JP6729073B2 - Reduction/dissolution method of iron raw material containing iron oxide - Google Patents

Reduction/dissolution method of iron raw material containing iron oxide Download PDF

Info

Publication number
JP6729073B2
JP6729073B2 JP2016129300A JP2016129300A JP6729073B2 JP 6729073 B2 JP6729073 B2 JP 6729073B2 JP 2016129300 A JP2016129300 A JP 2016129300A JP 2016129300 A JP2016129300 A JP 2016129300A JP 6729073 B2 JP6729073 B2 JP 6729073B2
Authority
JP
Japan
Prior art keywords
raw material
furnace
iron
iron oxide
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016129300A
Other languages
Japanese (ja)
Other versions
JP2018003075A (en
Inventor
貴大 田口
貴大 田口
強 山▲崎▼
強 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016129300A priority Critical patent/JP6729073B2/en
Publication of JP2018003075A publication Critical patent/JP2018003075A/en
Application granted granted Critical
Publication of JP6729073B2 publication Critical patent/JP6729073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、酸化鉄含有鉄原料の還元・溶解方法に関する。具体的には、鉄鉱石やダストなどの酸化鉄原料をシャフト炉や回転炉床炉などの予備還元炉により加熱・予備還元処理して酸化鉄含有鉄原料とした後、当該酸化鉄含有鉄原料を直流アーク炉へ投入して還元・溶解する酸化鉄含有鉄原料の還元・溶解方法に関する。 The present invention relates to a method for reducing and dissolving iron oxide-containing iron raw material. Specifically, iron oxide raw materials such as iron ore and dust are heated and pre-reduced in a preliminary reduction furnace such as a shaft furnace or a rotary hearth furnace to obtain iron oxide-containing iron raw materials, and then the iron oxide-containing iron raw materials The present invention relates to a method for reducing/melting iron raw material containing iron oxide, which is charged into a DC arc furnace to reduce/melt.

鉄鉱石や製鉄所から発生したダストから還元鉄を製造する直接還元製鉄法は、還元炉形式についてはシャフト炉、ロータリーキルン、回転炉床炉、流動床炉等が用いられ、還元剤については天然ガス、石炭等が用いられている。これらの組み合わせによる各種の製鉄プロセスが提案され、工業化されている。 In the direct reduction ironmaking method for producing reduced iron from iron ore and dust generated from iron mills, shaft furnaces, rotary kilns, rotary hearth furnaces, fluidized bed furnaces, etc. are used for reducing furnace types, and natural gas is used for reducing agents. , Coal, etc. are used. Various iron-making processes based on these combinations have been proposed and industrialized.

また、これらの直接還元製鉄法のうち、還元炉形式がシャフト炉で還元剤として天然ガスを用いる方法や、還元炉形式が回転炉床炉で還元剤として石炭を用いる方法により製造された酸化鉄含有鉄原料を使用して溶銑を製造する方法として、還元率の高い酸化鉄含有鉄原料をアーク炉を用いて溶解し、溶銑を製造する方法が現在最も主流となっている。 Among these direct reduction ironmaking processes, iron oxide produced by a method in which a reducing furnace type uses a natural gas as a reducing agent in a shaft furnace, or a reducing furnace type uses a rotary hearth furnace in which coal is used as a reducing agent. As a method for producing hot metal using the contained iron raw material, a method of producing hot metal by melting an iron oxide-containing iron raw material having a high reduction rate using an arc furnace is currently the most mainstream.

しかしながら、還元率の高い酸化鉄含有鉄原料を製造するためには多量の還元剤を使用し、酸化鉄の還元反応がほぼ完遂するまでの滞留時間が必要となるため、天然ガス非産出国においてはコストと生産性の点から難しい。そこで、これら直接還元炉で還元率の高い酸化鉄含有鉄原料を製造するのではなく、直接還元炉は予備還元炉とし、予備還元炉で予備還元を行って製造した還元率が比較的低い酸化鉄含有鉄原料を、アーク炉や溶解転炉を用いて還元・溶解し、溶銑を製造する方法が採用されている。特許文献1の第66頁には、回転炉床炉(RHF)で予備還元された半還元鉄を含む混合物原料(ペレット又は粉粒状混合物原料)はサブマージドアーク炉(SRF)に装入され、最終還元と溶解を目的とした仕上げ精錬が行われると記載されている。SRFでは酸素ガスと石炭が供給され、溶銑と回収ガスが得られる。なお、SRFでは炉の立ち上げ時には溶銑等の種湯の装入を必要とするが、定常操業状態では炉内鉄浴の存在によりその必要はない。特許文献2には、転炉で発生するダストに炭材を内装させて塊成化し、予備還元炉で高温加熱して内装炭材を還元材として予備還元後、高温状態で含鉄冷材の一部として種湯の存在する溶解専用転炉に供給し、再使用する方法が開示されている。 However, in order to produce iron oxide-containing iron raw materials with a high reduction rate, a large amount of reducing agent is used, and a residence time is required until the reduction reaction of iron oxide is almost completed. Is difficult in terms of cost and productivity. Therefore, instead of producing iron oxide-containing iron raw materials with a high reduction rate in these direct reduction furnaces, the direct reduction furnace is used as a preliminary reduction furnace, and an oxidation with a relatively low reduction rate is performed by performing preliminary reduction in the preliminary reduction furnace. A method of producing hot metal by reducing and melting an iron-containing iron raw material using an arc furnace or a melting converter has been adopted. On page 66 of Patent Document 1, a mixture raw material (pellet or powder mixture raw material) containing semi-reduced iron pre-reduced in a rotary hearth furnace (RHF) is charged in a submerged arc furnace (SRF), It is stated that a final refining with the aim of final reduction and dissolution is carried out. In the SRF, oxygen gas and coal are supplied, and hot metal and recovered gas are obtained. It should be noted that in the SRF, it is necessary to charge seed hot water such as hot metal when the furnace is started up, but this is not necessary in the steady operation state due to the presence of the iron bath in the furnace. In Patent Document 2, the carbonaceous material is internally agglomerated in the dust generated in the converter to agglomerate, and is heated at a high temperature in a preliminary reduction furnace to preliminarily reduce the internal carbonaceous material as a reducing material. As a part, a method of supplying the molten steel to a dedicated melting furnace in which seed hot water is present and reusing it is disclosed.

予備還元して製造した酸化鉄含有鉄原料を、種湯が存在するアーク炉内に投入して還元・溶解し、溶銑を製造するための方法において、投入した酸化鉄含有鉄原料は、何らかの工夫を施さない限り比重が小さいため溶銑面に浮いた状態で還元・溶解される。また、酸化鉄含有鉄原料はCaO、SiO2などのスラグ成分を含有するため、溶解が進むと溶銑面にスラグが浮かび、炉上から投入された原料がスラグに捕捉されて溶銑との接触を阻害するため溶解せず、鉄歩留まりの低下を招く。投入した酸化鉄含有鉄原料の溶解と還元を促進するためには、投入した酸化鉄含有鉄原料を、なるべく高温部を利用すると共に底吹き攪拌の制御により溶銑へ巻き込ませて、原料を還元・溶解する方法が挙げられる。 In the method for producing hot metal by introducing the iron oxide-containing iron raw material produced by preliminary reduction into the arc furnace in which the seed water is present to reduce and dissolve it, the iron oxide-containing iron raw material that was introduced is somehow devised. Unless it is applied, the specific gravity is small, so it is reduced and dissolved while floating on the hot metal surface. Further, since the iron oxide-containing iron raw material contains slag components such as CaO and SiO 2 , the slag floats on the hot metal surface as the melting progresses, and the raw material charged from the furnace is trapped in the slag and comes into contact with the hot metal. Since it inhibits, it does not dissolve, leading to a decrease in iron yield. In order to accelerate the dissolution and reduction of the iron oxide-containing iron raw material that has been input, the input iron oxide-containing iron raw material is reduced by using the high temperature part as much as possible and being entangled in the hot metal by controlling bottom-blown stirring. A method of dissolving may be mentioned.

酸化物原料を、直流アーク炉または交流電気炉のアークによる高温領域へ投入し、底吹き攪拌を付与して還元および/または溶解する方法については従来から種々の提案がなされている。 Various proposals have hitherto been made on a method of introducing an oxide raw material into a high temperature region of an arc of a DC arc furnace or an AC electric furnace and applying bottom-blown stirring to reduce and/or dissolve it.

例えば、特許文献3には、3相交流電気炉における金属酸化物の溶融還元方法の発明が記載されている。その発明は、3相交流電気炉において、粉末状の金属原料鉱石、例としてクロム鉱石をアークの形成領域へ供給し、アーク熱により金属原料鉱石を溶解し、さらに、電気炉の炉底部にガス吹き込みノズルを配置して電気炉内の溶湯にガスを吹き込むことを特徴とする電気炉精錬法に関するものであるが、クロム鉱石の還元に係る方法であって、スラグ中還元剤と原料鉱石の接触による還元反応向上効果と溶湯と原料鉱石の接触による還元反応向上効果との切り分けが不明瞭である。また、本発明のように酸化鉄含有鉄原料を対象に、直流アーク炉を用いて溶解還元する条件は具体的に記載されていない。 For example, Patent Document 3 describes an invention of a smelting reduction method for metal oxides in a three-phase AC electric furnace. In the three-phase AC electric furnace, the invention supplies powdery metal raw material ore, for example, chromium ore to an arc forming region, melts the metal raw material ore by arc heat, and further, gas is supplied to the bottom of the electric furnace. The present invention relates to an electric furnace refining method characterized in that a gas is blown into a molten metal in an electric furnace by arranging a blowing nozzle, but it relates to a method for reducing chromium ore, in which a reducing agent in slag and a raw material ore are contacted. The distinction between the effect of improving the reduction reaction due to and the effect of improving the reduction reaction due to contact between the molten metal and the raw material ore is unclear. Further, as in the present invention, the conditions for smelting and reducing an iron oxide-containing iron raw material using a DC arc furnace are not specifically described.

特許文献4には、製鋼用アーク炉において、炭素含有燃料及び酸素含有ガスを吹き込むとともに、アーク炉底部に配置されたノズルにより酸素を供給する方法が開示されている。3本の電極を有するアーク炉を用い、鉱石、予備還元鉱石などを、中空電極を介して吹き込み、金属溶融物を生成する際に底吹き攪拌を付与するとの記載があるが、炉底における底吹きノズルの位置関係や投入原料の歩留まりについては言及されていない。 Patent Document 4 discloses a method of supplying a carbon-containing fuel and an oxygen-containing gas in a steelmaking arc furnace and supplying oxygen by a nozzle arranged at the bottom of the arc furnace. It is described that an ore, a pre-reduced ore, etc. are blown through a hollow electrode using an arc furnace having three electrodes to give bottom-blown stirring when a metal melt is produced. No mention is made of the positional relationship of the blowing nozzles or the yield of the input material.

国際公開第01/018256号International Publication No. 01/018256 特開2000−45012号公報JP-A-2000-45012 特開平1−294815号公報JP-A-1-294815 特開昭63−125611号公報JP-A-63-125611

予備還元して製造した酸化鉄含有鉄原料を、種湯が存在するアーク炉内に投入して還元・溶解し、溶銑を製造するための方法において、従来知られていた方法で炉底部から溶鉄中にガスを吹き込んで攪拌しつつ酸化鉄含有鉄原料を投入する方法を採用しても、比重が小さい酸化鉄含有鉄原料を上部電極の下の高温湯面部に留まらせることはできず、また、溶銑に巻き込ませて十分に溶銑と混合させることもできず、鉄歩留まりの向上効果が十分ではなかった。 In the method for producing hot metal, the iron raw material containing iron oxide produced by pre-reduction is put into an arc furnace in which a seed water is present to reduce and melt it. Even if the method of introducing the iron oxide-containing iron raw material while blowing gas into the mixture with stirring is adopted, the iron oxide-containing iron raw material having a small specific gravity cannot be retained in the high-temperature molten metal surface below the upper electrode, and However, the effect of improving the iron yield was not sufficient because it could not be rolled up in the hot metal and sufficiently mixed with the hot metal.

本発明は、鉱石やダストなどを回転炉床炉などの予備還元炉により加熱・還元処理して酸化鉄含有鉄原料とした後、直流アーク炉へ投入して還元・溶解する酸化鉄含有鉄原料の還元・溶解方法において、鉄歩留まりが高い酸化鉄含有鉄原料の還元・溶解方法を提供することを目的とする。 The present invention is an iron oxide-containing iron raw material that is heated and reduced in a pre-reduction furnace such as a rotary hearth furnace to produce iron oxide-containing iron raw material, which is then fed into a DC arc furnace to reduce and melt. It is an object of the present invention to provide a method for reducing and dissolving iron oxide-containing iron raw material having a high iron yield in the method for reducing and dissolving iron.

予備還元においては、低還元率の酸化鉄含有鉄原料を造粒して製造することが考えられるが、一方、低還元率の酸化鉄含有鉄原料は圧潰強度が低く、造粒物が一部粉化してしまうという問題がある。酸化鉄含有鉄原料を還元・溶解し、溶銑を製造する際、なるべく安価な原料を用いて鉄歩留まりを良くするのが望ましいが、そのためには粉状の酸化鉄含有鉄原料を還元・溶解することが必要となる。しかし、アーク炉頂から粉状の酸化鉄含有鉄原料を重力投入した場合、その一部は排気ダクトへと吸収されてしまうため、鉄歩留まりが低下してしまう。 In the pre-reduction, it may be considered to produce iron oxide-containing iron raw material with a low reduction rate by granulation. On the other hand, iron oxide-containing iron raw material with a low reduction rate has a low crushing strength and granules are partially There is a problem of powdering. When iron oxide-containing iron raw material is reduced/dissolved to produce hot metal, it is desirable to use the cheapest raw material to improve the iron yield, but for that purpose, powdered iron oxide-containing iron raw material is reduced/dissolved. Will be required. However, when the powdered iron oxide-containing iron raw material is gravity-fed from the top of the arc furnace, a part of the iron raw material is absorbed by the exhaust duct, which reduces the iron yield.

本発明は、予備還元で製造した粉状又は粒状の酸化鉄含有鉄原料を用いて直流アーク炉で還元・溶解するに際し、鉄歩留まりが高い酸化鉄含有鉄原料の還元・溶解方法を提供することをも目的とする。 The present invention provides a method for reducing/dissolving iron oxide-containing iron raw material having a high iron yield when reducing/melting in a DC arc furnace using a powdery or granular iron oxide-containing iron raw material produced by preliminary reduction. Also for the purpose.

本発明の要旨とするところは以下のとおりである。
(1)酸化鉄含有鉄原料を、炉上から種湯溶銑の存在する直流アーク炉へ投入し、アーク熱と種湯溶銑との接触により還元および溶解する方法において、
前記酸化鉄含有鉄原料は、鉄の金属化率が45%以上95%以下であって、酸化鉄以外の酸化物を4〜20質量%含有するものであり、
前記直流アーク炉は、上部電極を1本と炉底電極を1本具備すると共に底吹き羽口を3本以上具備し、かつ溶解炉内の半径をR、炉底電極中心から底吹き羽口の中心までの距離をrとして、すべての底吹き羽口について、下記の(1)式を満たす位置に底吹き羽口が設置されたものであって、
前記底吹き羽口の本数をNとし、炉底電極中心から各底吹き羽口の中心までの距離rは、距離rの平均値の0.8〜1.2倍の範囲内にあり、隣接する底吹き羽口が前記炉底電極の中心となす角度は、300°/N〜430°/Nの範囲になり、
前記酸化鉄含有鉄原料を、前記底吹き羽口から吹き込むガスによって溶銑の底吹き攪拌をおこないながら、前記上部電極の直下へ投入することを特徴とする酸化鉄含有鉄原料の還元・溶解方法。
0.2≦r/R≦0.8 (1
(2)前記上部電極を中空にし、直流アーク炉に投入する酸化鉄含有鉄原料の一部又は全部は、最大粒径が5mm以下の小径酸化鉄含有鉄原料であり、当該小径酸化鉄含有鉄原料を、前記中空にした上部電極を経由して直流アーク炉へ投入することを特徴とする上記(1)に記載の酸化鉄含有鉄原料の還元・溶解方法。
The gist of the present invention is as follows.
(1) In a method of introducing an iron oxide-containing iron raw material from a furnace into a direct-current arc furnace in which seed hot metal is present, and reducing and melting by contact between the arc heat and the hot metal hot seed,
The iron oxide-containing iron raw material has a metallization ratio of iron of 45% or more and 95% or less and contains an oxide other than iron oxide in an amount of 4 to 20% by mass.
The DC arc furnace comprises one upper electrode, one furnace bottom electrode and three or more bottom blowing tuyeres, the radius in the melting furnace is R, and the bottom blowing tuyeres are from the center of the furnace bottom electrode. R is the distance to the center of the bottom blown tuyere, and the bottom blown tuyere is installed at a position that satisfies the following equation (1),
The number r of bottom blown tuyere is N, and the distance r from the center of the furnace bottom electrode to the center of each bottom blown tuyere is within 0.8 to 1.2 times the average value of the distance r, The angle formed by the bottom blown tuyere with the center of the furnace bottom electrode is in the range of 300°/N to 430°/N,
A method for reducing/dissolving an iron oxide-containing iron raw material, characterized in that the iron oxide-containing iron raw material is charged immediately below the upper electrode while performing bottom blowing stirring of the hot metal by a gas blown from the bottom blowing tuyere.
0.2≦r/R≦0.8 (1 )
(2 ) Part or all of the iron oxide-containing iron raw material to be introduced into the DC arc furnace with the upper electrode hollow, is a small-diameter iron oxide-containing iron raw material having a maximum particle size of 5 mm or less. The method for reducing/dissolving an iron oxide-containing iron raw material according to (1 ) above, wherein the raw material is charged into a DC arc furnace via the hollowed upper electrode.

本発明によれば、ガスを底吹きする底吹き羽口を有する直流アーク炉において、底吹き羽口の本数と、炉底電極の中心と底吹き羽口の中心間の距離とから決まる特定の条件範囲で底吹き攪拌を行いつつ酸化鉄含有鉄原料を上部電極直下へ投入することで、炉上から投入される酸化鉄含有鉄原料が高温の湯面中心部から側壁側へと移動してしまうことを抑止し、かつ、湯面中心部で溶銑中に巻き込まれ、原料中酸化鉄の還元反応と金属鉄の溶解を促進して、高い鉄歩留まりで酸化鉄含有鉄原料の還元・溶解が可能となる。 According to the present invention, in a DC arc furnace having a bottom blown tuyere for bottom blowing a gas, a specific number determined by the number of bottom blown tuyere and the distance between the center of the bottom electrode and the center of the bottom blown tuyere By introducing the iron oxide-containing iron raw material directly below the upper electrode while performing bottom-blown stirring in the condition range, the iron oxide-containing iron raw material introduced from the furnace moves from the high temperature surface center to the side wall side. In addition, it is possible to prevent the iron oxide-containing iron raw material from being reduced and dissolved at a high iron yield by suppressing the occurrence of iron oxides, and being caught in the hot metal at the center of the molten metal surface to promote the reduction reaction of iron oxide in the raw material and the dissolution of metallic iron. It will be possible.

また本発明によれば、粒径5mm以下の小径酸化鉄含有鉄原料を、中空の上部電極を経由して直流アーク炉へ投入することにより、小径酸化鉄含有鉄原料であっても排気ダクトへの吸引ロス増加を来すことなく電極直下の高温湯面部への投入が可能となり、高い鉄歩留まりで酸化鉄含有鉄原料の還元・溶解が可能となる。 Further, according to the present invention, a small-diameter iron oxide-containing iron raw material having a particle diameter of 5 mm or less is charged into a DC arc furnace via a hollow upper electrode, so that even a small-diameter iron oxide-containing iron raw material is sent to an exhaust duct. It is possible to put into the hot metal surface directly under the electrode without increasing the suction loss, and it is possible to reduce and dissolve the iron raw material containing iron oxide with a high iron yield.

本発明における酸化鉄含有鉄原料の還元・溶解方法の一例を示す図である。It is a figure which shows an example of the reduction / dissolution method of the iron oxide containing iron raw material in this invention. 底吹き羽口本数が2本のときの炉底電極と底吹き羽口との位置関係の一例を示す図である。It is a figure which shows an example of the positional relationship of a furnace bottom electrode and a bottom blown tuyere when the number of bottom blown tuyere is two. 底吹き羽口本数が3本のときの炉底電極と底吹き羽口との位置関係の一例を示す図である。It is a figure which shows an example of the positional relationship between a furnace bottom electrode and a bottom blown tuyere when the number of bottom blown tuyere is three. 底吹き羽口本数が2本、3本、4本それぞれのときの、底吹き羽口配置の指標(r/R)とスラグ中%T.Feとの関係を示す図である。The index (r/R) of the bottom blown tuyere arrangement and the% T.S. in slag when the number of bottom blown tuyere is 2, 3, and 4, respectively. It is a figure which shows the relationship with Fe.

酸化鉄含有鉄原料を、炉上から種湯溶銑の存在するアーク炉へ投入し、アーク熱と種湯溶銑との接触により還元および溶解する方法を対象とする。酸化鉄の還元反応に必要な熱および還元剤である炭素が十分供給され得る溶銑上であって、特に高温である上部電極直下の溶銑湯面部に原料を投入することで、鉄歩留まりが高い酸化鉄含有鉄原料の還元・溶解方法を提供する。 The object is a method of introducing an iron oxide-containing iron raw material into the arc furnace in which the molten hot metal of the seed is present from the top of the furnace, and reducing and melting by contact between the arc heat and the molten hot metal of the hot seed. The heat required for the reduction reaction of iron oxide and carbon that is a reducing agent can be sufficiently supplied, and by introducing the raw material into the hot metal surface portion just below the upper electrode, which is at a high temperature, oxidation with high iron yield can be achieved. Provided is a reduction/dissolution method of iron-containing iron raw material.

本発明は、アーク炉として直流アーク炉を適用する。発明を実施するための形態について、図1を用いて詳細に説明する。図1は、本発明の酸化鉄含有鉄原料を用いた溶銑製造方法の一例を示す図である。図1において、1は直流アーク炉、2は上部電極、3は炉上原料投入孔、4はアーク、5は炉底電極、6は底吹き羽口、12は耐火物を示す。図1には、上部電極2として中空の電極を用いているが、上部電極2として中実の電極を用いても良い。 The present invention applies a DC arc furnace as the arc furnace. A mode for carrying out the invention will be described in detail with reference to FIG. FIG. 1 is a diagram showing an example of the hot metal production method using the iron oxide-containing iron raw material of the present invention. In FIG. 1, 1 is a DC arc furnace, 2 is an upper electrode, 3 is a material feed hole on the furnace, 4 is an arc, 5 is a furnace bottom electrode, 6 is a bottom blowing tuyere, and 12 is a refractory material. Although a hollow electrode is used as the upper electrode 2 in FIG. 1, a solid electrode may be used as the upper electrode 2.

酸化鉄含有鉄原料は炉上原料投入孔3(投入シュート)を用いて直流アーク炉内へ添加されるか、或いは図1に示すように中空の上部電極2を用いた場合には、前記投入シュートからと併せて、中空の上部電極2の内部通路を経由して直流アーク炉内へ添加される。酸化鉄含有鉄原料の還元・溶解には上部電極2の直下の高温湯面部を利用することが有利であるため、投入シュートから添加する場合にも高温湯面部へ目掛けて添加するが、その際に添加位置の調整がやや難しいほか、原料の粉状部分の一部は排気ダクト15へと吸引されてしまい、溶銑湯面への添加歩留まりが低くなる難点がある。この点、中空の上部電極2の内部通路を経由して粉状の原料を投入すると、粉状物が排気ダクトへと吸引されずに溶銑11の高温部に容易に投入することができるので好ましい。 The iron oxide-containing iron raw material is added to the inside of the DC arc furnace by using the furnace raw material charging hole 3 (charging chute), or when the hollow upper electrode 2 is used as shown in FIG. Together with the chute, it is added into the DC arc furnace via the internal passage of the hollow upper electrode 2. Since it is advantageous to use the high-temperature molten metal surface portion directly below the upper electrode 2 for the reduction/dissolution of the iron oxide-containing iron raw material, when adding from the charging chute, the high-temperature molten metal surface portion is added aiming at the high-temperature molten metal surface portion. At this time, it is somewhat difficult to adjust the addition position, and a part of the powdery portion of the raw material is sucked into the exhaust duct 15, so that the addition yield to the surface of the hot metal becomes low. In this respect, it is preferable to introduce the powdery raw material through the internal passage of the hollow upper electrode 2 because the powdery material can be easily introduced into the high temperature portion of the hot metal 11 without being sucked into the exhaust duct. ..

さらに、高温湯面部に添加された酸化鉄含有鉄原料は比重が溶銑よりも小さいために湯面上に浮遊し、炉壁面側へと移動してそこに堆積してしまいがちであるが、後述のように底吹き羽口6を適切に配置して適量の底吹きガスを溶銑11に吹き込むことによって、炉壁面側への移動を抑止できるように工夫する。高温湯面部になるべく長い時間留まることによって、高温の溶銑と酸化鉄含有鉄原料との接触時間が長くなり、酸化鉄含有鉄原料の還元・溶解が促進されるからである。
また、底吹きガスを適切に利用することによって、溶銑と酸化鉄含有鉄原料とが混合攪拌されて溶銑中の炭素と酸化鉄含有鉄原料中の酸化鉄とが反応する界面積が増やされると共に、溶銑浴面中心部に下降流が形成され、酸化鉄含有鉄原料が溶銑中へと巻込まれることを助長できるようにする。
Furthermore, the iron oxide-containing iron raw material added to the high-temperature molten metal surface tends to float on the molten metal surface because it has a smaller specific gravity than the hot metal, move to the furnace wall surface side, and accumulate there. As described above, the bottom blowing tuyere 6 is appropriately arranged and a suitable amount of bottom blowing gas is blown into the hot metal 11, so that the movement toward the furnace wall surface side can be suppressed. This is because, by staying in the hot-water surface for as long as possible, the contact time between the hot metal at high temperature and the iron oxide-containing iron raw material becomes long, and the reduction and dissolution of the iron oxide-containing iron raw material are promoted.
Further, by appropriately using the bottom-blown gas, the interfacial area in which the hot metal and the iron oxide-containing iron raw material are mixed and stirred and the carbon in the hot metal and the iron oxide in the iron oxide-containing iron raw material react are increased. A downflow is formed in the central part of the hot metal bath surface, which makes it possible to promote that the iron oxide-containing iron raw material is rolled into the hot metal.

本発明において溶融・還元する酸化鉄含有鉄原料は、鉄の金属化率が45%以上95%以下のものを対象とする。鉄の金属化率(%)とは、酸化鉄含有鉄原料中の「金属鉄/全鉄含有量(質量%)×100」を意味する。 The iron oxide-containing iron raw material to be melted/reduced in the present invention has an iron metallization rate of 45% or more and 95% or less. The metallization rate (%) of iron means “metallic iron/total iron content (mass %)×100” in the iron oxide-containing iron raw material.

本発明は前述のとおり、鉄鉱石やダストなどの酸化鉄原料をシャフト炉や回転炉床炉などの予備還元炉により加熱・予備還元処理して酸化鉄含有鉄原料とした後、当該酸化鉄含有鉄原料を種湯溶銑の存在する直流アーク炉へ投入して還元・溶解する酸化鉄含有鉄原料の還元・溶解方法に関するものである。直流アーク炉で炭素を還元剤として原料を還元する際に発生するCOガスを、予備還元炉での予備還元剤として用いることが、天然ガスの使用量を大幅に削減もしくは不使用とすることができ、かつ、ガス生成炉等の溶鋼製造プロセスとは直接関係ない新たなプロセスを不要とすることができるために好ましい。 As described above, according to the present invention, iron oxide raw materials such as iron ore and dust are heated and pre-reduced in a preliminary reduction furnace such as a shaft furnace or a rotary hearth furnace to obtain iron oxide-containing iron raw materials, The present invention relates to a method for reducing/melting an iron oxide-containing iron raw material in which an iron raw material is put into a direct current arc furnace in which hot metal of seed is present and reduced/melted. Using the CO gas generated when reducing the raw material by using carbon as a reducing agent in the direct current arc furnace as the preliminary reducing agent in the preliminary reducing furnace can significantly reduce or eliminate the use amount of natural gas. This is preferable because a new process that is not directly related to the molten steel manufacturing process such as a gas generation furnace can be made unnecessary.

予備還元して製造した酸化鉄含有鉄原料の鉄の金属化率が45%以上であれば、直流アーク炉で発生するCOガスの全量を予備還元炉での還元用のCOガスとして使用することができるとともに、全体の還元効率低下を来すことなく、炭材原単位の増加を抑制し、直流アーク炉での必要還元熱の増加を抑制して電力原単位増加を防止することができる。一方、シャフト炉などの予備還元炉で天然ガスを用いずにCOガスを主体にして還元を行う場合、還元率95%超の還元鉄を製造することは困難であるため、酸化鉄含有鉄原料の鉄の金属化率上限を95%とした。 If the iron metallization rate of the iron oxide-containing iron raw material produced by pre-reduction is 45% or more, use the entire amount of CO gas generated in the DC arc furnace as CO gas for reduction in the pre-reduction furnace. In addition, it is possible to suppress the increase of the carbonaceous material unit and to suppress the increase of the necessary reduction heat in the DC arc furnace without preventing the reduction efficiency of the entire body from decreasing, and to prevent the increase of the power unit consumption. On the other hand, when reducing mainly CO gas without using natural gas in a preliminary reduction furnace such as a shaft furnace, it is difficult to produce reduced iron with a reduction rate of more than 95%. The upper limit of the metallization rate of iron was set to 95%.

酸化鉄含有鉄原料中の酸化鉄は、種湯溶銑中に含有する炭素を還元剤として還元される。その結果、種湯溶銑中の炭素濃度が低減するので、炭素源を供給する必要がある。酸化鉄含有鉄原料は、アーク炉での還元に寄与する還元剤として、炭素含有物質を含有しても良い。また、追加の炭素源は、酸化鉄含有鉄原料とは別に、炭素含有物質を直流アーク炉中に投入することで供給しても良い。 The iron oxide in the iron oxide-containing iron raw material is reduced by using carbon contained in the hot metal of the seed bath as a reducing agent. As a result, the carbon concentration in the hot metal seed is reduced, and it is necessary to supply a carbon source. The iron oxide-containing iron raw material may contain a carbon-containing substance as a reducing agent that contributes to reduction in an arc furnace. Further, the additional carbon source may be supplied by charging a carbon-containing substance into a DC arc furnace, separately from the iron oxide-containing iron raw material.

酸化鉄含有鉄原料は、酸化鉄以外の酸化物を4〜20質量%含有する。酸化物は具体的にはCaO、SiO2、Al23、MgOが挙げられる。これら酸化物はスラグ成分である。原料中のスラグ成分は、溶解が進むと溶銑面にスラグ13が浮かび、炉上から投入された原料がスラグ13に捕捉されて溶銑11との接触を阻害するため溶解せず、鉄歩留まりの低下を招く。そのため、原料中に占めるスラグ成分の上限を20質量%とした。一方、酸化鉄含有鉄原料は鉄鉱石やダスト等の酸化鉄含有鉄原料を予備還元炉により加熱・予備還元処理するために、焼結鉱やペレットにして用いる。そのためには、上記した酸化物を少なくとも4質量%含有させるのが通常であるため、原料中に占めるスラグ成分の下限を4質量%とした。 The iron oxide-containing iron raw material contains 4 to 20 mass% of oxides other than iron oxide. Specific examples of the oxide include CaO, SiO 2 , Al 2 O 3 and MgO. These oxides are slag components. The slag component in the raw material is not melted because the slag 13 floats on the hot metal surface as the melting progresses, and the raw material charged from the furnace is trapped by the slag 13 and hinders the contact with the hot metal 11, thus reducing the iron yield. Invite. Therefore, the upper limit of the slag component in the raw material is set to 20 % by mass. On the other hand, the iron oxide-containing iron raw material is used as a sinter or pellet in order to heat and pre-reduce the iron oxide-containing iron raw material such as iron ore and dust in a preliminary reduction furnace. For that purpose, it is usual to contain at least 4 mass% of the above-mentioned oxides, so the lower limit of the slag component in the raw material is set to 4 mass %.

直流アーク炉の溶銑に投入する酸化鉄含有鉄原料は、上述のように酸化鉄と酸化鉄以外の酸化物を含有するため、比重が溶銑よりも小さいので、投入すると溶銑の表面に浮く。そのため、投入した酸化鉄含有鉄原料は溶銑表面上に浮いたまま漂って、次々に投入される新たな原料に押しやられて炉壁側に寄りがちである。 Since the iron oxide-containing iron raw material to be charged into the hot metal of the DC arc furnace contains iron oxide and oxides other than iron oxide as described above, its specific gravity is smaller than that of the hot metal, so that the iron material floats on the surface of the hot metal when charged. For this reason, the iron oxide-containing iron raw material that is fed tends to drift toward the furnace wall side while floating on the surface of the hot metal while being pushed by new raw materials that are fed one after another.

そこで、炉壁側へ寄りにくくするように、図1に示すように、上部電極直下の高温湯面部を取り囲むように底吹き羽口6を複数配置して、それらの底吹き羽口6から底吹きガスを適切に流すことを着想した。これらの底吹きガスは、湯面で中心部へ向かう流れを形成するとともに湯面中心部で下降流形成を助長し、さらに溶銑と溶銑上の酸化鉄含有鉄原料とを攪拌して原料中の酸化鉄と溶銑中の炭素の反応界面積を大きくし、還元・溶解を促進する効果も期待される。 Therefore, as shown in FIG. 1, a plurality of bottom blowing tuyeres 6 are arranged so as to surround the high-temperature molten metal surface portion just below the upper electrode so as to prevent the bottom blowing tuyeres 6 from bottoming so as not to approach the furnace wall side. The idea was to make the blowing gas flow properly. These bottom-blown gases form a flow toward the center at the surface of the molten metal and promote the downward flow formation at the center of the surface of the molten metal, and further agitate the hot metal and the iron oxide-containing iron raw material on the hot metal to stir the material in the raw material. The effect of increasing the reaction interface area between iron oxide and carbon in the hot metal and promoting reduction/dissolution is expected.

そこで、酸化鉄含有鉄原料を炉上から種湯溶銑の存在する直流アーク炉(図1参照)へ投入し、上部電極直下の高温部で種湯溶銑との接触により還元および溶解する方法において、直流アーク炉1の炉底に底吹き羽口6を設けるとともに、底吹き羽口6の本数と設置箇所を種々変更して、底吹き状況が還元・溶解の鉄歩留まりに及ぼす影響を調査した。底吹き羽口6は、その本数を2、3、4本とし、炉底電極中心14を中心として回転対称に配置した(図2、3参照)。そして、溶解炉内の半径をR、炉底電極中心14から底吹き羽口6の中心までの距離をrとして、r/Rを変化させて、鉄歩留まりに及ぼす影響を調査した。ただし、鉄歩留まりを表す指標として、還元・溶解終了時のスラグ中%T.Feを採用した。 Then, in the method of reducing and melting the iron oxide-containing iron raw material from the furnace into a direct-current arc furnace (see FIG. 1) in which the molten hot metal is present, and contacting with the molten hot metal at the high temperature portion just below the upper electrode, A bottom blown tuyere 6 was provided on the bottom of the DC arc furnace 1, and the number of bottom blown tuyere 6 and the installation location were variously changed to investigate the influence of the bottom blown condition on the iron yield of reduction/melting. The number of bottom blowing tuyeres 6 was set to 2, 3, and 4, and they were arranged rotationally symmetrically about the furnace bottom electrode center 14 (see FIGS. 2 and 3). Then, the radius in the melting furnace was R, and the distance from the furnace bottom electrode center 14 to the center of the bottom blowing tuyere 6 was r, and r/R was changed to investigate the effect on iron yield. However, as an index showing the iron yield,% T. Fe was adopted.

本調査においては、シャフト炉にて予備還元した酸化鉄含有鉄原料を使用した。酸化鉄含有鉄原料の組成は表1に示す通りとした。鉄の金属化率は91.5%、酸化鉄以外の酸化物含有量は6.1質量%である。直流アーク炉1の設備仕様および操業条件は表2に示す通りであり、底吹き羽口6を具備している。直流アーク炉内は温度1380〜1415℃、C濃度4.2〜4.3質量%の種湯溶銑50tonが装入されており、中空の上部電極2から500kg/minで最大粒径5mm以下の小径酸化鉄含有鉄原料を30t分、また、粒径が5mmより大きい塊状の酸化鉄含有鉄原料を炉上原料投入孔3より20t分、計50tの酸化鉄含有原料を炉内の上部電極直下の高温部へ目掛けて重力落下で60分間供給しながら、還元・溶解を行った。種湯溶銑中の炭素は還元の進行とともに消費され、炭素濃度が低減するので、消費された炭素分を補給するため、炭素含有物質として土壌黒鉛を逐次炉内に投入した。溶解終了後、溶解量50tonを鍋に出湯し、繰り返し上記作業を行うことで、酸化鉄含有鉄原料の還元・溶解を行った。また、溶銑を出湯した後、還元・溶解により生じたスラグは、鉄歩留まりの指標とする%T.Feを調査するためサンプルを採取した後スラグ排出用鍋に排出した。 In this study, iron oxide-containing iron raw material pre-reduced in a shaft furnace was used. The composition of the iron oxide-containing iron raw material was as shown in Table 1. The metallization ratio of iron is 91.5%, and the content of oxides other than iron oxide is 6.1% by mass. The equipment specifications and operating conditions of the DC arc furnace 1 are as shown in Table 2, and are equipped with a bottom blown tuyere 6. The DC arc furnace is charged with 50 tons of molten pig iron hot metal having a temperature of 1380 to 1415° C. and a C concentration of 4.2 to 4.3% by mass, and a maximum particle diameter of 5 mm or less from the hollow upper electrode 2 at 500 kg/min. 30 t of small-sized iron oxide-containing iron raw material, and 20 t of massive iron oxide-containing iron raw material having a particle size larger than 5 mm from the furnace raw material input hole 3, a total of 50 t of iron oxide-containing raw material directly under the upper electrode in the furnace A reduction and dissolution were performed while aiming at the high temperature part of No. 1 by gravity dropping for 60 minutes. The carbon in the hot metal of the seed bath was consumed as the reduction proceeded, and the carbon concentration decreased. Therefore, in order to supplement the consumed carbon, soil graphite was sequentially charged into the furnace as a carbon-containing substance. After the completion of the dissolution, the dissolved amount of 50 ton was poured into a pan, and the above-mentioned work was repeated to reduce and dissolve the iron oxide-containing iron raw material. In addition, the slag generated by the reduction/melting after the hot metal was tapped was used as a% T. A sample was taken to investigate Fe and then discharged into a slag discharge pan.

本調査においては、炉底電極中心14から底吹き羽口6の中心までの距離を、羽口本数2本の時はr=1.0、2.5、4.0 mの3水準で、羽口本数3本の時はr=0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5mの9水準で、羽口本数4本のときはr=3.5mの1水準で変化させ、溶解炉内の半径Rと炉底電極中心14から底吹き羽口6の中心までの距離rの比r/Rが鉄歩留まりに及ぼす影響を調査した。なお、本発明に係る調査において、鉄歩留まりの指標としてスラグ中%T.Feを採用した。その結果を、指標r/Rと併せて表3、図4に纏めて示す。 In this investigation, the distance from the furnace bottom electrode center 14 to the center of the bottom blown tuyere 6 is three levels of r=1.0, 2.5, 4.0 m when the number of tuyere is two, When the number of tuyere is 3, r=0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5m, 9 levels, When the number of tuyere is 4, it is changed at one level of r=3.5 m, and the ratio r/R of the radius R in the melting furnace and the distance r from the furnace bottom electrode center 14 to the center of the bottom blowing tuyeres 6 is The effect on iron yield was investigated. In the investigation according to the present invention, as an index of iron yield,% T. Fe was adopted. The results are collectively shown in Table 3 and FIG. 4 together with the index r/R.

底吹き羽口本数が2本の場合、図4の黒四角に示した通り、r/R=0.2、0.5、0.8の3水準いずれにおいても、r/Rの変化に対してスラグ中%T.Feの変化は認められず、%T.Feが13%以上と高い状態であった。すなわち、原料中酸化鉄の還元反応が十分に進行せず、鉄歩留まりが低位な状態であった。 When the number of bottom blowing tuyeres is two, as shown by the black squares in FIG. 4, at any of the three levels of r/R=0.2, 0.5, and 0.8, the change in r/R Slag medium T. No change in Fe was observed and %T. Fe was as high as 13% or more. That is, the reduction reaction of iron oxide in the raw material did not proceed sufficiently, and the iron yield was in a low state.

底吹き羽口本数が3本の場合、図4の黒丸に示した通り、r/R=0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9の9水準の中で、r/R=0.5を最小値として下に凸の傾向が見られ、特に下記(1)式の範囲ではスラグ中%T.Feが9%以下という高い鉄歩留まりを実現した。底吹き羽口本数が4本で(1)式を満たす場合も、図4の○に示した通り、%T.Feが5%と高いFe歩留まりを実現している。
0.2≦r/R≦0.8 −(1)
When the number of bottom tuyere is 3, as shown by the black circles in FIG. 4, r/R=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0. Among the nine levels of 7, 0.8, and 0.9, a downward convex tendency is seen with r/R=0.5 as the minimum value, and in particular, in the range of the following formula (1), the% T.S. A high iron yield of 9% or less of Fe was realized. Even when the number of bottom-blown tuyers is four and the formula (1) is satisfied, the %T. Fe has achieved a high Fe yield of 5%.
0.2≦r/R≦0.8-(1)

上記した底吹き羽口本数とr/Rがそれぞれスラグ中%T.Feに及ぼした影響から、底吹きが鉄歩留まり向上に及ぼす効果は、溶銑面に浮かぶ酸化鉄含有鉄原料が攪拌によって上吹き電極直下の高温湯面部になるべく留まると共に、溶銑内に巻き込まれ、スラグに捕捉されることなく溶銑と接触するため、高効率で還元・溶解が起こることによるものと考えられる。そうであれば、酸化鉄含有鉄原料が投入された高温の溶銑面中心部に向けて周辺部から流れが生じるように、かつ、その周辺部から集まった溶銑の流れが中心部において下向きの流れが生じるように底吹き攪拌を行うことが、鉄歩留まりを向上させるために有利な筈である。 The number of bottom blown tuyere and r/R described above are respectively% T.S. From the effect on Fe, bottom blowing has the effect of improving the iron yield. It is thought that this is because the reduction/dissolution occurs with high efficiency because it contacts with the hot metal without being captured by the. If so, the flow of hot metal collected from the peripheral part toward the central part of the hot metal surface where the iron oxide-containing iron raw material is charged is generated, and the flow of the hot metal gathered from the peripheral part is downward flow in the central part. It should be advantageous to carry out bottom-blown stirring so as to cause the occurrence of iron.

上述のように、底吹き羽口本数が2本の場合には、r/Rによらず鉄歩留まりが低いままであった。このことは、2本の底吹き羽口6のみでは溶銑面中心部への流れだけではなく、溶銑面中心部から離れた炉壁側への流れも生じやすいため、溶銑面中心部へ投入された酸化鉄含有鉄原料は炉壁側へと流れてゆき、溶銑内へ巻き込まれないものと推定される。これに対し、底吹き羽口本数が3本以上の場合には、r/Rに好適範囲が存在し、好適範囲内では高い鉄歩留まりを実現することができた。3本以上の底吹き羽口による攪拌では各々の羽口からの流れの干渉により溶銑面中心部への表面流れが生じ、かつ溶銑面に浮かぶ原料が中心部で溶鉄へ巻き込まれるため、スラグ中%T.Feが低位であったことと整合する。また、底吹き羽口からのガスの流れが溶銑面中心部に近過ぎる場合、ガスの下からの流れで原料を押し上げ、結果として原料を溶銑中へ巻き込ませることなく散逸させてしまう。一方、底吹き羽口からのガスの流れが溶銑面中心部に遠過ぎる場合、ガスの流れが溶銑面中心部にある原料まで届くことなく減衰し、結果原料を溶銑中へ巻き込ませることなく投入した位置に滞留させてしまう。r/Rが(1)式の好適範囲にある場合は上記に示す通り、3本以上の底吹き羽口による攪拌で各々の羽口からの流れの干渉により溶銑面中心部への表面流れが生じ、かつ溶銑面に浮かぶ原料が中心部で溶鉄へ巻き込まれる。このことは、r/Rに対するスラグ中%T.Feが下に凸の関係にあり、また底吹き羽口からのガスの流れが溶銑面中心部に近いr/R=0.1の場合と遠いr/R=0.9の場合を除いてスラグ中%T.Feが低位であったこと、すなわち鉄歩留まりが良かったことと整合する。底吹き羽口が4本でも好適な効果が得られており、さらに5本以上でも上記と同等もしくはそれ以上の効果が期待される。一方、底吹き羽口の本数増加に伴う攪拌力の増大により、炉底電極損耗が懸念されるので、底吹き羽口本数は3本または4本で好適である。また、上記した本発明の効果は、r/R=が0.3〜0.7において一層享受することができる。 As described above, when the number of bottom blowing tuyere was two, the iron yield remained low regardless of r/R. This means that not only the flow to the central part of the hot metal surface but also the flow to the furnace wall side away from the central part of the hot metal surface are likely to occur with only the two bottom blowing tuyeres 6, so that the flow is injected into the central part of the hot metal surface. It is presumed that the iron raw material containing iron oxide flows to the furnace wall side and is not caught in the hot metal. On the other hand, when the number of bottom blowing tuyeres was 3 or more, there was a preferable range for r/R, and a high iron yield could be realized within the preferable range. When stirring with three or more bottom blowing tuyeres, the surface flow to the central part of the hot metal surface occurs due to the interference of the flow from each tuyere, and the raw material floating on the hot metal surface is caught in the molten iron at the central part, so the slag % T. This is consistent with the low Fe content. Further, when the gas flow from the bottom blown tuyere is too close to the central part of the hot metal surface, the raw material is pushed up by the flow from below the gas, and as a result, the raw material is dissipated without being entrained in the hot metal. On the other hand, if the gas flow from the bottom blowing tuyer is too far to the center of the hot metal surface, the gas flow will be attenuated without reaching the raw material in the center of the hot metal surface, and as a result, the raw material will be input without being entrained in the hot metal. It will be retained in the position where it was made. When r/R is within the preferable range of the formula (1), as shown above, the surface flow to the central part of the hot metal surface is caused by the interference of the flow from each tuyere by stirring with three or more bottom-blown tuyere. The raw material that is generated and floats on the hot metal surface is caught in the molten iron at the center. This means that the% T.S. Except for the case where Fe is convex downward and the gas flow from the bottom blowing tuyere is r/R=0.1 near the center of the hot metal surface and r/R=0.9 far from the hot metal surface center. %T. in slag This is consistent with the fact that Fe was low, that is, the iron yield was good. A suitable effect is obtained even with four bottom blowing tuyeres, and an effect equal to or more than the above is expected even with five or more tuyere. On the other hand, there is a concern that the furnace bottom electrode may be worn due to an increase in stirring force with an increase in the number of bottom blowing tuyeres, so the number of bottom blowing tuyeres is preferably three or four. Further, the above-described effects of the present invention can be further enjoyed when r/R=0.3 to 0.7.

Figure 0006729073
Figure 0006729073

Figure 0006729073
Figure 0006729073

Figure 0006729073
Figure 0006729073

本発明において、底吹き羽口6から吹き込むガス種として、窒素ガス、アルゴンガス、酸素含有ガスなどを用いることができる。窒素ガス、アルゴンガスの場合は底吹き羽口6を単管羽口とすることができる。酸素含有ガス、例えば純酸素を吹き込む場合には、二重管羽口とし、内管の内部から酸素含有ガスを流し、内管と外管の間の空間から冷却用のガスを流すと良い。また、底吹き羽口から吹き込むガス量としては、羽口1本から吹き込む溶銑1t当たりの流量で3〜15Nm3/h程度とすればよい。この流量が少な過ぎると底吹きによる還元・溶解促進効果が明確に表れない一方、多くし過ぎても効果が飽和してしまうばかりか、底吹き羽口の損耗が激しくなって総合的に操業改善にならなくなるからである。 In the present invention, nitrogen gas, argon gas, oxygen-containing gas or the like can be used as the gas species blown from the bottom blowing tuyere 6. In the case of nitrogen gas or argon gas, the bottom blowing tuyere 6 can be a single tube tuyere. When blowing an oxygen-containing gas, for example, pure oxygen, it is preferable to use a double tube tuyere, to flow the oxygen-containing gas from the inside of the inner tube and to flow the cooling gas from the space between the inner tube and the outer tube. The amount of gas blown from the bottom blowing tuyere may be about 3 to 15 Nm 3 /h in terms of the flow rate per ton of hot metal blown from one tuyere. If this flow rate is too low, the effect of promoting reduction/dissolution by bottom blowing will not be apparent, while if it is too high, the effect will saturate, and the bottom tuyeres will be worn out severely, improving overall operation. Because it will not be.

本発明の底吹き羽口6としては、底吹き羽口6を最低3本以上具備し、かつ溶解炉内の半径をR、炉底電極中心14から底吹き羽口6の中心までの距離をrとして、前記(1)式を満たす位置に底吹き羽口6を設置すれば良い。さらに好ましくは、底吹き羽口6の本数をNとし、炉底電極中心14からそれぞれの底吹き羽口6の中心までの距離rは、距離rの平均値の0.8〜1.2倍の範囲内にあり、隣接する底吹き羽口6が炉底電極中心14となす角度は、300°/N〜430°/Nの範囲になるように配置すると良い。底吹き羽口6の配置を上記範囲内とすることにより、底吹き羽口6の偏在を防いで、良好な攪拌流を形成することができる。最も好ましくは、底吹き羽口6を、炉底電極中心14に対して回転対称に配置すると良い。 As the bottom blowing tuyeres 6 of the present invention, at least three bottom blowing tuyeres 6 are provided, the radius in the melting furnace is R, and the distance from the furnace bottom electrode center 14 to the center of the bottom blowing tuyeres 6 is As the r, the bottom blown tuyere 6 may be installed at a position satisfying the expression (1). More preferably, the number of bottom blowing tuyeres 6 is N, and the distance r from the furnace bottom electrode center 14 to the center of each bottom blowing tuyere 6 is 0.8 to 1.2 times the average value of the distance r. The angle formed by the adjacent bottom blowing tuyeres 6 with the furnace bottom electrode center 14 is preferably within the range of 300°/N to 430°/N. By setting the arrangement of the bottom blown tuyere 6 within the above range, it is possible to prevent uneven distribution of the bottom blown tuyere 6 and form a good stirring flow. Most preferably, the bottom blowing tuyeres 6 are arranged to be rotationally symmetrical with respect to the furnace bottom electrode center 14.

直流アーク炉に投入する酸化鉄含有鉄原料を予備還元炉で製造するに際し、低還元率の酸化鉄含有鉄原料を造粒して製造することが考えられるが、一方、低還元率の酸化鉄含有鉄原料は圧潰強度が低く、造粒物が一部粉化してしまうという問題がある。酸化鉄含有鉄原料を還元・溶解し、溶銑を製造する際、なるべく安価な原料を用いて鉄歩留まりを良くするのが望ましいが、そのためには粉状の酸化鉄含有鉄原料を還元・溶解することが必要となる。しかし、アーク炉頂から粉状の酸化鉄含有鉄原料を重力投入した場合、その一部は排気ダクトに吸収されるため、鉄歩留まりが低下してしまう。 When manufacturing the iron oxide-containing iron raw material to be fed into the DC arc furnace in the preliminary reduction furnace, it is possible to granulate and produce the iron oxide-containing iron raw material with a low reduction rate. The contained iron raw material has a low crushing strength, and there is a problem that the granulated material is partially pulverized. When iron oxide-containing iron raw material is reduced/dissolved to produce hot metal, it is desirable to use the cheapest raw material to improve the iron yield, but for that purpose, powdered iron oxide-containing iron raw material is reduced/dissolved. Will be required. However, when a powdery iron oxide-containing iron raw material is gravity-fed from the top of the arc furnace, part of the iron raw material is absorbed by the exhaust duct, so that the iron yield is reduced.

本発明において好ましくは、図1に示すように、粉状酸化鉄含有鉄原料を、中空の上部電極2および炉上原料投入孔3から直流アーク炉1へ投入し、アーク熱による還元・溶解する溶銑製造方法において、直流アーク炉の中空の上部電極2から最大粒径5mm以下の小径酸化鉄含有鉄原料を供給し、上部電極直下の高温部で溶銑中の炭素と熱で粉状酸化鉄含有鉄原料を還元・溶解する。小径の酸化鉄含有鉄原料を炉上原料投入孔3から投入すると、溶銑面に到達する前に少なくとも一部が排気ダクト15に吸収されてしまうが、中空の上部電極2を通して投入することにより、中空の上部電極2の出口から出た原料は高温のアークを通過して直ちに溶銑11に到達するため、排気ダクト15への吸収ロスがない。また、上部電極2からその直下の高温湯面部へ原料が添加されるので、必然的に最高温度部へ添加されることになって好都合である。なお、粒径が5mmを超える塊状の酸化鉄含有鉄原料については、炉上原料投入孔3から上部電極直下の高温部へ目掛けて投入しても良い。 In the present invention, preferably, as shown in FIG. 1, a powdery iron oxide-containing iron raw material is charged into the DC arc furnace 1 through the hollow upper electrode 2 and the furnace upper material charging hole 3 and reduced/melted by arc heat. In the hot metal production method, a small iron oxide-containing iron raw material having a maximum particle size of 5 mm or less is supplied from a hollow upper electrode 2 of a DC arc furnace, and carbon powder in the hot metal and heat are contained in the iron oxide powder at a high temperature portion just below the upper electrode. Reduces and dissolves iron raw materials. When a small-diameter iron oxide-containing iron raw material is charged through the furnace raw material charging hole 3, at least a part of it is absorbed by the exhaust duct 15 before reaching the hot metal surface, but by charging through the hollow upper electrode 2, The raw material emitted from the outlet of the hollow upper electrode 2 passes through the high-temperature arc and immediately reaches the hot metal 11, so that there is no absorption loss in the exhaust duct 15. Further, since the raw material is added from the upper electrode 2 to the high-temperature molten metal surface portion immediately below it, it is inevitably added to the highest temperature portion, which is convenient. It is to be noted that the massive iron oxide-containing iron raw material having a particle diameter of more than 5 mm may be aimed at from the furnace raw material charging hole 3 to a high temperature portion just below the upper electrode.

酸化鉄含有鉄原料は、シャフト炉、回転炉床炉などの予備還元炉にて製造される。予備還元のための原料は、その種類は特には限定されず、種々のものが使用できる。その中でも、例えば、塊状鉄鉱石(塊鉱石)や粉状鉄鉱石(製鋼ダスト等の鉄含有ダスト類を含む)を塊成化した焼結鉱、及び、粉状鉄鉱石(鉄含有ダスト類を含む)を塊成化したペレットが好ましい。 The iron oxide-containing iron raw material is manufactured in a preliminary reduction furnace such as a shaft furnace or a rotary hearth furnace. The type of raw material for the preliminary reduction is not particularly limited, and various types can be used. Among them, for example, sinter ore in which agglomerated iron ore (lump ore) and powdered iron ore (including iron-containing dust such as steelmaking dust) are agglomerated, and powdered iron ore (iron-containing dust Pellets agglomerated) are preferred.

1 直流アーク炉
2 上部電極
3 炉上原料投入孔
4 アーク
5 炉底電極
6 底吹き羽口
11 溶銑
12 耐火物
13 スラグ
14 炉底電極中心
15 排気ダクト
1 DC Arc Furnace 2 Upper Electrode 3 Top Material Feeding Hole 4 Arc 5 Furnace Bottom Electrode 6 Bottom Blowing Tuyer 11 Hot Metal 12 Refractory 13 Slag 14 Furnace Bottom Electrode Center 15 Exhaust Duct

Claims (2)

酸化鉄含有鉄原料を、炉上から種湯溶銑の存在する直流アーク炉へ投入し、アーク熱と種湯溶銑との接触により還元および溶解する方法において、
前記酸化鉄含有鉄原料は、鉄の金属化率が45%以上95%以下であって、酸化鉄以外の酸化物を4〜20質量%含有するものであり、
前記直流アーク炉は、上部電極を1本と炉底電極を1本具備すると共に底吹き羽口を3本以上具備し、かつ溶解炉内の半径をR、炉底電極中心から底吹き羽口の中心までの距離をrとして、すべての前記底吹き羽口について、下記の(1)式を満たす位置に底吹き羽口が設置されたものであって、
前記底吹き羽口の本数をNとし、炉底電極中心から各底吹き羽口の中心までの距離rは、距離rの平均値の0.8〜1.2倍の範囲内にあり、隣接する底吹き羽口が前記炉底電極の中心となす角度は、300°/N〜430°/Nの範囲になり、
前記酸化鉄含有鉄原料を、前記底吹き羽口から吹き込むガスによって溶銑の底吹き攪拌をおこないながら、前記上部電極の直下へ投入することを特徴とする酸化鉄含有鉄原料の還元・溶解方法。
0.2≦r/R≦0.8 (1)
Iron oxide-containing iron raw material, from the furnace into the direct current arc furnace where the hot metal seed is present, in the method of reducing and melting by contact with the arc heat and hot metal hot seed,
The iron oxide-containing iron raw material has a metallization ratio of iron of 45% or more and 95% or less and contains an oxide other than iron oxide in an amount of 4 to 20% by mass.
The DC arc furnace comprises one upper electrode, one furnace bottom electrode and three or more bottom blowing tuyeres, the radius in the melting furnace is R, and the bottom blowing tuyeres are from the center of the furnace bottom electrode. With the distance to the center of r being r, for all the bottom blown tuyere , the bottom blown tuyere is installed at a position that satisfies the following formula (1),
The number r of bottom blown tuyere is N, and the distance r from the center of the furnace bottom electrode to the center of each bottom blown tuyere is within 0.8 to 1.2 times the average value of the distance r, The angle formed by the bottom blown tuyere with the center of the furnace bottom electrode is in the range of 300°/N to 430°/N,
A method for reducing/dissolving an iron oxide-containing iron raw material, characterized in that the iron oxide-containing iron raw material is charged directly below the upper electrode while performing bottom blowing stirring of the hot metal by a gas blown from the bottom blowing tuyere.
0.2≦r/R≦0.8 (1)
前記上部電極を中空にし、直流アーク炉に投入する酸化鉄含有鉄原料の一部又は全部は、最大粒径が5mm以下の小径酸化鉄含有鉄原料であり、当該小径酸化鉄含有鉄原料を、前記中空にした上部電極を経由して直流アーク炉へ投入することを特徴とする請求項1に記載の酸化鉄含有鉄原料の還元・溶解方法。 Part or all of the iron oxide-containing iron raw material to be introduced into the DC arc furnace with the upper electrode hollow is a small-diameter iron oxide-containing iron raw material having a maximum particle size of 5 mm or less. The method for reducing/dissolving an iron oxide-containing iron raw material according to claim 1, wherein the iron raw material containing iron oxide is charged into a DC arc furnace via the hollowed upper electrode.
JP2016129300A 2016-06-29 2016-06-29 Reduction/dissolution method of iron raw material containing iron oxide Active JP6729073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016129300A JP6729073B2 (en) 2016-06-29 2016-06-29 Reduction/dissolution method of iron raw material containing iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016129300A JP6729073B2 (en) 2016-06-29 2016-06-29 Reduction/dissolution method of iron raw material containing iron oxide

Publications (2)

Publication Number Publication Date
JP2018003075A JP2018003075A (en) 2018-01-11
JP6729073B2 true JP6729073B2 (en) 2020-07-22

Family

ID=60947718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016129300A Active JP6729073B2 (en) 2016-06-29 2016-06-29 Reduction/dissolution method of iron raw material containing iron oxide

Country Status (1)

Country Link
JP (1) JP6729073B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197756B1 (en) 2021-07-16 2022-12-28 株式会社堤水素研究所 Steelmaking equipment
CN113699306B (en) * 2021-08-25 2022-04-12 中冶赛迪工程技术股份有限公司 Composite bottom blowing multielement medium system and method for direct current arc furnace bottom electrode

Also Published As

Publication number Publication date
JP2018003075A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
KR101561930B1 (en) Smelting vessel, steel making plant and steel production method
JP2001500243A (en) Plants and processes for the production of metal melts
JP6911935B2 (en) Methods for dissolving and reducing electric furnaces and iron oxide-containing iron raw materials
EP2210959B1 (en) Process for producing molten iron
JP5033302B2 (en) Direct smelting method and equipment
JP6729073B2 (en) Reduction/dissolution method of iron raw material containing iron oxide
JP2010007180A (en) Method for producing pig iron by using iron ore with high content of zinc
JP4116874B2 (en) Liquid iron manufacturing method
JP2002517607A (en) Sustained iron production and solid waste minimization by enhanced direct reduction of iron oxide
JP2018119693A (en) Hollow electrode for electric furnace and electric furnace
WO1989001532A1 (en) Process for melt reduction of cr starting material and melt reduction furnace
JP3509072B2 (en) Iron and steel making
JP4630031B2 (en) Methods for reducing and dissolving iron raw materials containing iron oxide
JP4705483B2 (en) Method for producing molten iron
JP5119815B2 (en) Operation method of mobile hearth furnace
JP3516793B2 (en) How to load raw fuel such as dust agglomerate, self-reducing ore, iron scrap, solid fuel, etc. into vertical furnace
JP2011179090A (en) Method for producing granulated iron
US20220081733A1 (en) Method of manufacturing iron in a metallurgical vessel
JP6740779B2 (en) Method of melting ferrous material
KR950012402B1 (en) Fe-mn smelting reduction process and equipment
JP2668912B2 (en) Smelting reduction method
JP2022117935A (en) Molten iron refining method
JP2008184682A (en) Method for producing reduced metal
JPS6338506A (en) Adding method for powdery carbon material into smelting reduction furnace
JPH0873916A (en) Method for melting iron scrap by using vertical furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R151 Written notification of patent or utility model registration

Ref document number: 6729073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151