JP3718263B2 - Hot metal pretreatment method - Google Patents

Hot metal pretreatment method Download PDF

Info

Publication number
JP3718263B2
JP3718263B2 JP19104495A JP19104495A JP3718263B2 JP 3718263 B2 JP3718263 B2 JP 3718263B2 JP 19104495 A JP19104495 A JP 19104495A JP 19104495 A JP19104495 A JP 19104495A JP 3718263 B2 JP3718263 B2 JP 3718263B2
Authority
JP
Japan
Prior art keywords
slag
hot metal
oxygen
carbon source
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19104495A
Other languages
Japanese (ja)
Other versions
JPH0920907A (en
Inventor
公一 遠藤
和弘 堀井
純市 黒木
誠 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19104495A priority Critical patent/JP3718263B2/en
Publication of JPH0920907A publication Critical patent/JPH0920907A/en
Application granted granted Critical
Publication of JP3718263B2 publication Critical patent/JP3718263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、溶銑予備処理時の温度降下を低減し、転炉吹錬時の熱的余裕度を向上させるための溶銑を製造する溶銑予備処理方法に関するものである。
【0002】
【従来の技術】
転炉等で行われる精錬処理に際して、これに先立って高炉溶銑成分や溶製鋼種の成分組成に対応した溶銑予備処理が一般に実施されている。こうした溶銑予備処理の主たる目的は、脱珪・脱燐・脱硫の予備処理精錬処理にあるが、その他予備処理工程でMn鉱石を添加して銑成分を調整することも行われており、これらの結果として転炉での精錬負荷並びに成分調整負荷を軽減することができ、転炉では専ら脱炭反応を進行せしめることができる。
【0003】
すなわち転炉精錬を実施するまでに脱燐等の処理がほぼ完了しているので転炉では、脱燐フラックス等の精錬剤の添加が殆ど不必要となり、また予備処理工程でMn鉱石を添加して溶銑中のMn量を高めることができるので、転炉では高価なMn系合金鉄の添加を極力少なくすることができ、これらの結果、転炉精錬コストの大幅な低減という経済効果を得ることができる。
こうした要求を解決する技術として、たとえば特開平2−228412等に溶銑予備処理時に、脱燐剤と炭材を混合して溶銑中に吹き込み、処理中に溶銑炭素濃度の低下を低減する方法が開示されている。
【0004】
【発明が解決しようとする課題】
このように溶銑予備処理は多くの利益をもたらすものであるが、その一方溶銑予備処理過程では、溶銑中珪素(以下Siと記す)や溶銑中炭素(以下Cと記す)が消費されてこれらの含有量が低下し過ぎるきらいがあり、転炉における熱源不足の原因の一つとなっている。
そこで熱源不足を補うために、転炉精錬における溶銑配合率を高めたり(溶銑の顕熱は重量な熱源の一つである)、昇熱用炭素源を添加する等の対応がとられている。
【0005】
しかるに転炉操業において溶銑配合率を高めるとその分だけフラックス等の投入量が制限されることになり、いわゆるリターンスクラップバランスが崩れて生産能力が低下するという問題が発生する。また転炉における昇熱用炭素源の添加は、炭素源中に不純物として含まれる硫黄(以下Sと記す)の混入を招き、吹止め鋼中のS濃度が高くなる等の問題を引き起こす。
さらに予備処理工程におけるMn鉱石の添加は、溶銑温度の低下を招いて溶銑配合率を一層高めなければならない要因となっており、また添加されたMn鉱石を予備処理工程で還元する際に、SiやCが酸化消費されて熱源成分残存量を一層低下させていることも事実である。
【0006】
また、溶銑予備処理中に脱燐剤と炭材を混合して吹き込む方法は、炭材と脱燐剤に含まれる酸素含有物(酸化鉄あるいはスケールあるいは酸素ガス)が、同一の羽口から吹き込まれることにより、吐出直後の羽口近傍での炭材と酸素が反応し、炭材の歩留低下および炭材燃焼による局所的な発熱による羽口近傍の耐火物溶損が著しく低下するという課題があった。
一方酸素との反応により発生した熱の大部分は、COガス気泡に閉じ込められて、溶銑に着熱することなく系外に捨てられてしまうという、経済的な無駄を避けられないという課題があった。
【0007】
さらに、吹き込まれた炭材のうち飽和Cを越えた分、あるいは未反応のまま浮上してスラグ中に懸濁した炭材は、スラグ中にキッシュグラファイト、あるいは炭材粉としてスラグ中に析出・浮遊・懸濁することとなり、事前に脱燐処理を実施している場合は、脱燐反応生成物(燐酸化物)としてスラグ中に捕捉されていた燐酸化物を還元してしまう結果、復燐が助長され、脱燐効率を悪化させていた。
さらに、脱燐処理を実施せず、脱硫処理のみ実施した場合や、脱燐処理と脱硫処理を共に実施した場合においても、スラグ中の懸濁したグラファイトは、スラグ処理に際して環境問題を引き起こすという課題があった。
本発明は、こうした事情に着目してなされたものであって、熱源を十分に含有する予備処理溶銑の生産方法を開発することによって、転炉精錬における上記問題点を解決するものである。
【0008】
【課題を解決するための手段】
上記目的は、溶銑鍋、転炉または混銑車に収容された溶銑の予備処理として脱硫処理を行うにあたり、脱硫処理中の生成スラグ中に炭素源を添加すると同時に、スラグ中に酸素源を吹き込んで前記炭素源を燃焼させることを特徴とする溶銑の予備処理方法によって達成される。
また上記目的は、溶銑鍋、転炉または混銑車に収容された溶銑の予備処理として脱硫処理を行うにあたり、脱硫処理中の溶銑および生成スラグ中に炭素源を添加すると同時に、スラグ中に酸素源を吹き込んで前記炭素源を燃焼させることを特徴とする溶銑の予備処理方法によって達成される。
【0009】
【作用】
溶銑中のC濃度は飽和点に近く、そのため従来は溶銑中への炭素源の添加は困難であると考えられていた。また精錬に対する従来の常識では、炭素源は還元性材料であり、これを溶銑予備処理時、特に脱燐処理時あるいは脱燐処理後に添加すれば酸化反応である脱燐反応が阻害され、あるいは復燐反応が起こって脱燐性能が低下すると考えられていた。
こうした状況の中で、たとえば特開平2−228412号等において、溶銑中に炭材を脱燐剤と混合して吹き込む溶銑予備処理方法が開示されているが、上記課題で記述した理由により実操業への適用には大きな技術的課題があった。
【0010】
こうした状況の中で、本発明者らは、前記課題について、種々の改善検討を実施した結果、予備処理時に溶銑中に炭材を吹き込むだけの前記方法では、課題解決方法がなく、操業への適用は困難であるとの結論を得るに至った。
そこで、本発明者らは、予備処理時の熱源確保という観点から、溶銑中にCを供給するという従来の考え方に対して、発想の転換をはかり、処理中の温度低下を防止するという観点で鋭意検討を重ねた結果、スラグ中の酸素ポテンシャルを制御して、冶金反応に影響を及ぼさずにスラグ中で炭素源を燃焼させ、その燃焼熱を溶銑に着熱させることにより予備処理時の熱源を向上させる技術を発明した。
【0011】
すなわち、スラグ中に炭素源を添加すると、炭素源は還元剤として作用し、スラグ中の酸素ポテンシャル(代表としてFeO量)を低下させる。すなわち、
FeO+C=Fe+CO ・・・(1)
の反応が起こる。
一般に脱硫反応は、反応雰囲気が還元性であるほど反応が進行しやすくなる。逆に雰囲気の酸化性が高いと脱硫効率は低下し、同様の理由から、スラグ酸素ポテンシャルが上昇すると復硫が発生する。したがって、従来から脱硫処理時は酸素を使用せず、また脱燐スラグ等のスラグ酸化度の高いスラグが存在しないタイミングで脱硫を実施することが必要であると一般に考えられてきた。
【0012】
したがって、本発明法によるスラグ中への炭素源酸化は、上記(1)式の反応によりスラグ酸化度を低減することから、炭素源添加のみであれば脱硫反応効率が向上することになる。しかし、本発明の目的である炭素源のスラグ中での燃焼による溶銑顕熱向上を実現するために、スラグ中に酸素源を供給し、炭素源を燃焼させるにあたっては、必要量以上の酸素源を供給すると結果的にスラグ酸化度上昇を引き起こすこととなる。
本発明法においては、上記炭素源による還元と燃焼用酸素源供給による酸化のバランスを制御すれば、冶金反応に悪影響を及ぼすことなく溶銑の熱源向上を実現するものである。
【0013】
以下本発明方法をさらに詳細に説明する。
第1の方法では、スラグ中に添加された炭素源は、同時にスラグ中に供給される酸素源およびスラグ中のFeOを始めとする酸化物と反応を起こし、発熱する。
本発明者らの実機での調査によれば、スラグ以外の酸素源(本発明請求項に記述する酸素源)によって供給される酸素量が、化学量論的に炭素源から供給される炭素量と反応する量より少なくすることにより、スラグの酸素ポテンシャルの上昇による復硫反応を防止できることが判明した。
【0014】
すなわち、脱燐処理スラグの存在しない条件下では、スラグ酸素ポテンシャル低下による復燐を考慮する必要がないため、スラグ中に供給された炭素は、外部からスラグ中に供給された酸素およびスラグ中のFeOを始めとする酸化物の還元により供給される酸素の合計量が化学量論的に炭素燃焼に必要な酸素量であれば良い。
その際に、本発明者らの調査によれば、スラグ中に純炭素換算1kgあたり外部から供給される酸素源量は、純酸素換算で0.5〜1.9Nm3 が適当である。純酸素換算量が0.5Nm3 未満であると、スラグ中にグラファイトが析出してスラグの処理が困難となり、また1.9Nm3 より大きくなるとスラグの酸素ポテンシャルが上昇して脱硫効率の悪化を引き起こす。
【0015】
また、脱硫時に脱燐処理スラグが存在する場合は、スラグ中に供給した炭素がスラグ中の酸化物と反応してスラグの酸素ポテンシャルが低下することにより復燐が発生する。したがって、スラグの酸素ポテンシャルが上昇しない範囲で外部から炭素燃焼に必要な酸素量を全量供給する必要がある。
したがって、必要な酸素量は本発明者らの調査結果によれば、スラグ中に純炭素換算1kgあたり外部から供給される酸素量は、純酸素換算で0.7〜1.9Nm3 が適当である。0.7Nm3 未満であるとスラグ中の酸素ポテンシャルが低下して復燐あるいはスラグ中へのグラファイト析出が問題となる。1.9Nm3 より多量の酸素を供給すると復硫が発生し、脱硫効率が悪化する。
【0016】
第2の方法では、従来の方法では、C飽和によるスラグ中へのグラファイト析出の課題があり、飽和まで溶銑中にCを吹き込むことが不可能であった。本発明では、スラグ中への供給酸素量を適当な量として設定することにより、スラグ中に析出することの懸念なしに溶銑中に飽和までCを吹き込むことが可能となる。さらに、スラグ中への供給酸素量および吹き込み条件を上述した第1の方法に準じて適当な条件とすることにより、溶銑Cの低下なしにC燃焼による温度上昇を得ることが可能となり、第1の方法をさらに効果的なものとする。
上記方法は、C燃焼により多量のCOガスが発生することから、スラグ中をCOガスが通過する際にスラグのフォーミングを引き起こす。その防止策として、フォーミングしたスラグを収容可能な反応機を使用することが必要であり、本発明にかかる予備処理方法実施の際は、溶銑鍋に払いだされた溶銑中にフリーボードを浸漬した反応容器あるいは、転炉あるいは混銑車を使用することが望ましい。
【0017】
【実施例】
図1は脱硫処理中に、スラグ中に炭素源として最大粒径5mmの粉コークス(炭素含有率88%)を溶銑1t当たり1〜20kg投入し、同時に純酸素または21%酸素+79%窒素の混合ガスを酸素源として純酸素換算で、脱燐スラグが存在する場合は、純炭素換算1kg当たり0.7〜1.9Nm3 、脱燐スラグが存在しない場合は、純炭素換算1kg当たり0.5〜1.9Nm3 吹き込んだ際の溶銑温度上昇効果を示す。
酸素源は、上方からスラグに吹きつけるまたは、スラグ中に浸漬したノズルから供給した。同時に脱硫処理中溶銑には、溶銑中に浸漬したインジェクションノズルから脱硫剤と同時に粉コークスを溶銑1t当たり0〜10kg吹き込んだ。溶銑1t当たり純炭素1kg燃焼させることにより溶銑温度は5〜13℃向上し、着熱効率は40〜100%であった。また、従来の溶銑中に炭素源を添加した際に課題となっていたスラグへのキッシュグラファイト析出の発生も全くなく、予備処理後スラグの処置も従来方法を変更する必要はなかった。
表1および表2に本発明の実施例と比較例を示した。
【0018】
【表1】

Figure 0003718263
【0019】
【表2】
Figure 0003718263
【0020】
また、フリーボードを使用することにより、スラグ中での炭素源燃焼の際発生するCOガスによるスラグフォーミングによる操業への影響は全くなかった。反応容器として混銑車を使用した場合についても同様にフォーミングによる操業への悪影響は発生しなかった。
炭素源としては、コークス、石炭、土壌黒鉛等、炭素を主成分とするものであれば炭素純分当たりの効果は同様に得られた。また、スラグ中に供給する炭素源の粒度としては、集塵系に飛散することによるロスのない範囲で細粒であるほど反応効率が向上あるいは反応速度向上の効果が得られた。
【0021】
すなわち、スラグ中に炭素源を吹き込む際には、最大粒径が0.1mm以上8mm以下また上方からスラグ中に添加する場合は、5mm以上50mm以下の炭素源を使用した。
さらに、スラグ中炭素源燃焼に使用するガスとしては、酸素ガスあるいは酸素ガスと窒素ガスの混合ガス(空気を含む)が望ましいが、その中の窒素ガスは酸素ガスの希釈ガスとしての役割をはたしており、炭素と反応せずに火点近傍の冷却を実現するためであるならば、窒素ガスに代替して例えばAr,CO2 ,COあるいはそれらの混合ガスを使用することも同等の効果が得られる。ただし、ガスコスト上昇を引き起こすため、工業生産的には窒素ガスが最も望ましい。
【0022】
【発明の効果】
本発明は、以上のように構成されており、製鋼工程における熱源(溶銑予備処理後の温度)向上を実現した結果、転炉におけるMn鉱石投入量増大による吹止Mn向上と、高価なFe−Mn合金鉄使用量削減という点で、多大な経済的効果を得ることが可能となった。
【図面の簡単な説明】
【図1】スラグ中への炭素源供給量と溶銑温度上昇の関係[0001]
[Industrial application fields]
The present invention relates to a hot metal pretreatment method for producing hot metal for reducing the temperature drop during hot metal pretreatment and improving the thermal margin during converter blowing.
[0002]
[Prior art]
Prior to the refining process performed in a converter or the like, a hot metal pretreatment corresponding to a blast furnace hot metal component or a component composition of a steelmaking type is generally performed. The main purpose of such hot metal pretreatment is in the pretreatment refining treatment of desiliconization, dephosphorization, and desulfurization, but in other pretreatment processes, Mn ore is added to adjust the soot component. As a result, the refining load and component adjustment load in the converter can be reduced, and the decarburization reaction can proceed exclusively in the converter.
[0003]
In other words, since dephosphorization and other treatments are almost completed before converter refining, it is almost unnecessary to add a refining agent such as dephosphorization flux in the converter, and Mn ore is added in the preliminary treatment step. Since the amount of Mn in the hot metal can be increased, the converter can reduce the addition of expensive Mn-based alloy iron as much as possible, and as a result, the economic effect of greatly reducing the converter refining cost can be obtained. Can do.
As a technique for solving such a requirement, for example, Japanese Laid-Open Patent Application No. 2-228212 discloses a method for reducing a decrease in hot metal carbon concentration during processing by mixing a dephosphorizing agent and a carbonaceous material and blowing it into hot metal during hot metal pretreatment. Has been.
[0004]
[Problems to be solved by the invention]
In this way, the hot metal pretreatment provides many benefits, while in the hot metal pretreatment process, silicon in hot metal (hereinafter referred to as Si) and carbon in hot metal (hereinafter referred to as C) are consumed. There is a tendency that the content is too low, which is one of the causes of the lack of heat source in the converter.
Therefore, in order to make up for the shortage of heat sources, measures such as increasing the hot metal content in converter refining (the sensible heat of hot metal is one of the heavy heat sources) and adding a carbon source for heating are being taken. .
[0005]
However, when the hot metal content is increased in the converter operation, the amount of flux and the like is limited accordingly, so that the so-called return scrap balance is lost and the production capacity is reduced. Moreover, the addition of a carbon source for heating in the converter causes the inclusion of sulfur (hereinafter referred to as S) contained as an impurity in the carbon source, causing problems such as an increase in the S concentration in the blown steel.
Furthermore, the addition of Mn ore in the pretreatment step is a factor that causes a reduction in the hot metal temperature and further increases the hot metal content, and when reducing the added Mn ore in the pretreatment step, Si is added. It is also true that C and C are oxidized and consumed to further reduce the remaining amount of the heat source component.
[0006]
Moreover, the method of mixing and blowing the dephosphorizing agent and the carbonaceous material during the hot metal pretreatment is such that the oxygen-containing material (iron oxide, scale, or oxygen gas) contained in the carbonaceous material and the dephosphorizing agent is blown from the same tuyere. As a result, the carbon and oxygen in the vicinity of the tuyere immediately after discharge react, and the refractory melting near the tuyere due to local heat generation due to carbon material yield reduction and carbon material combustion significantly decreases. was there.
On the other hand, most of the heat generated by the reaction with oxygen is confined in CO gas bubbles, and it is unavoidable that it is an economic waste that is discarded outside the system without being heated by the hot metal. It was.
[0007]
Furthermore, the amount of carbon material that has been blown in excess of saturation C, or carbon material that has floated unreacted and suspended in the slag is precipitated in the slag as quiche graphite or carbon material powder in the slag. If the dephosphorization process has been carried out in advance, the phosphorous oxide trapped in the slag as a dephosphorization reaction product (phosphorus oxide) will be reduced. It was promoted and the dephosphorization efficiency was deteriorated.
Furthermore, even when only desulfurization is performed without dephosphorization, or when both dephosphorization and desulfurization are performed, suspended graphite in slag causes environmental problems during slag treatment. was there.
The present invention has been made paying attention to such circumstances, and solves the above-described problems in converter refining by developing a production method of pre-treated hot metal that sufficiently contains a heat source.
[0008]
[Means for Solving the Problems]
The above object is hot metal pot, carrying out the desulfurization process as the pre-treating the molten iron contained in the converter or torpedo car, the same time the addition of carbon source in the product slag during the desulfurization process, blowing an oxygen source in the slag This is achieved by a hot metal pretreatment method characterized by burning the carbon source.
The above object, the hot metal pot, carrying out the desulfurization process as the pre-treating the molten iron contained in the converter or torpedo car, the same time the addition of carbon source in the molten iron and generating slag during the desulfurization process, the oxygen in the slag This is achieved by a hot metal pretreatment method characterized by injecting a source to burn the carbon source.
[0009]
[Action]
Since the C concentration in the hot metal is close to the saturation point, conventionally, it has been considered difficult to add a carbon source to the hot metal. In addition, the conventional common sense for refining is that the carbon source is a reducing material, and if it is added during hot metal pretreatment, particularly during or after dephosphorization, the dephosphorization reaction, which is an oxidation reaction, is inhibited or recovered. It was thought that a phosphorus reaction occurred and the dephosphorization performance deteriorated.
Under such circumstances, for example, Japanese Patent Application Laid-Open No. 2-228212 discloses a hot metal pretreatment method in which a carbonaceous material is mixed with a dephosphorizing agent and blown into hot metal. There was a big technical problem in the application.
[0010]
Under such circumstances, the present inventors have conducted various improvement studies on the above-mentioned problem. As a result, the above-described method in which carbon material is simply blown into the hot metal during the preliminary treatment has no problem-solving method, so It came to the conclusion that application was difficult.
In view of securing a heat source during the preliminary treatment, the present inventors have changed the way of thinking to the conventional idea of supplying C into the hot metal, and from the viewpoint of preventing a temperature drop during the treatment. As a result of extensive studies, the oxygen potential in the slag is controlled, the carbon source is combusted in the slag without affecting the metallurgical reaction, and the heat of combustion is applied to the hot metal to heat the pretreatment. Invented a technology to improve
[0011]
That is, when a carbon source is added to slag, the carbon source acts as a reducing agent, and lowers the oxygen potential (typically, the amount of FeO) in the slag. That is,
FeO + C = Fe + CO (1)
Reaction occurs.
In general, the desulfurization reaction is more likely to proceed as the reaction atmosphere is reducing. On the other hand, if the atmosphere is highly oxidizing, the desulfurization efficiency decreases. For the same reason, if the slag oxygen potential is increased, sulfurization occurs. Therefore, it has been generally considered that it is necessary to carry out desulfurization at a timing when oxygen is not used during desulfurization treatment and slag having a high degree of slag oxidation such as dephosphorization slag does not exist.
[0012]
Accordingly, the oxidation of the carbon source into the slag according to the method of the present invention reduces the degree of slag oxidation by the reaction of the above formula (1). Therefore, if only the carbon source is added, the desulfurization reaction efficiency is improved. However, in order to achieve the hot metal sensible heat improvement by combustion of the carbon source in the slag, which is the object of the present invention, when supplying the oxygen source into the slag and burning the carbon source, an oxygen source more than the necessary amount is required. As a result, an increase in the slag oxidation degree is caused.
In the method of the present invention, if the balance between the reduction by the carbon source and the oxidation by supplying the combustion oxygen source is controlled, the heat source of hot metal can be improved without adversely affecting the metallurgical reaction.
[0013]
Hereinafter, the method of the present invention will be described in more detail.
In the first method, the carbon source added to the slag simultaneously reacts with an oxygen source supplied into the slag and oxides such as FeO in the slag to generate heat.
According to the investigation by the present inventors, the amount of oxygen supplied by an oxygen source other than slag (the oxygen source described in the claims of the present invention) is stoichiometrically supplied from the carbon source. It was found that by reducing the amount less than the amount that reacts with slag, it is possible to prevent the sulfation reaction due to the increase in oxygen potential of the slag.
[0014]
That is, under conditions where there is no dephosphorization slag, it is not necessary to consider rephosphorization due to a decrease in the slag oxygen potential, so the carbon supplied into the slag is supplied from the outside into the oxygen and slag in the slag. The total amount of oxygen supplied by the reduction of oxides including FeO may be the stoichiometric amount of oxygen necessary for carbon combustion.
At that time, according to the investigation by the present inventors, the amount of oxygen source supplied from the outside per kg of pure carbon in the slag is suitably 0.5 to 1.9 Nm 3 in terms of pure oxygen. If the amount converted to pure oxygen is less than 0.5 Nm 3 , graphite will precipitate in the slag and it will be difficult to treat the slag, and if it exceeds 1.9 Nm 3 , the oxygen potential of the slag will increase and the desulfurization efficiency will deteriorate. cause.
[0015]
When dephosphorization-treated slag is present during desulfurization, the carbon supplied into the slag reacts with the oxide in the slag to reduce the oxygen potential of the slag, thereby generating rephosphorus. Therefore, it is necessary to supply the entire amount of oxygen necessary for carbon combustion from the outside as long as the oxygen potential of the slag does not increase.
Therefore, according to the investigation results of the present inventors, the necessary amount of oxygen is appropriately 0.7 to 1.9 Nm 3 in terms of pure oxygen as the amount of oxygen supplied from outside per kg of pure carbon in slag. is there. If it is less than 0.7 Nm 3 , the oxygen potential in the slag is lowered, and there is a problem of dephosphorization or graphite precipitation in the slag. If a larger amount of oxygen than 1.9 Nm 3 is supplied, desulfurization occurs and desulfurization efficiency deteriorates.
[0016]
In the second method, the conventional method has a problem of graphite precipitation in the slag due to C saturation, and it was impossible to blow C into the hot metal until saturation. In the present invention, by setting the amount of oxygen supplied into the slag as an appropriate amount, it becomes possible to blow C into the hot metal until saturation without fear of precipitation in the slag. Furthermore, by setting the amount of oxygen supplied to the slag and the blowing conditions to be appropriate conditions according to the above-described first method, it is possible to obtain a temperature increase due to C combustion without lowering the hot metal C. This method is made more effective.
In the above method, since a large amount of CO gas is generated by C combustion, the slag is formed when the CO gas passes through the slag. As a preventive measure, it is necessary to use a reactor that can accommodate the formed slag. When carrying out the pretreatment method according to the present invention, the freeboard was immersed in the hot metal poured into the hot metal pan. It is desirable to use a reaction vessel, a converter or a kneading vehicle.
[0017]
【Example】
Fig. 1 shows that during desulfurization treatment, 1-20 kg of powder coke with a maximum particle size of 5 mm (carbon content 88%) is introduced into slag as a carbon source per ton of hot metal, and at the same time mixed with pure oxygen or 21% oxygen + 79% nitrogen When dephosphorization slag is present in terms of pure oxygen using gas as an oxygen source, 0.7 to 1.9 Nm 3 per kg of pure carbon, and 0.5 kg per kg of pure carbon when dephosphorization slag is not present ˜1.9 Nm 3 shows the hot metal temperature rise effect when blown.
The oxygen source was blown onto the slag from above or supplied from a nozzle immersed in the slag. At the same time, 0-10 kg of powder coke was blown into the hot metal during the desulfurization process simultaneously with the desulfurizing agent from the injection nozzle immersed in the hot metal. By burning 1 kg of pure carbon per ton of hot metal, the hot metal temperature was improved by 5 to 13 ° C., and the heat receiving efficiency was 40 to 100%. Moreover, there was no occurrence of quiche graphite deposition on the slag, which was a problem when a carbon source was added to the conventional hot metal, and it was not necessary to change the conventional method for the treatment of the slag after the pretreatment.
Tables 1 and 2 show examples and comparative examples of the present invention.
[0018]
[Table 1]
Figure 0003718263
[0019]
[Table 2]
Figure 0003718263
[0020]
Moreover, by using the free board, there was no influence on the operation due to the slag forming by the CO gas generated during the carbon source combustion in the slag. Similarly, when a chaotic vehicle was used as the reaction vessel, there was no adverse effect on the operation due to forming.
As the carbon source, if the main component is carbon such as coke, coal, and soil graphite, the effect per carbon content was obtained in the same manner. In addition, as the particle size of the carbon source supplied into the slag, the effect of improving the reaction efficiency or the reaction rate was obtained as the particle size became fine within a range where there was no loss due to scattering in the dust collection system.
[0021]
That is, when a carbon source was blown into the slag, a carbon source having a maximum particle size of 0.1 mm or more and 8 mm or less and when added to the slag from above was used.
Further, as the gas used for combustion of the carbon source in the slag, oxygen gas or a mixed gas of oxygen gas and nitrogen gas (including air) is desirable, but the nitrogen gas therein serves as a dilution gas for the oxygen gas. For example, if it is to realize cooling near the fire point without reacting with carbon, it is possible to obtain the same effect by using, for example, Ar, CO 2 , CO or a mixed gas instead of nitrogen gas. It is done. However, nitrogen gas is most desirable for industrial production because it causes an increase in gas cost.
[0022]
【The invention's effect】
The present invention is configured as described above, and as a result of improving the heat source (temperature after the hot metal pretreatment) in the steelmaking process, the blown Mn is improved by increasing the amount of Mn ore in the converter, and the expensive Fe- In terms of reducing the amount of Mn alloy iron used, a great economic effect can be obtained.
[Brief description of the drawings]
[Fig. 1] Relationship between carbon source supply to slag and hot metal temperature rise

Claims (2)

溶銑鍋、転炉または混銑車に収容された溶銑の予備処理として脱硫処理を行うにあたり、脱硫処理中の生成スラグ中に炭素源を添加すると同時に、スラグ中に酸素源を吹き込んで前記炭素源を燃焼させることを特徴とする溶銑の予備処理方法。 Hot metal pot, carrying out the desulfurization process as the pre-treating the molten iron contained in the converter or torpedo car, the same time, the carbon source by blowing oxygen source in the slag The addition of carbon source in the product slag during the desulfurization process A method for pre-treating hot metal, which comprises burning the steel. 溶銑鍋、転炉または混銑車に収容された溶銑の予備処理として脱硫処理を行うにあたり、脱硫処理中の溶銑および生成スラグ中に炭素源を添加すると同時に、スラグ中に酸素源を吹き込んで前記炭素源を燃焼させることを特徴とする溶銑の予備処理方法。 Hot metal pot, carrying out the desulfurization process as the pre-treating the molten iron contained in the converter or torpedo car, the same time the addition of carbon source in the molten iron and generating slag during the desulfurization process, by blowing an oxygen source in the slag above A hot metal pretreatment method, characterized by burning a carbon source.
JP19104495A 1995-07-05 1995-07-05 Hot metal pretreatment method Expired - Fee Related JP3718263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19104495A JP3718263B2 (en) 1995-07-05 1995-07-05 Hot metal pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19104495A JP3718263B2 (en) 1995-07-05 1995-07-05 Hot metal pretreatment method

Publications (2)

Publication Number Publication Date
JPH0920907A JPH0920907A (en) 1997-01-21
JP3718263B2 true JP3718263B2 (en) 2005-11-24

Family

ID=16267963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19104495A Expired - Fee Related JP3718263B2 (en) 1995-07-05 1995-07-05 Hot metal pretreatment method

Country Status (1)

Country Link
JP (1) JP3718263B2 (en)

Also Published As

Publication number Publication date
JPH0920907A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP3718263B2 (en) Hot metal pretreatment method
JP3705170B2 (en) Hot phosphorus dephosphorization method
JP3577365B2 (en) Hot metal pretreatment method
JP3645620B2 (en) Hot metal pretreatment method
JP3288208B2 (en) Hot metal dephosphorization method
JPH0920908A (en) Pretreatment for molten iron
JP2005068533A (en) Method for dephosphorizing molten pig iron
JP3645621B2 (en) Hot metal pretreatment method
JPH0297611A (en) Method for melting cold iron source
US3304172A (en) Process for the manufacture of low phosphorus pig iron
JPS6121285B2 (en)
JPS6152208B2 (en)
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JPH08209228A (en) Steel making method
JPH0813016A (en) Method for dephosphorizing and desulfurizing molten iron
JPS5856005B2 (en) High chromium steel melting method
JPH0920909A (en) Pretreatment of molten iron
JPS62230908A (en) Melt reducing method for iron ore
JPH01195211A (en) Method for melting and reducing iron oxide
JP2001040409A (en) Method for dephosphorizing molten iron
JPS60181213A (en) Manufacture of iron in reactor
JPH0499112A (en) Method for desiliconizing and desulfurizing molten iron at the same time
JPS6244533A (en) Melting-reducing refining method for metallic oxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees