JP3645620B2 - Hot metal pretreatment method - Google Patents

Hot metal pretreatment method Download PDF

Info

Publication number
JP3645620B2
JP3645620B2 JP18666695A JP18666695A JP3645620B2 JP 3645620 B2 JP3645620 B2 JP 3645620B2 JP 18666695 A JP18666695 A JP 18666695A JP 18666695 A JP18666695 A JP 18666695A JP 3645620 B2 JP3645620 B2 JP 3645620B2
Authority
JP
Japan
Prior art keywords
slag
hot metal
carbon
oxygen
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18666695A
Other languages
Japanese (ja)
Other versions
JPH0920914A (en
Inventor
和弘 堀井
公一 遠藤
敏行 金子
司 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18666695A priority Critical patent/JP3645620B2/en
Publication of JPH0920914A publication Critical patent/JPH0920914A/en
Application granted granted Critical
Publication of JP3645620B2 publication Critical patent/JP3645620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、溶銑予備処理時の温度降下を低減し、転炉吹錬時の熱的余裕度を向上させるための溶銑を製造する溶銑予備処理方法に関するものである。
【0002】
【従来の技術】
転炉等で行われる精錬処理に際して、これに先立って高炉溶銑成分や溶製鋼種の成分組成に対応した溶銑予備処理が一般に実施されている。こうした溶銑予備処理の主たる目的は、脱珪・脱燐・脱硫の予備処理精錬処理にあるが、その他予備処理工程でMn鉱石を添加して銑成分を調整することも行われており、これらの結果として転炉での精錬負荷並びに成分調整負荷を軽減することができ、転炉では専ら脱炭反応を進行せしめることができる。
【0003】
すなわち転炉精錬を実施するまでに脱燐等の処理がほぼ完了しているので転炉では、脱燐フラックス等の精錬剤の添加が殆ど不必要となり、また予備処理工程でMn鉱石を添加して溶銑中のMn量を高めることができるので転炉では、高価なMn系合金鉄の添加を極力少なくすることができ、これらの結果、転炉精錬コストが大幅に低減するという経済効果を得ることができる。
こうした要求を解決する技術として、たとえば特開平2−228412等に溶銑予備処理時に、脱燐剤と炭材を混合して溶銑中に吹き込み、処理中に溶銑炭素濃度低下を低減する方法が開示されている。
【0004】
【発明が解決しようとする課題】
このように溶銑予備処理は多くの利益をもたらすものであるが、その一方溶銑予備処理過程では、溶銑中珪素(以下Siと記す)や溶銑中炭素(以下Cと記す)が消費されてこれらの含有量が低下し過ぎるきらいがあり、転炉における熱源不足の原因の一つとなっている。
そこで熱源不足を補うために、転炉精錬における溶銑配合率を高めたり(溶銑の顕熱は重量な熱源の一つである)、昇熱用炭素源を添加する等の対応がとられている。
【0005】
しかるに転炉操業において溶銑配合率を高めるとその分だけフラックス等の投入量が制限されることになり、いわゆるリターンスクラップバランスが崩れて生産能力が低下するという問題が発生する。また転炉における昇熱用炭素源の添加は、炭素源中に不純物としてふくまれる硫黄(以下Sと記す)の混入をまねき、吹止め鋼中のS濃度が高くなる等の問題をひきおこす。
さらに予備処理工程におけるMn鉱石の添加は、溶銑温度の低下を招いて溶銑配合率を一層高めなければならない要因となっており、また添加されたMn鉱石を予備処理工程で還元する際に、SiやCが酸化消費されて熱源成分残存量を一層低下させていることも事実である。
【0006】
また、溶銑予備処理中に脱燐剤と炭材を混合して吹き込む方法は、炭材と脱燐剤にふくまれる酸素含有物(酸化鉄あるいはスケールあるいは酸素ガス)が、同一の羽口から吹き込まれることにより、吐出直後の羽口近傍での炭材と酸素が反応し、炭材の歩留低下および炭材燃焼による局所的な発熱による羽口近傍の耐火物溶損が著しく低下するという課題があった。
一方酸素との反応により発生した熱の大部分は、COガス気泡にとじこめられて、溶銑に着熱することなく系外にすてられてしまうという、経済的な無駄が避けられないという課題があった。
【0007】
さらに、吹き込まれた炭材のうち飽和Cを越えた分、あるいは未反応のまま浮上してスラグ中に懸濁した炭材は、スラグ中にキッシュグラファイト、あるいは炭材粉としてスラグ中に浮遊・懸濁することとなり、脱燐反応生成物(燐酸化物)としてスラグ中に捕捉されていた燐酸化物を還元してしまう結果、復燐が助長され、脱燐効率を悪化させていた。
さらにまた、スラグ中の懸濁したグラファイトは、スラグ処理に際して環境問題を引き起こすという課題もあった。
本発明はこうした事情に着目してなされたものであって、熱源を十分に含有する予備処理溶銑の生産方法を開発することによって転炉精錬における上記問題点を解決するものである。
【0008】
【課題を解決するための手段】
上記目的は、溶銑の予備処理として脱珪処理を行うにあたり、脱珪処理中の生成スラグ中に炭素源を添加するとともに、スラグ中に酸素源を吹き込んで前記炭素源を燃焼させることを特徴とする溶銑の予備処理方法によって達成される。
また上記目的は、溶銑の予備処理として脱珪処理を行うにあたり、脱珪処理中の溶銑および生成スラグ中に炭素源を添加するとともに、スラグ中に酸素源を吹き込んで前記炭素源を燃焼させることを特徴とする溶銑の予備処理方法によって達成される。
【0009】
【作用】
溶銑中のC濃度は飽和点に近く、そのため従来は溶銑中への炭素源の添加は困難であると考えられていた。また精錬に対する従来の常識では、炭素源は還元性材料であり、これを溶銑予備処理時、特に脱燐処理時あるいは脱燐処理後に添加すれば酸化反応である脱燐反応が阻害され、あるいは復燐反応がおこって脱燐性能が低下すると考えられていた。
このような現状で、たとえば特開平2−228412号等において、溶銑中に炭材を脱燐剤と混合して吹き込む溶銑予備処理方法が開示されているが、上記課題で記述した理由により実操業への適用には大きな技術的課題があった。
【0010】
こうした状況の中で、本発明者らは、前記課題について、種々の改善検討を実施した結果、予備処理時に溶銑中に炭材を吹き込むだけの前記方法では、課題解決方法がなく、操業への適用は困難であるとの結論をえるに至った。
そこで、本発明者らは、予備処理時の熱源確保という観点から、溶銑中にCを供給するという従来の考え方に対して、発想の転換をはかり、処理中の温度低下を防止するという観点で鋭意検討を重ねた結果、スラグ中にP25 が少なく、復燐が無視できる条件下またはスラグ中にP25 は多量に存在する条件下ではスラグ中の酸素ポテンシャル低下を引き起こさなければ、スラグ中に炭素源が存在しても復燐反応をおこさずに操業が可能であるという知見を得た。
【0011】
すなわちスラグ中に炭材が存在した場合の復燐メカニズムは以下の二段階のステップですすむことが熱力学的に証明されている。
▲1▼スラグ中のFeOが炭素(炭材)により還元される
FeO+C=Fe+CO
▲2▼スラグ中のFeOが還元され、低減したことによりスラグ中の酸素ポテンシャルが低減し、燐分配が悪化した結果、復燐が発生する。
25 =2P+5O
【0012】
実操業時において、スラグ中に炭素が存在した場合に復燐するように観察されるが、熱力学上はスラグ中のP25 がCで直接還元される
25 +5C=2P+5CO
という反応は起こりえない。したがって、本発明者らは、まず通常処理時の塩基度が0.8〜1.5と低く、脱燐反応が殆ど進行しないため、生成スラグ中のP25 が1%以下と低い脱珪処理時のスラグ中に、炭素源を添加し燃焼させることにより、復燐反応をおこさずに処理中の温度降下を低減する方法を発明した。さらに僅かに発生する可能性のある復燐については、スラグ中におけるCの存在によるのFeOの低下を抑制すれば、スラグ中にCが存在しても復燐反応はおこらないという考察をもとに、積極的にスラグ中に炭素源を供給し、その炭素源をスラグ中で燃焼させて溶銑に着熱させることにより、処理中の溶銑温度低下抑制方法を発明した。
【0013】
以下本発明方法をさらに詳細に説明する。
すなわち本発明の第1の方法では、溶銑の予備処理として脱珪処理を行うにあたり、脱珪処理中の生成スラグ中に炭素源を添加するとともに、スラグ中に酸素源を吹き込んで前記炭素源を燃焼させることにより、その燃焼熱を溶銑に着熱させるものである。
本発明方法実施にあたって、脱珪処理時におこなうことの理由については、前述したように、スラグ中に炭素と燐酸化物P25 が存在する場合は、見かけ上スラグ中に存在する炭素により、燐酸化物が還元されて復燐が発生する。しかし、そのメカニズムは炭素によるFeO還元が直接原因であり、その結果としてスラグ中酸素ポテンシャルが低下することにより復燐が発生しているものである。よってスラグ中の燐酸化含有量の少ないければ復燐は発生せずあるいは発生しても操業上無視できる程度に軽微である。
【0014】
脱珪処理時に発生する脱珪滓中の燐酸化物濃度は高々1%以下であり、本発明法による炭素源を投入しても燐酸化物の還元は殆ど無視できるレベルに抑制することが可能となる。さらに僅かに発生する復燐については、本発明の請求項に記述した方法により、スラグ酸素ポテンシャル(FeO)低下を防止し、復燐をほぼゼロとする。
すなわち元来スラグ中に粒鉄分(以下メタリックFe:M−Fe)が約10%程度存在していることに着目し、そのM−Feのに酸素源を供給して炭素によるFeO還元量以上のFeO量を生成させることにより、結果としてFeO還元を防止できることを発見した。
【0015】
図1にスラグ中に炭素源(コークス)と、酸素源(酸素ガス)を供給した場合のスラグ酸素ポテンシャルの調査結果を示す。化学量論的等価のコークスと酸素を供給しているにも関わらず、スラグ中のFeOが増加し、一方スラグ中のM−Feが低減しており、M−Fe酸化により、もともとスラグ中に存在したFeOが還元される以上の量のM−Fe酸化によるFeO供給(酸素ポテンシャル向上)が可能であることが判明した。
したがって、スラグ中に炭素源を供給するととにスラグ中に酸素源を吹き込むことにより、脱Si時のスラグ中に僅かに存在するP25 の復燐の影響なしに炭素源の燃焼が可能となり、溶銑への着熱が得られる。
【0016】
第2の方法は、従来の方法では、C飽和によるスラグ中へのグラファイト析出の課題があり、飽和まで溶銑中にCを吹き込むことが不可能であった。しかし本発明では、スラグ中への供給酸素量を適当な量として設定することにより、スラグ中に析出することの懸念なしに溶銑中に飽和するまでCを吹き込むことが可能となる。
さらに、スラグ中への供給酸素量および吹き込み条件を適当な条件とすることにより、スラグ中への酸素供給をM−FeおよびスラグへのC供給量より十分大きな値とすることにより、溶銑中の脱炭を促進し、脱炭分を溶銑中に吹き込んで供給することにより溶銑Cの低下なしにC燃焼による温度上昇を得ることが可能となり、第1の方法をさらに効果的なものとすることできる。
【0017】
上記方法は、C燃焼により多量のCOガスが発生することから、スラグ中をCOガスが通過する際にスラグのフォーミングを引き起こす。その防止策として、フォーミングしたスラグを収容可能な反応槽を使用することが必要であり、本発明にかかる予備処理方法実施の際は、溶銑鍋に払いだされた溶銑中にフリーボードを浸漬した反応容器あるいは、混銑車あるいは、転炉を使用することが望ましい。
【0018】
また前記炭素源としては、炭素含有量が高いほど効率および炭素供給速度を早くできるという点で、コークスまたは石炭または土壌黒鉛等が望ましい。
さらに前記酸素源としては、反応的には純酸素がもっとも望ましい。二次燃焼あるいはスラグ中への酸素源供給ノズル近傍または耐火物の溶損等の状況により、供給ノズルの冷却用として、窒素ガスを混合した酸素ガスと窒素ガスを主成分とする混合ガスも使用可能である(空気も含む)。窒素ガスの配合割合は、ノズル材質・構造(水冷または冷却なし等)の必要冷却能力により適正な配合を選択することが必要である。
【0019】
【実施例】
表1および2で示す成分組成ならびに温度の溶銑に対し、表記の条件で脱珪処理をおこない、処理後の溶銑成分・温度を調べたところ、表1、表2に示す結果が得られた。
従来に比較し、スラグ中へ炭材を添加し、酸素源によりスラグ中で燃焼させることにより、発生した熱を溶銑に着熱させて処理中の温度降下を低減し、結果的に処理後温度の向上・転炉での熱裕度向上を実現できた。その際の燃焼熱量の溶銑への着熱比率は、図2に示すように約20から70%であった。
ただし、スラグへの純炭素換算供給量は、下記のように定義する。
スラグへの純炭素換算供給量=溶銑中への純炭素供給量−(溶銑の飽和〔C〕−溶銑〔C〕)×溶銑量
【0020】
【表1】

Figure 0003645620
【0021】
【表2】
Figure 0003645620
【0022】
炭材燃焼用ガスの吹き込み用は、その含有する酸素分に換算して、下記(1)に示すスラグ中への炭素純分(炭材量×C含有率)を燃焼するに等価な量が適当であるが、(1)式で計算される量に対して+100%〜−40%までは本方法が適用可能である。
+100%を越えて酸素を供給すると、投入した炭素分がCO2 まで完全燃焼してもなお余剰となる酸素が発生することとなり、結果的に鉄酸化に消費されることとなるために、鉄歩留の悪化を招く。
一方−40%以下では、スラグ中にC分が残留し、キッシュグラファイト析出によりスラグ処理が出来ない等の操業に重大な影響を及ぼすことから不適当である。
C+O=CO ・・・(1)
【0023】
(1)式をもとに算出され、上記範囲に示された範囲の酸素量を供給して操業した結果、従来の溶銑中に炭素源を添加した際に課題となっていたスラグへのキッシュグフラファイト析出の発生も全くなく、脱珪スラグの処置も従来方法を変更する必要はなかった。
炭材燃焼用ガスの供給は、上吹でスラグ中にガスを供給する方法、または脱珪剤インジェクション法においては、インジェクションランスのスラグ位置にガス吹き込み用ノズルを新たに設置して、スラグ中にガスを吹き込む方法または、炭材燃焼用ガス専用のランスをガス吐出ノズルの位置がスラグ位置になるように設置する方法のいずれか、または2つ以上の方法を組み合わせて実施してもよい。
【0024】
また、フリーボードを使用することにより、スラグ中での炭素源燃焼の際発生するCOガスによるスラグフォーミングによる操業への影響なしに実施することが可能となった。転炉を使用した際には、その特性である大きな炉内フリーボードの機能を十分活用できるため、さらに安定した操業が実現できる。
表1、表2の実施例では炭素源として粉コークスのみを表記したが、石炭または黒鉛等を使用しても同等の効果が得られる。また、使用する炭素源の粒度は、集塵系に飛散することによるロスのない範囲で、細粒であるほど反応効率が向上あるい反応速度向上の効果が得られる。
【0025】
また、スラグ中炭素源燃焼に使用するガスとしては、酸素ガスあるいは酸素ガスと窒素ガスの混合ガスが望ましいが、その中の窒素ガスは酸素ガスの希釈ガスとしての役割をはたしており、炭素と反応せずに火点近傍の冷却を実現するためであるならば、窒素ガスに代替して例えばArやCO2 ガスでを使用することにより同等の効果が得られる。ただし、ガスコスト上昇を引き起こすため、工業生産的には窒素ガスが最も望ましい。
本発明法における予備処理方法は、1表、表2で示すが如く脱珪処理のみの場合のみならず、脱珪処理の後に脱燐処理を行う場合、または脱珪処理の後に脱硫処理を行う場合、または脱珪処理の後に脱燐処理および脱硫処理を行う場合においても適用可能であり、後処理工程である脱燐およびまたは脱硫工程への悪影響は見られない。
【0026】
【発明の効果】
本発明は、以上のような手段をとるものであり、製鋼工程における熱源(溶銑予備処理後の温度)向上を実現した結果、転炉におけるMn鉱石投入量増大による吹止Mn向上と、高価なFe−Mn合金鉄使用量削減という点で、多大な経済的効果を得ることが可能となった。
【図面の簡単な説明】
【図1】スラグ中に炭素源と酸素源を供給した際のスラグ酸素ポテンシャルを示す図
【図2】スラグへの炭素供給量と処理中温度降下低減代を示す図[0001]
[Industrial application fields]
The present invention relates to a hot metal pretreatment method for producing hot metal for reducing the temperature drop during hot metal pretreatment and improving the thermal margin during converter blowing.
[0002]
[Prior art]
Prior to the refining process performed in a converter or the like, a hot metal pretreatment corresponding to a blast furnace hot metal component or a component composition of a steelmaking type is generally performed. The main purpose of such hot metal pretreatment is in the pretreatment refining treatment of desiliconization, dephosphorization, and desulfurization, but in other pretreatment processes, Mn ore is added to adjust the soot component. As a result, the refining load and component adjustment load in the converter can be reduced, and the decarburization reaction can proceed exclusively in the converter.
[0003]
In other words, since dephosphorization and other treatments are almost completed before converter refining, it is almost unnecessary to add a refining agent such as dephosphorization flux in the converter, and Mn ore is added in the preliminary treatment step. As a result, the amount of Mn in the hot metal can be increased, and in the converter, the addition of expensive Mn-based alloy iron can be reduced as much as possible, and as a result, the economic effect of significantly reducing the converter refining cost can be obtained. be able to.
As a technique for solving such a requirement, for example, Japanese Laid-Open Patent Application No. 2-228212 discloses a method of mixing a dephosphorizing agent and a carbonaceous material and blowing it into hot metal during hot metal pretreatment, thereby reducing the decrease in hot metal carbon concentration during the treatment. ing.
[0004]
[Problems to be solved by the invention]
In this way, the hot metal pretreatment provides many benefits, while in the hot metal pretreatment process, silicon in hot metal (hereinafter referred to as Si) and carbon in hot metal (hereinafter referred to as C) are consumed. There is a tendency that the content is too low, which is one of the causes of the lack of heat source in the converter.
Therefore, in order to make up for the shortage of heat sources, measures such as increasing the hot metal content in converter refining (the sensible heat of hot metal is one of the heavy heat sources) and adding a carbon source for heating are being taken. .
[0005]
However, when the hot metal content is increased in the converter operation, the amount of flux and the like is limited accordingly, so that the so-called return scrap balance is lost and the production capacity is reduced. Moreover, the addition of a carbon source for heating in the converter causes problems such as the inclusion of sulfur (hereinafter referred to as S) contained as an impurity in the carbon source and an increase in the S concentration in the blown steel.
Furthermore, the addition of Mn ore in the pretreatment step is a factor that causes a reduction in the hot metal temperature and further increases the hot metal content, and when reducing the added Mn ore in the pretreatment step, Si is added. It is also true that C and C are oxidized and consumed to further reduce the remaining amount of the heat source component.
[0006]
In addition, the method of mixing and blowing the dephosphorizing agent and the carbonaceous material during the hot metal pretreatment is such that the oxygen-containing material (iron oxide, scale or oxygen gas) contained in the carbonaceous material and the dephosphorizing agent is blown from the same tuyere. As a result, the carbon and oxygen in the vicinity of the tuyere immediately after discharge react, and the refractory melting near the tuyere due to local heat generation due to carbon material yield reduction and carbon material combustion significantly decreases. was there.
On the other hand, most of the heat generated by the reaction with oxygen is trapped in CO gas bubbles, and is unavoidably economically wasteful. there were.
[0007]
Furthermore, the portion of the blown carbon material that exceeds saturation C, or the carbon material that has floated unreacted and suspended in the slag is suspended in the slag as quiche graphite or carbon powder in the slag. As a result of suspending and reducing the phosphorus oxide trapped in the slag as a dephosphorization reaction product (phosphorus oxide), the recovery was promoted and the dephosphorization efficiency was deteriorated.
Furthermore, the graphite suspended in the slag has a problem of causing environmental problems during the slag treatment.
The present invention has been made paying attention to such circumstances, and solves the above-described problems in converter refining by developing a production method of pre-treated hot metal sufficiently containing a heat source.
[0008]
[Means for Solving the Problems]
The above object is characterized in that when performing desiliconization treatment as a hot metal pretreatment, a carbon source is added to the generated slag during the desiliconization treatment, and an oxygen source is blown into the slag to burn the carbon source. This is achieved by a hot metal pretreatment method.
Further, the purpose of the present invention is to add a carbon source to the hot metal and the generated slag during the desiliconization process and to inject the oxygen source into the slag to burn the carbon source when performing the desiliconization process as a hot metal pretreatment. It is achieved by a hot metal pretreatment method characterized by the following.
[0009]
[Action]
Since the C concentration in the hot metal is close to the saturation point, conventionally, it has been considered difficult to add a carbon source to the hot metal. In addition, the conventional common sense for refining is that the carbon source is a reducing material, and if it is added during hot metal pretreatment, particularly during or after dephosphorization, the dephosphorization reaction, which is an oxidation reaction, is inhibited or recovered. It was thought that a phosphorus reaction occurred and the dephosphorization performance deteriorated.
Under such circumstances, for example, Japanese Laid-Open Patent Application No. 2-228212 discloses a hot metal pretreatment method in which a carbon material is mixed with a dephosphorizing agent and blown into hot metal. There was a big technical problem in the application.
[0010]
Under such circumstances, the present inventors have conducted various improvement studies on the above-mentioned problem. As a result, the above-described method in which carbon material is simply blown into the hot metal during the preliminary treatment has no problem-solving method, so We came to the conclusion that it was difficult to apply.
In view of securing a heat source during the preliminary treatment, the present inventors have changed the way of thinking to the conventional idea of supplying C into the hot metal, and from the viewpoint of preventing a temperature drop during the treatment. intensive result of extensive investigations, less P 2 O 5 in the slag, if caused a decrease oxygen potential in the slag under P 2 O 5 in conditions or slag Fukurin is negligible abundant The present inventors have found that even if a carbon source is present in the slag, the operation is possible without causing a rephosphorus reaction.
[0011]
That is, it has been proved thermodynamically that the recovery mechanism in the presence of carbonaceous material in the slag can be accomplished in the following two steps.
(1) FeO in slag is reduced by carbon (carbon material) FeO + C = Fe + CO
{Circle around (2)} FeO in the slag is reduced and reduced, so that the oxygen potential in the slag is reduced and phosphorus distribution is deteriorated, resulting in recovery.
P 2 O 5 = 2P + 5O
[0012]
In actual operation, it is observed that phosphorus is recovered when carbon is present in the slag, but P 2 O 5 in the slag is directly reduced by C in terms of thermodynamics. P 2 O 5 + 5C = 2P + 5CO
The reaction cannot occur. Therefore, the present inventors first have a basicity as low as 0.8 to 1.5 during normal treatment, and the dephosphorization reaction hardly proceeds. Therefore, P 2 O 5 in the formed slag is as low as 1% or less. We have invented a method of reducing the temperature drop during processing without causing the dephosphorization reaction by adding a carbon source to the slag during the silicon treatment and burning it. Furthermore, with regard to the recovery that may occur slightly, if the reduction of FeO due to the presence of C in the slag is suppressed, the recovery reaction will not occur even if C is present in the slag. In addition, the present inventors have invented a method for suppressing a decrease in hot metal temperature during processing by positively supplying a carbon source into slag, burning the carbon source in the slag, and allowing the hot metal to heat.
[0013]
Hereinafter, the method of the present invention will be described in more detail.
That is, in the first method of the present invention, when performing the desiliconization treatment as a hot metal pretreatment, a carbon source is added to the generated slag during the desiliconization treatment, and an oxygen source is blown into the slag to remove the carbon source. By burning, the combustion heat is applied to the hot metal.
In carrying out the method of the present invention, the reason why the desiliconization process is performed is that, as described above, when carbon and the phosphorous oxide P 2 O 5 are present in the slag, the apparently present carbon in the slag causes phosphoric acid. The fluoride is reduced to generate phosphorus. However, the mechanism is directly caused by FeO reduction by carbon, and as a result, oxygen recovery in the slag is reduced, and thus, phosphorus is generated. Therefore, if the phosphorylation content in the slag is small, no recovery phosphorus is generated, or even if it occurs, it is negligibly small for operation.
[0014]
The concentration of phosphor oxide in the desiliconized soot generated during the desiliconization treatment is at most 1%, and even if a carbon source according to the method of the present invention is added, the reduction of the phosphor oxide can be suppressed to a level that can be almost ignored. . Further, with respect to the slightly recovered phosphorus, the method described in the claims of the present invention prevents the slag oxygen potential (FeO) from being lowered and makes the recovery almost zero.
That is, paying attention to the fact that about 10% of the granular iron (hereinafter referred to as metallic Fe: M-Fe) is originally present in the slag, an oxygen source is supplied to the M-Fe so that the amount of FeO reduced by carbon or more is exceeded. It has been discovered that generating FeO amount can prevent FeO reduction as a result.
[0015]
FIG. 1 shows the results of investigating the slag oxygen potential when a carbon source (coke) and an oxygen source (oxygen gas) are supplied into the slag. Despite the supply of stoichiometric equivalent coke and oxygen, FeO in the slag has increased, while M-Fe in the slag has decreased, and the M-Fe oxidation originally has been in the slag. It has been found that FeO can be supplied (improvement of oxygen potential) by M-Fe oxidation in an amount greater than that of the existing FeO being reduced.
Therefore, when a carbon source is supplied into the slag, an oxygen source is blown into the slag, so that the carbon source can be burned without the influence of P 2 O 5 that is slightly present in the slag during de-Si. As a result, heat is applied to the hot metal.
[0016]
The second method has a problem of graphite precipitation in the slag due to C saturation in the conventional method, and it was impossible to blow C into the hot metal until saturation. However, in the present invention, by setting the amount of oxygen supplied into the slag as an appropriate amount, C can be blown into the hot metal until it is saturated without fear of precipitation in the slag.
Furthermore, by making the supply oxygen amount and blowing conditions into the slag suitable, the oxygen supply into the slag is set to a value sufficiently larger than the C supply amount to M-Fe and slag. By promoting decarburization and supplying the decarburized part by blowing it into the hot metal, it becomes possible to obtain a temperature increase due to C combustion without lowering the hot metal C, and the first method is made more effective. it can.
[0017]
In the above method, since a large amount of CO gas is generated by C combustion, the slag is formed when the CO gas passes through the slag. As a preventive measure, it is necessary to use a reaction tank that can accommodate the formed slag, and when the pretreatment method according to the present invention is carried out, the free board is immersed in the hot metal poured into the hot metal pan. It is desirable to use a reaction vessel, a kneading vehicle, or a converter.
[0018]
Further, as the carbon source, coke, coal, soil graphite, or the like is desirable in that the higher the carbon content, the faster the efficiency and the carbon supply rate.
Further, as the oxygen source, pure oxygen is most desirable in terms of reaction. Depending on the situation of secondary combustion or near the oxygen source supply nozzle in the slag or refractory erosion, etc., oxygen gas mixed with nitrogen gas and mixed gas containing nitrogen gas as the main component are also used for cooling the supply nozzle Yes (including air). It is necessary to select an appropriate mixing ratio of the nitrogen gas depending on the required cooling capacity of the nozzle material and structure (water cooling or no cooling).
[0019]
【Example】
When the component composition and temperature of the hot metal shown in Tables 1 and 2 were desiliconized under the indicated conditions and the hot metal components and temperature after the treatment were examined, the results shown in Tables 1 and 2 were obtained.
Compared to the conventional method, by adding carbonaceous material into the slag and burning it in the slag with an oxygen source, the generated heat is absorbed into the hot metal to reduce the temperature drop during processing, resulting in a post-treatment temperature. Improved heat tolerance in converters. At that time, the heat ratio of the combustion heat amount to the hot metal was about 20 to 70% as shown in FIG.
However, pure carbon equivalent supply to slag is defined as follows.
Pure carbon equivalent supply to slag = Pure carbon supply to hot metal-(Saturated hot metal [C]-Hot metal [C]) x Hot metal amount [0020]
[Table 1]
Figure 0003645620
[0021]
[Table 2]
Figure 0003645620
[0022]
For the injection of the carbonaceous material combustion gas, the amount equivalent to burning the pure carbon content (carbon content x C content) into the slag shown in (1) below is calculated in terms of the oxygen content. Although appropriate, this method is applicable up to + 100% to −40% with respect to the amount calculated by equation (1).
If oxygen is supplied in excess of + 100%, excess oxygen is generated even if the input carbon content is completely burned to CO 2 , resulting in consumption of iron oxidation. Yield deterioration.
On the other hand, if it is -40% or less, C content remains in the slag, and it is unsuitable because it seriously affects operations such as slag treatment being impossible due to precipitation of quiche graphite.
C + O = CO (1)
[0023]
Calculated based on the formula (1), the result of supplying and operating the amount of oxygen in the range shown above, quiche to slag, which was a problem when adding a carbon source into the conventional hot metal There was no occurrence of phragite precipitation, and the treatment of desiliconization slag did not require any change to the conventional method.
Charcoal combustion gas can be supplied by supplying gas into the slag by top blowing, or in the desiliconization injection method, a new gas blowing nozzle is installed at the slag position of the injection lance, You may implement either the method of blowing in gas, the method of installing the lance only for the carbonaceous material combustion gas so that the position of a gas discharge nozzle may become a slug position, or combining two or more methods.
[0024]
In addition, by using a free board, it has become possible to carry out the operation without affecting the operation due to the slag forming by the CO gas generated in the combustion of the carbon source in the slag. When a converter is used, the function of a large in-furnace freeboard, which is its characteristics, can be fully utilized, so that more stable operation can be realized.
In the examples of Tables 1 and 2, only powdered coke was described as the carbon source, but equivalent effects can be obtained even when coal or graphite is used. The particle size of the carbon source to be used is within a range where there is no loss due to scattering in the dust collection system, and the finer the particle, the better the reaction efficiency or the reaction rate.
[0025]
The gas used for combustion of the carbon source in the slag is preferably oxygen gas or a mixed gas of oxygen gas and nitrogen gas, but the nitrogen gas in the slag serves as a dilution gas for oxygen gas and reacts with carbon. In order to realize the cooling near the fire point without using the same, the same effect can be obtained by using, for example, Ar or CO 2 gas instead of nitrogen gas. However, nitrogen gas is most desirable for industrial production because it causes an increase in gas cost.
As shown in Tables 1 and 2, the pretreatment method in the present invention is not only for desiliconization treatment, but also for dephosphorization treatment after desiliconization treatment, or desulfurization treatment after desiliconization treatment. In this case, the present invention can also be applied to the case where the dephosphorization treatment and the desulfurization treatment are performed after the desiliconization treatment.
[0026]
【The invention's effect】
The present invention takes the above-described means, and as a result of improving the heat source (temperature after the hot metal pretreatment) in the steelmaking process, the blown Mn is improved by increasing the amount of Mn ore in the converter, In terms of reducing the amount of Fe—Mn alloy iron used, a great economic effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the slag oxygen potential when a carbon source and an oxygen source are supplied into the slag. FIG. 2 is a diagram showing a carbon supply amount to the slag and a reduction in temperature drop during processing.

Claims (2)

溶銑の予備処理として脱珪処理を行うにあたり、脱珪処理中の生成スラグ中に炭素源を添加すると共に、スラグ中に酸素源を吹き込んで前記炭素源を燃焼させることを特徴とする溶銑の予備処理方法。When performing the desiliconization treatment as a hot metal pretreatment, the carbon source is added to the generated slag during the desiliconization treatment, and the oxygen source is blown into the slag to burn the carbon source. Processing method. 溶銑の予備処理として脱珪処理を行うにあたり、脱珪処理中の溶銑および生成スラグ中に炭素源を添加すると共に、スラグ中に酸素源を吹き込んで前記炭素源を燃焼させることを特徴とする溶銑の予備処理方法。When performing the desiliconization treatment as a hot metal pretreatment, the carbon source is added to the hot metal and degenerated slag during the desiliconization treatment, and the carbon source is burned by blowing an oxygen source into the slag. Pre-processing method.
JP18666695A 1995-06-30 1995-06-30 Hot metal pretreatment method Expired - Fee Related JP3645620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18666695A JP3645620B2 (en) 1995-06-30 1995-06-30 Hot metal pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18666695A JP3645620B2 (en) 1995-06-30 1995-06-30 Hot metal pretreatment method

Publications (2)

Publication Number Publication Date
JPH0920914A JPH0920914A (en) 1997-01-21
JP3645620B2 true JP3645620B2 (en) 2005-05-11

Family

ID=16192549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18666695A Expired - Fee Related JP3645620B2 (en) 1995-06-30 1995-06-30 Hot metal pretreatment method

Country Status (1)

Country Link
JP (1) JP3645620B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854482B2 (en) * 2001-09-27 2006-12-06 新日本製鐵株式会社 Hot metal pretreatment method and refining method
JP5423554B2 (en) * 2010-04-16 2014-02-19 新日鐵住金株式会社 Hot metal pretreatment method

Also Published As

Publication number Publication date
JPH0920914A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
KR930001125B1 (en) Method for manufacturing molten metal containing ni & cr
JP5954551B2 (en) Converter steelmaking
JP3645620B2 (en) Hot metal pretreatment method
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
JP3525766B2 (en) Hot metal dephosphorization method
JP3577365B2 (en) Hot metal pretreatment method
JP3645621B2 (en) Hot metal pretreatment method
JP3297801B2 (en) Hot metal removal method
JP3718263B2 (en) Hot metal pretreatment method
CN113056566A (en) Carbon increasing material and carbon increasing method using same
JP2005068533A (en) Method for dephosphorizing molten pig iron
JPH0920908A (en) Pretreatment for molten iron
JP3290050B2 (en) Hot metal desulfurization method
JPH09143529A (en) Method for dephosphorizing molten iron
JP3736229B2 (en) Hot metal processing method
JPS6121285B2 (en)
JP2615728B2 (en) Decarburization method for Cr-containing pig iron
SU1071645A1 (en) Method for making steel
JPS6152208B2 (en)
JPH0920909A (en) Pretreatment of molten iron
RU2201970C2 (en) Method of making steel in high-power electric arc furnaces
JPH11217246A (en) Prevention of powdering of reduced slag
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JPH06184620A (en) Dephosphorization method of chromium containing steel
JPS5827916A (en) Desiliconizing method for molten iron

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees