of the furnace body 2 and is movable in the vertical direction are provided. At the upper part of the furnace body 2, a hot water outlet 6 is provided for discharging the molten iron 15 accommodated after refining, and a bottom blowing tuyere 7 for blowing the stirring gas 18 into the furnace bottom of the furnace body 2. Is provided. The bottom blowing tuyere 7 is connected to a gas introduction pipe 8. An oxygen gas pipe 9 is connected to the top blowing lance 3, and oxygen gas is supplied from the top blowing lance 3 to the inside of the furnace body 2 through the oxygen gas pipe 9 at an arbitrary flow rate. .

炉本体2の上方には、バイオマス由来の、灰分含有量が9質量%以下である炭素源21を炉本体2の内部に投入するための、即ち、炭素源21を炉本体2に収容された溶銑15及びスラグ16の上に上置き添加するための炭素源添加装置20が設置されている。炭素源添加装置20としては、例えば、ホッパー、シュート、秤量機、切り出し装置などからなる慣用の原料供給装置を使用することができる。   Above the furnace main body 2, the carbon source 21 derived from biomass and having an ash content of 9% by mass or less is charged into the furnace main body 2, that is, the carbon source 21 is accommodated in the furnace main body 2. A carbon source addition device 20 is installed on top of the hot metal 15 and slag 16 for addition. As the carbon source addition device 20, for example, a conventional raw material supply device including a hopper, a chute, a weighing machine, a cutting device and the like can be used.

上吹きランス3は、造滓剤移送配管19を介して、CaO系脱燐用造滓剤17を収容するディスペンサー11と接続されており、一方、ディスペンサー11には、酸素ガス配管9から分岐した酸素ガス配管9A、並びに、窒素ガス配管10が接続されている。即ち、ディスペンサー11に供給された酸素ガス及び窒素ガスは、ディスペンサー11に収容されたCaO系脱燐用造滓剤17の搬送用ガスとして機能し、造滓剤移送配管19を経由して上吹きランス3の先端から、炉本体内の溶銑浴面の酸素ガスの吹き付け面に向けて、CaO系脱燐用造滓剤17を吹き付けて供給(「投射」ともいう)することができるように構成されている。   The top blowing lance 3 is connected to a dispenser 11 that contains a CaO-based dephosphorizing agent 17 through an additive for transferring the anti-phosphorus agent 19. On the other hand, the dispenser 11 is branched from the oxygen gas pipe 9. An oxygen gas pipe 9A and a nitrogen gas pipe 10 are connected. In other words, the oxygen gas and nitrogen gas supplied to the dispenser 11 function as a transport gas for the CaO-based dephosphorizing agent 17 contained in the dispenser 11, and blown upward through the additive agent transfer pipe 19. It is configured so that the CaO-based dephosphorizing agent 17 can be sprayed and supplied (also referred to as “projection”) from the tip of the lance 3 toward the surface of the hot metal bath in the furnace body where the oxygen gas is sprayed. Has been.

酸素ガス配管9、9Aには、それぞれ流量調整弁12、13が設けられ、また、窒素ガス配管10には、流量調整弁14が設けられており、酸素ガスを上吹きランス3から任意の流量で吹き込みながら、酸素ガスまたは窒素ガスを、ディスペンサー11を経由して任意の流量で搬送用ガスとして吹き込むことができるように構成されている。この場合、窒素ガスに代えて、Arガスや炭酸ガスなど種々の気体を搬送用ガスとして利用することができる。   The oxygen gas pipes 9 and 9A are respectively provided with flow rate adjusting valves 12 and 13, and the nitrogen gas pipe 10 is provided with a flow rate adjusting valve 14, and oxygen gas is supplied from the top blow lance 3 at an arbitrary flow rate. In this way, oxygen gas or nitrogen gas can be blown in as a transfer gas at an arbitrary flow rate via the dispenser 11. In this case, instead of nitrogen gas, various gases such as Ar gas and carbon dioxide can be used as the carrier gas.

上吹きランス3は、外側から順に外管、中管、内管、最内管の同心円状の4種の鋼管(図示せず)即ち四重管で構成されており、酸素ガスまたは窒素ガスを搬送用ガスとするCaO系脱燐用造滓剤17が最内管の内部を通り、酸素ガスが内管と最内管との間隙を通り、外管と中間との間隙及び中管と内管との間隙は、冷却水の給排水流路となっている。尚、本発明に係る脱燐処理方法を実施する場合、上吹きランス3はCaO系脱燐用造滓剤17の供給流路を兼ねる必要はなく、上吹きランス3とは別にCaO系脱燐用造滓剤17の供給用ランスを設置してもよい。この場合には、上吹きランス3は四重管とする必要はなく、通常の三重管のランスを複数個配置すればよい。但し、炉本体2の上方部における設備配置が煩雑になるので、これを防止するためには、上吹きランス3がCaO系脱燐用造滓剤17の供給流路を兼ねることが好ましい。   The top blowing lance 3 is composed of four types of concentric steel pipes (not shown), that is, a quadruple pipe, which are an outer pipe, an intermediate pipe, an inner pipe, and an innermost pipe in order from the outside. CaO-based dephosphorizing agent 17 used as a carrier gas passes through the innermost tube, oxygen gas passes through the gap between the inner tube and the innermost tube, the gap between the outer tube and the intermediate tube, and the inner tube and the inner tube. The gap with the pipe is a cooling water supply / drainage channel. When carrying out the dephosphorization processing method according to the present invention, the top blowing lance 3 does not have to serve as a supply flow path for the CaO-based dephosphorizing agent 17. You may install the lance for supply of the anti-glazing agent 17. FIG. In this case, the upper blow lance 3 does not need to be a quadruple tube, and a plurality of ordinary triple tube lances may be arranged. However, since the equipment arrangement in the upper part of the furnace body 2 becomes complicated, in order to prevent this, it is preferable that the top blowing lance 3 also serves as a supply flow path for the CaO-based dephosphorizing agent 17.

このような構成の転炉型精錬設備1を用い、溶銑15に対して以下に示すようにして本発明に係る脱燐処理を実施する。   Using the converter type refining equipment 1 having such a configuration, the dephosphorization treatment according to the present invention is performed on the hot metal 15 as follows.

先ず、炉本体2の内部に溶銑15を装入する。鉄スクラップを使用する場合には、溶銑15の装入前に炉本体2の内部に鉄スクラップを装入する。用いる溶銑15としてはどのような組成であっても処理することができ、脱燐処理の前に脱硫処理や脱珪処理が施されていてもよい。脱珪処理とは、溶銑15にミルスケールなどの酸化鉄或いは酸素ガスを添加し、主として溶銑15に含有される珪素を除去する処理である。因みに、脱燐処理前の溶銑15の主な化学成分は、炭素:3.8〜5.0質量%、珪素:0.6質量%以下、硫黄:0.05質量%以下、燐:0.08〜0.3質量%程度である。但し、脱燐処理時に炉本体内で生成されるスラグ16の量が多くなると脱燐効率が低下するので、炉本体内で生成されるスラグ量を少なくして脱燐効率を高めるために、予め脱珪処理を行い、溶銑15の珪素濃度を0.2質量%以下まで低減しておくことが好ましい。また、溶銑温度は1250〜1350℃の範囲であれば問題なく脱燐処理することができる。   First, the hot metal 15 is charged into the furnace body 2. When iron scrap is used, iron scrap is charged into the furnace body 2 before the hot metal 15 is charged. The hot metal 15 used can be processed with any composition, and may be subjected to desulfurization treatment or desiliconization treatment before dephosphorization treatment. The desiliconization process is a process in which iron oxide such as mill scale or oxygen gas is added to the hot metal 15 to mainly remove silicon contained in the hot metal 15. Incidentally, the main chemical components of the hot metal 15 before the dephosphorization treatment are carbon: 3.8 to 5.0% by mass, silicon: 0.6% by mass or less, sulfur: 0.05% by mass or less, phosphorus: 0.00%. It is about 08-0.3 mass%. However, if the amount of slag 16 generated in the furnace body during the dephosphorization process increases, the dephosphorization efficiency decreases. Therefore, in order to increase the dephosphorization efficiency by reducing the amount of slag generated in the furnace body, It is preferable to perform a silicon removal treatment and reduce the silicon concentration of the hot metal 15 to 0.2% by mass or less. Moreover, if the hot metal temperature is in the range of 1250 to 1350 ° C., dephosphorization can be performed without any problem.

次いで、底吹き羽口7から窒素ガスなどの非酸化性ガスまたはArガスなどの希ガスを撹拌用ガス18として溶銑15に吹き込みながら、上吹きランス3から溶銑15の浴面に向けて酸素ガスを吹き付けて供給するとともに、CaO系脱燐用造滓剤17を、上吹きランス3を介して溶銑浴面の酸素ガスの吹き付け面、即ち火点に向けて吹き付けて供給し、溶銑15の脱燐処理を開始する。   Next, a non-oxidizing gas such as nitrogen gas or a rare gas such as Ar gas is blown into the hot metal 15 from the bottom blowing tuyere 7 as a stirring gas 18, and oxygen gas is directed from the top blowing lance 3 toward the bath surface of the hot metal 15. And the CaO-based dephosphorizing agent 17 is supplied through the top blowing lance 3 toward the spraying surface of the oxygen gas on the hot metal bath surface, that is, toward the hot spot, and the hot metal 15 is removed. Start phosphorus treatment.

この場合、CaO系脱燐用造滓剤17としては、粉状の生石灰(CaO)を使用することができる。生石灰粉にアルミナ粉や蛍石などを滓化促進剤として加えてもよいが、本発明においては、CaO系脱燐用造滓剤17を溶銑浴面の火点に吹き付けて添加するので、生石灰粉単体であっても十分に滓化するので、アルミナ粉や蛍石などの滓化促進剤は用いなくても十分に脱燐することができる。特に、スラグ16からの弗素の溶出量を抑えて環境を保護する観点から、蛍石などの弗素含有物質はCaO系脱燐用造滓剤17に混合しないことが好ましい。但し、弗素が不純物成分として不可避的に混入した物質については使用しても構わない。また、生石灰の他に、石灰石(CaCO3)、消石灰(Ca(OH)2)、ドロマイト(CaCO3・MgCO3)などの粉体もCaO系脱燐用造滓剤17として使用可能である。 In this case, as the CaO-based dephosphorizing agent 17, powdered quicklime (CaO) can be used. Alumina powder or fluorite may be added to the quicklime powder as a hatching accelerator, but in the present invention, the CaO-based dephosphorizing agent 17 is added by spraying on the hot spot of the hot metal bath surface. Even if the powder itself is sufficiently hatched, it can be sufficiently dephosphorized without using a hatching accelerator such as alumina powder or fluorite. In particular, from the viewpoint of protecting the environment by suppressing the amount of fluorine eluted from the slag 16, it is preferable that a fluorine-containing substance such as fluorite is not mixed with the CaO-based dephosphorizing agent 17. However, a substance in which fluorine is inevitably mixed as an impurity component may be used. In addition to quicklime, powders such as limestone (CaCO 3 ), slaked lime (Ca (OH) 2 ), and dolomite (CaCO 3 · MgCO 3 ) can also be used as the CaO-based dephosphorizing agent 17.

底吹き羽口7から吹き込まれる攪拌ガス18によって溶銑15は攪拌され、溶銑浴面に吹き付けられたCaO系脱燐用造滓剤17は火点にて溶融し、スラグ16を形成し、溶銑15の脱燐反応が進行する。   The hot metal 15 is stirred by the stirring gas 18 blown from the bottom blowing tuyere 7, and the CaO-based dephosphorizing agent 17 sprayed on the hot metal bath surface is melted at a hot spot to form a slag 16. The dephosphorization reaction proceeds.

この脱燐処理中、炭素源添加装置20から炉本体内に、バイオマス由来の、灰分含有量が9質量%以下である炭素源21を投入する。炭素源21の投入開始時期は、炭素源21が溶銑15に溶解するための時間が必要であることから、脱燐処理の末期では好ましくなく、脱燐処理に費やす処理時間、即ち上吹きランス3から酸素ガスを供給している時間の内の少なくとも1/2を経過する前までに、炭素源21の投入を開始することが好ましい。そして、投入開始したならば、所定量の炭素源21を添加し終えるまで、連続的に投入することが好ましい。但し、前述したように、「連続的に投入する」とは、連続して添加する場合のみならず、2分間程度以下の短い時間間隔で炭素源21を投入する場合も含むものとする。炭素源21の添加量は、脱燐処理前の溶銑中の炭素濃度に応じて調整するが、最大でも溶銑トン当たり10kg程度で十分である。溶銑15における炭素の飽和濃度以上には加炭しないので、過剰に添加しても歩留まりの悪化を招くだけである。   During the dephosphorization process, a carbon source 21 derived from biomass and containing an ash content of 9% by mass or less is introduced from the carbon source addition device 20 into the furnace body. Since the carbon source 21 needs to be melted in the hot metal 15 at the start of the carbon source 21, it is not preferable at the final stage of the dephosphorization process. It is preferable to start the introduction of the carbon source 21 before at least half of the time during which oxygen gas is supplied. When the charging is started, it is preferable to continuously charge until a predetermined amount of the carbon source 21 is completely added. However, as described above, “continuously charging” includes not only continuous addition but also the case where the carbon source 21 is charged at a short time interval of about 2 minutes or less. The amount of the carbon source 21 added is adjusted according to the carbon concentration in the hot metal before the dephosphorization treatment, but about 10 kg per ton of hot metal is sufficient. Since it does not carburize more than the saturation concentration of the carbon in the hot metal 15, even if it adds excessively, it will only cause the deterioration of a yield.

脱燐処理時の酸素源が気体の酸素ガスのみでは溶銑温度が上昇し過ぎて脱燐反応が阻害される場合もあるので、必要に応じて固体酸素源としてミルスケールや鉄鉱石などの酸化鉄を添加してもよい。酸素ガスの添加量と固体酸素源の添加量との比は、溶銑15の珪素濃度、燐濃度、炭素濃度などに応じて適宜変更することができる。また、CaO系脱燐用造滓剤17の投入量は、溶銑15の珪素濃度及び燐濃度に応じて変更することとするが、スラグ16の塩基度(質量%CaO/質量%SiO2)が2以上の範囲であるならば、最大でも溶銑トン当たり40kg程度であれば十分である。また、ランス高さは特に限定する必要はなく、スラグ16の生成量などを勘案して設定すればよい。 If only oxygen gas is used as the oxygen source during the dephosphorization process, the hot metal temperature will rise too high and the dephosphorylation reaction may be hindered. Therefore, if necessary, iron oxide such as mill scale or iron ore can be used as a solid oxygen source. May be added. The ratio between the amount of oxygen gas added and the amount of solid oxygen source added can be appropriately changed according to the silicon concentration, phosphorus concentration, carbon concentration, etc. of the hot metal 15. The amount of CaO-based dephosphorizing agent 17 is changed according to the silicon concentration and phosphorus concentration of the hot metal 15, but the basicity (mass% CaO / mass% SiO 2 ) of the slag 16 is If it is in the range of 2 or more, a maximum of about 40 kg per ton of hot metal is sufficient. The lance height is not particularly limited, and may be set in consideration of the amount of slag 16 generated.

以上説明したように、本発明に係る溶銑の脱燐処理方法では、溶銑浴面の酸素ガスの吹き付け面に向けてCaO系脱燐用媒溶剤17を吹き付けて溶銑15を脱燐処理する際に、バイオマス由来の、灰分含有量が9質量%以下である炭素源21を炉本体2の内部に上置き添加して炉本体内に分散添加するので、脱燐反応の場所と加炭反応の場所とが分離されて、脱燐反応を阻害することなく且つ脱燐処理能力を低下させることなく、また、バイオマス由来の、灰分含有量が9質量%以下である炭素源21は溶銑15への溶解速度が速いので、溶銑15を迅速に且つ効率良く加炭することができる。その結果、溶銑15の熱余裕を高めることができ、次工程の転炉脱炭精錬では、溶銑の配合比率を低くしたり、マンガン鉱石の添加量を多くしたりすることが可能となり、省資源、省エネルギーが達成されるのみならず、転炉脱炭操業の安定化が達成される。また、蛍石などの弗素含有物質をCaO系脱燐用造滓剤17に混合しない場合には、脱燐処理で生成したスラグ16を再利用する際に、スラグ16からの弗素の溶出を考慮する必要がなく、スラグ16の再利用を促進させることができる。   As described above, in the hot metal dephosphorization method according to the present invention, the hot metal 15 is dephosphorized by spraying the CaO-based dephosphorization medium solvent 17 toward the oxygen gas spray surface of the hot metal bath surface. Since the carbon source 21 derived from biomass and having an ash content of 9% by mass or less is added to the inside of the furnace body 2 and dispersedly added in the furnace body, the place of dephosphorization reaction and the place of carburization reaction The carbon source 21 derived from biomass and having an ash content of 9% by mass or less is dissolved in the hot metal 15 without inhibiting the dephosphorization reaction and reducing the dephosphorization processing capacity. Since the speed is high, the hot metal 15 can be carburized quickly and efficiently. As a result, the heat margin of the hot metal 15 can be increased, and in the converter decarburization refining in the next process, it becomes possible to reduce the mixture ratio of hot metal and increase the amount of manganese ore added. In addition to energy saving, stabilization of converter decarburization operation is achieved. Further, in the case where a fluorine-containing substance such as fluorite is not mixed with the CaO-based dephosphorizing agent 17, the elution of fluorine from the slag 16 is considered when the slag 16 generated by the dephosphorization process is reused. Therefore, the reuse of the slag 16 can be promoted.

尚、精錬容器としてトーピードカーや溶銑鍋などの溶銑保持容器を用いる場合には、上吹きランスからの酸素ガス及びCaO系脱燐用造滓剤17の溶銑への供給は上記に沿って実施するが、炭素源21の溶銑への供給は、投入シュートを用いて溶銑浴面に上置き添加する、或いは、吹き込みランスを用いて溶銑中に吹き込み添加する。その他は、上記に沿って脱燐処理を実施すればよい。   When a hot metal holding container such as a torpedo car or hot metal ladle is used as the refining container, the oxygen gas from the top blowing lance and the supply of the CaO-based dephosphorizing agent 17 to the hot metal are carried out as described above. The supply of the carbon source 21 to the hot metal is added on the hot metal bath surface using a charging chute, or is blown into the hot metal using a blowing lance. In other cases, the dephosphorization treatment may be performed in accordance with the above.

高炉から出銑された溶銑を、溶銑鍋内で脱珪処理し、次いで、機械式攪拌装置を用いて脱硫処理した後、図1に示す容量が250トンの転炉型精錬設備に装入して本発明に係る溶銑の脱燐処理を実施(本発明例)した。   The hot metal discharged from the blast furnace is desiliconized in a hot metal ladle, then desulfurized using a mechanical stirring device, and then charged into a converter type refining facility having a capacity of 250 tons shown in FIG. Then, the hot metal dephosphorization treatment according to the present invention was carried out (example of the present invention).

脱燐処理は、上吹きランスから酸素ガスを溶銑浴面に吹き付けると同時に、CaO系脱燐用造滓剤として生石灰粉のみを用い、窒素ガスを搬送用ガスとし、上吹きランスを介して溶銑湯面の火点に向けて生石灰粉を吹き付けて実施した。脱燐処理中、炭素源を炉本体の上方に設置したホッパーから連続的に炉本体内に上置き添加した。また、底吹き羽口から窒素ガスを0.07〜0.12Nm3/(min・t)の供給量で吹き込み、溶銑を攪拌した。処理前後の溶銑温度は1280〜1350℃の範囲に調整した。溶銑の配合量は225トン、鉄スクラップの配合量は15トンとした。 In the dephosphorization treatment, oxygen gas is blown from the top blowing lance onto the hot metal bath surface, and at the same time, only quick lime powder is used as a CaO-based dephosphorizing agent, and nitrogen gas is used as the carrier gas, and the hot metal is passed through the top blowing lance. It was carried out by spraying quick lime powder toward the hot spot of the hot water surface. During the dephosphorization treatment, a carbon source was continuously added to the furnace body from a hopper installed above the furnace body. Further, nitrogen gas was blown from the bottom blowing tuyere at a supply rate of 0.07 to 0.12 Nm 3 / (min · t), and the hot metal was stirred. The hot metal temperature before and after the treatment was adjusted to a range of 1280 to 1350 ° C. The amount of hot metal was 225 tons, and the amount of iron scrap was 15 tons.

バイオマス由来の、灰分含有量が9質量%以下である炭素源としては、灰分含有量が5.9質量%であるパームヤシ殻由来(PKS)のバイオマス炭(以下、「バイオマス炭A」と記す)、灰分含有量が8.1質量%であるパームヤシ幹由来のバイオマス炭(以下、「バイオマス炭B」と記す)、及び、灰分含有量が8.8質量%であるパームヤシ空果房由来(EFB)のバイオマス炭(以下、「バイオマス炭C」と記す)の3種類を使用した。また、比較の炭素源として、灰分含有量が11.2質量%のコークス、灰分含有量が18.0質量%の黒鉛も使用した。炭素源の添加量は全ての操業で6.5kg/tの一定とした。また更に、炭素源を添加しない脱燐処理も実施した。   As a carbon source derived from biomass and having an ash content of 9% by mass or less, biomass carbon derived from palm coconut shell (PKS) having an ash content of 5.9% by mass (hereinafter referred to as “biomass coal A”) , Biomass charcoal derived from palm palm trunk (hereinafter referred to as “biomass charcoal B”) having an ash content of 8.1% by mass, and palm palm empty fruit bunch having an ash content of 8.8% by mass (EFB) ) Biomass charcoal (hereinafter referred to as “biomass charcoal C”). Further, as a comparative carbon source, coke having an ash content of 11.2% by mass and graphite having an ash content of 18.0% by mass were also used. The amount of carbon source added was fixed at 6.5 kg / t for all operations. Furthermore, dephosphorization treatment without adding a carbon source was also carried out.

表1に、本発明1〜9及び比較例1〜9における操業条件及び操業結果を示す。比較例1〜3は炭素源を添加しない操業である。尚、表1の‘脱燐酸素原単位’は、全酸素原単位からSiO2の生成に必要な酸素分を減じたものであり、また、‘処理時間’(=脱燐処理時間)は、上吹きランスから酸素ガスを供給している期間であり、‘添加開始時間’は、上吹きランスから酸素ガスの供給を開始した後の経過時間で表している。また、‘脱炭量’は、下記の(4)式によって定義されるものである。
脱炭量(質量%)=(処理前の溶銑中炭素濃度(質量%))×[溶銑配合量(t)/(溶銑配合量(t)+鉄スクラップ配合量(t))]−(処理後の溶銑中炭素濃度(質量%)) …(4)
In Table 1, the operation conditions and operation results in the present inventions 1 to 9 and Comparative Examples 1 to 9 are shown. Comparative Examples 1 to 3 are operations in which no carbon source is added. The “dephosphorization oxygen basic unit” in Table 1 is obtained by subtracting the oxygen content necessary for the production of SiO 2 from the total oxygen basic unit, and the “treatment time” (= dephosphorization treatment time) is: This is a period during which oxygen gas is supplied from the top blowing lance, and “addition start time” is expressed as an elapsed time after the supply of oxygen gas from the top blowing lance is started. Further, the “decarburization amount” is defined by the following equation (4).
Decarburization amount (mass%) = (carbon concentration in hot metal before treatment (mass%)) x [molten metal blending amount (t) / (molten metal blending amount (t) + iron scrap blending amount (t))]-(treatment Carbon concentration in hot metal after (mass%)) (4)

Figure 0005870584
Figure 0005870584

図2に、本発明例1〜9及び比較例1〜3における脱炭量と脱燐量との相関を示す。図2に示すように、本発明例1〜9は、比較例1〜3と比較して、脱燐量はほぼ同等でありながら、炭素源の添加により脱炭量が少なくなる効果が得られた。また、本発明例1〜9において、脱燐処理時間及び酸素ガス原単位は、炭素源を添加していない比較例1〜3と比べてほぼ同等であり、炭素源の添加による酸素供給量の増加及び処理時間の延長といった操業上の問題は発生しなかった。   FIG. 2 shows the correlation between the amount of decarburization and the amount of dephosphorization in Invention Examples 1 to 9 and Comparative Examples 1 to 3. As shown in FIG. 2, Examples 1 to 9 of the present invention have an effect of reducing the amount of decarburization by adding a carbon source while the amount of dephosphorization is substantially the same as that of Comparative Examples 1 to 3. It was. Further, in Invention Examples 1 to 9, the dephosphorization time and the oxygen gas basic unit are substantially the same as those of Comparative Examples 1 to 3 in which no carbon source is added, and the amount of oxygen supplied by the addition of the carbon source is There were no operational problems such as increase and extended processing time.

また、図3に、本発明例1〜9及び比較例4〜9における炭素源中の灰分含有量と脱炭量との相関を示す。尚、炭素源の添加開始時期による脱炭量への影響を無くすために、脱燐処理時間に対する炭素源の添加開始時間の比を0.12の一定とした。灰分含有量が9質量%以下である、バイオマス由来の炭素源を使用した本発明例1〜9では、炭素源の溶銑中への溶解速度が速く、酸素ガスによって燃焼する分が減少し、同一添加量であっても比較例4〜9に比較して脱炭量が少なくなることが分った。   Moreover, in FIG. 3, the correlation with the ash content in the carbon source in this invention examples 1-9 and comparative examples 4-9 and the amount of decarburization is shown. In addition, in order to eliminate the influence on the decarburization amount by the carbon source addition start timing, the ratio of the carbon source addition start time to the dephosphorization processing time was made constant at 0.12. In Invention Examples 1 to 9 using a biomass-derived carbon source having an ash content of 9% by mass or less, the dissolution rate of the carbon source into the molten iron is fast, and the amount burned by oxygen gas is the same. It was found that the amount of decarburization was smaller than that of Comparative Examples 4 to 9 even with the addition amount.

このように、本発明例1〜9では、溶銑への溶解速度の速い炭素源を使用するので、炭素源の分散添加により脱燐反応の場所と加炭反応の場所とが分離されることも相まって、脱燐反応を阻害することなく、迅速且つ効率良く溶銑の加炭を行うことができ、更に、粉体状の生石灰を火点に直接投射することで、従来の塊状生石灰を上置き添加する方法よりも少ない生石灰原単位で、効率的に脱燐処理を行えることが確認できた。   As described above, in Examples 1 to 9 of the present invention, since the carbon source having a high dissolution rate in the hot metal is used, the dephosphorization reaction site and the carburization reaction site can be separated by the dispersion addition of the carbon source. Combined with this, hot metal can be carburized quickly and efficiently without hindering the dephosphorization reaction, and powdered quick lime is directly projected to the hot spot to add conventional lump quick lime. It was confirmed that the dephosphorization treatment can be performed efficiently with a quick lime basic unit smaller than that of the method.

本発明において脱炭量に及ぼす炭素源の添加開始時期の影響を調査するために、実施例1で使用した転炉型精錬設備における本発明の脱燐処理において、炭素源の添加開始時間を変化させ、脱炭量に及ぼす影響を調査した。炭素源は、実施例1で使用した、灰分含有量が5.9質量%のバイオマス炭Aを使用した。   In order to investigate the influence of the carbon source addition start time on the decarburization amount in the present invention, the carbon source addition start time was changed in the dephosphorization treatment of the present invention in the converter type refining equipment used in Example 1. And the effect on decarburization amount was investigated. As the carbon source, biomass coal A having an ash content of 5.9% by mass used in Example 1 was used.

表2に、本発明10〜16の操業条件及び操業結果を示す。また、図4に、炭素源の添加開始時間を脱燐処理時間で除算した値と脱炭量との関係を示す。   Table 2 shows the operation conditions and operation results of the present invention 10-16. FIG. 4 shows the relationship between the value obtained by dividing the carbon source addition start time by the dephosphorization time and the amount of decarburization.

Figure 0005870584
Figure 0005870584

図4からも明らかなように、炭素源の添加開始時期が脱燐処理時間の1/2よりも後半の場合には、脱炭量低減の効果が低下した。これは、炭素源が溶銑中に溶解するには、或る程度の時間が必要であり、脱燐処理の末期に添加しても炭素源は溶銑中に溶け切らず、スラグ中に残留するだけで、歩留まりが低下したためである。即ち、脱燐処理の前半までに、炭素源の投入を開始することが好ましいことが確認できた。   As is clear from FIG. 4, when the carbon source addition start time was in the latter half of the dephosphorization processing time, the effect of reducing the decarburization amount was reduced. This is because a certain amount of time is required for the carbon source to dissolve in the hot metal, and even if it is added at the end of the dephosphorization process, the carbon source does not completely melt in the hot metal but only remains in the slag. This is because the yield decreased. That is, it was confirmed that it is preferable to start the carbon source input by the first half of the dephosphorization treatment.

1 転炉型精錬設備
2 炉本体
3 上吹きランス
4 鉄皮
5 耐火物
6 出湯口
7 底吹き羽口
8 ガス導入管
9 酸素ガス配管
10 窒素ガス配管
11 ディスペンサー
12 流量調整弁
13 流量調整弁
14 流量調整弁
15 溶銑
16 スラグ
17 CaO系脱燐用造滓剤
18 撹拌用ガス
19 造滓剤移送配管
20 炭素源添加装置
21 炭素源
DESCRIPTION OF SYMBOLS 1 Converter type refining equipment 2 Furnace main body 3 Top blowing lance 4 Iron skin 5 Refractory 6 Outlet 7 Bottom blowing tuyere 8 Gas introduction pipe 9 Oxygen gas piping 10 Nitrogen gas piping 11 Dispenser 12 Flow rate adjustment valve 13 Flow rate adjustment valve 14 Flow control valve 15 Hot metal 16 Slag 17 CaO-based dephosphorizing additive 18 Stirring gas 19 Antioxidant transfer pipe 20 Carbon source addition device 21 Carbon source

Claims (4)

精錬容器に収容された溶銑の浴面に向けて上吹きランスを介して酸素ガスを吹き付けるとともに、溶銑浴面の酸素ガスの吹き付け面に向けてCaO系脱燐用媒溶剤を吹き付けて溶銑を脱燐処理する際に、前記精錬容器内に、バイオマス由来の、灰分含有量が9質量%以下である、パームヤシ殻由来のバイオマス炭、パームヤシ空果房由来のバイオマス炭、パームヤシ幹由来のバイオマス炭のうちの何れか1種または2種以上の炭素源を添加することを特徴とする、溶銑の脱燐処理方法。 Oxygen gas is blown through the top blowing lance toward the hot metal bath surface contained in the refining vessel, and the hot metal bath is sprayed with a CaO-based dephosphorization medium solvent to remove the hot metal. When the phosphorous treatment is carried out, the biomass-derived biomass charcoal derived from the palm and having an ash content of 9% by mass or less, the biomass charcoal derived from the palm palm empty fruit bunch, and the biomass charcoal derived from the palm palm trunk are contained in the refining vessel. A method for dephosphorizing hot metal, which comprises adding one or more carbon sources. 前記精錬容器が転炉型精錬容器であり、前記炭素源を、転炉型精錬容器内に直立する上吹きランスに衝突させ、この衝突によって前記炭素源を転炉型精錬容器内に分散させて上置き添加することを特徴とする、請求項1に記載の溶銑の脱燐処理方法。   The refining vessel is a converter-type refining vessel, and the carbon source is collided with an upper blowing lance standing upright in the converter-type refining vessel, and the carbon source is dispersed in the converter-type refining vessel by this collision. The hot metal dephosphorization method according to claim 1, wherein the hot metal dephosphorization treatment is performed. 前記炭素源を、連続的に添加することを特徴とする、請求項1または請求項2に記載の溶銑の脱燐処理方法。 3. The hot metal dephosphorization method according to claim 1 or 2, wherein the carbon source is continuously added. 前記炭素源の精錬容器内への添加開始時期を、脱燐処理に要する処理時間の1/2を経過する時点までとすることを特徴とする、請求項1ないし請求項の何れか1項に記載の溶銑の脱燐処理方法。 The addition start timing to the carbon source in the refining vessel, characterized by up to the time of the expiration of 1/2 the processing time required for dephosphorization any one of claims 1 to 3 The method for dephosphorizing hot metal as described in 1.
JP2011211733A 2011-09-28 2011-09-28 Hot metal dephosphorization method Active JP5870584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011211733A JP5870584B2 (en) 2011-09-28 2011-09-28 Hot metal dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011211733A JP5870584B2 (en) 2011-09-28 2011-09-28 Hot metal dephosphorization method

Publications (2)

Publication Number Publication Date
JP2013072111A JP2013072111A (en) 2013-04-22
JP5870584B2 true JP5870584B2 (en) 2016-03-01

Family

ID=48476861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011211733A Active JP5870584B2 (en) 2011-09-28 2011-09-28 Hot metal dephosphorization method

Country Status (1)

Country Link
JP (1) JP5870584B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101546953B1 (en) 2013-11-15 2015-08-25 주식회사 포스코 Simulation apparatus for vod process
CN113056566B (en) 2018-12-07 2024-03-15 日本制铁株式会社 Carburant and carburant method using same
CN115807146B (en) * 2023-01-20 2023-07-04 北京科技大学 Converter bottom blowing system with multi-medium shared bottom blowing gun and application method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4423927B2 (en) * 2003-10-30 2010-03-03 Jfeスチール株式会社 Hot metal dephosphorization method
JP4513340B2 (en) * 2004-01-30 2010-07-28 Jfeスチール株式会社 Hot metal dephosphorization method

Also Published As

Publication number Publication date
JP2013072111A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
JP5408369B2 (en) Hot metal pretreatment method
KR20140017676A (en) Method for smelting molten pig iron
JP2015218338A (en) Molten iron refining method by converter type refining furnace
JP6011728B2 (en) Hot metal dephosphorization method
JP5181520B2 (en) Hot metal dephosphorization method
JP5870584B2 (en) Hot metal dephosphorization method
JP4487812B2 (en) Method for producing low phosphorus hot metal
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP6665884B2 (en) Converter steelmaking method
JP5999157B2 (en) Method of refining hot metal in the converter
JP2013189714A (en) Method for preliminary treatment of molten iron
JP2013227664A (en) Molten iron preliminary treatment method
JP4894325B2 (en) Hot metal dephosphorization method
JP4423927B2 (en) Hot metal dephosphorization method
JP3912176B2 (en) Method for producing low phosphorus hot metal
JP4513340B2 (en) Hot metal dephosphorization method
JP4779464B2 (en) Method for producing low phosphorus hot metal
JP2004083989A (en) Method for producing molten low phosphorus iron
JP2005068533A (en) Method for dephosphorizing molten pig iron
JP6760399B2 (en) Hot metal dephosphorization method and refining agent
JP5435106B2 (en) Hot metal dephosphorization method
JP3832386B2 (en) Method for producing low phosphorus hot metal
JP2005048238A (en) Method for dephosphorizing molten iron
JP2006124840A (en) Method for producing low phosphorus molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R150 Certificate of patent or registration of utility model

Ref document number: 5870584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250