JPS5827916A - Desiliconizing method for molten iron - Google Patents

Desiliconizing method for molten iron

Info

Publication number
JPS5827916A
JPS5827916A JP12620181A JP12620181A JPS5827916A JP S5827916 A JPS5827916 A JP S5827916A JP 12620181 A JP12620181 A JP 12620181A JP 12620181 A JP12620181 A JP 12620181A JP S5827916 A JPS5827916 A JP S5827916A
Authority
JP
Japan
Prior art keywords
molten iron
reaction
desiliconization
hot metal
desiliconizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12620181A
Other languages
Japanese (ja)
Inventor
Michiharu Ozawa
小沢 三千晴
Shinobu Okano
岡野 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12620181A priority Critical patent/JPS5827916A/en
Publication of JPS5827916A publication Critical patent/JPS5827916A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To prevent heat loss occuring in the endothermic reaction by decomposition of iron oxide and to desiliconize molten iron while suppressing the decarburization reaction thereof in the preliminary desiliconizing stage of the molten iron by blowing the powder of iron oxide which is a desiliconizing agent with a specific amt. of gaseous oxygen into the molten iron. CONSTITUTION:Prior to refining of molten iron in a converter to make steel, the molten steel is preliminarily desiliconized to facilitate the succeeding dephosphorization reaction. As a desiliconizing agent, a powdery compsn. consisting essentially of Fe2O3 is blown into the molten iron, whereby the molten iron is desilionized. Here, gaseous oxygen as a carrier gas at 4-200Nl to 1kg of Fe2O3 which is the desiliconizing agent is blown into the molten iron. The temp. drop of the molten iron on account of endothermic reaction by decomposition of Fe2O3 is suppressed by oxidation reaction of Si owing to the presence of the gaseous oxygen. If the amt. of the gaseous oxygen is regulated in the above- mentioned range, the rate of decarburization by oxidation of C serving as a heat source during refining for steel making is decreased and the preliminary refining by desiliconization is effected efficiently.

Description

【発明の詳細な説明】 この発明は転炉等による精錬に先立って行なわれる溶銑
予備処理法に関し、特に溶銑中の珪素を低減させる脱珪
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot metal pretreatment method performed prior to refining in a converter or the like, and particularly to a desiliconization method for reducing silicon in hot metal.

周知のように溶銑中の珪素は転炉吹錬等の精錬過程にお
いて酸素によシ極めて速やかに低減させることが可能で
ある。しかしながら転炉吹錬開始時あるいはその転炉吹
錬に先立って行なわれる予備処理としての脱燐処理開始
時において溶銑中の珪素含有量が高ければ、スラグ中の
SiO2濃度が高くなってスラグの塩基度CaO/Si
O□が小さくなシ、その結果溶銑中の燐の除去が困難と
なる。そのため特に低燐鋼を得たい場合等においては、
転炉吹錬の前工程、あるいは脱燐処理の前工程として、
珪素を減少させるいわゆる脱珪処理を行うことが要求さ
れる。
As is well known, silicon in hot metal can be very quickly reduced by oxygen during a refining process such as converter blowing. However, if the silicon content in the hot metal is high at the start of converter blowing or at the start of dephosphorization as a preliminary treatment prior to converter blowing, the SiO2 concentration in the slag will increase and the slag will become a base. Degree CaO/Si
As a result, it becomes difficult to remove phosphorus from the hot metal. Therefore, especially when you want to obtain low phosphorus steel,
As a pre-process of converter blowing or a pre-process of dephosphorization treatment,
It is required to perform a so-called desiliconization treatment to reduce silicon.

ところで従来から溶銑の脱珪処理方法は種々開発されて
おシ、例えば高炉炉床において湯道に脱珪剤を添加する
方法や、溶銑鍋に溶銑を装入した後脱珪剤を添加して、
機械的攪拌もしくはガス攪拌により反応を促進させる方
法、さらには不活性ガスとともに脱珪剤を溶銑中に吹込
む方法等が知られている。これらの脱珪処理に使用され
る脱珪剤はいずれもF・203を主成分とするものであ
如、溶銑中に添加攪拌もしくは吹込まれた脱珪剤中のF
・205は次の(1)式に示すごとく分解して02を生
じる。
By the way, various methods for desiliconizing hot metal have been developed in the past, such as adding a desiliconizing agent to the runner in the blast furnace hearth, and adding a desiliconizing agent after charging hot metal into a hot metal ladle. ,
Methods of promoting the reaction by mechanical stirring or gas stirring, and methods of blowing a desiliconizing agent into hot metal together with an inert gas are known. All of the desiliconizing agents used in these desiliconizing treatments are mainly composed of F.203.
・205 is decomposed to produce 02 as shown in the following equation (1).

3    ・・・・・・(1) Fe2O5→2Fe + 7−02 この分解によって生じた02は(2)式であられされる
脱珪反応に消費される。
3...(1) Fe2O5→2Fe+7-02 02 generated by this decomposition is consumed in the desiliconization reaction expressed by the formula (2).

Sl+02→sho。       ・・・・・・ (
2)し7かるに(2)式の脱珪反応が発熱反応であるの
に対し、(1)式の分解反応は吸熱反応であるから、脱
珪反応効率が低ければそれだけ溶銑の温度降下が大きく
なる。第1図に鉄鉱石を不活性ガスとともに溶銑中に溶
銑トン当シ13〜18に&吹込んだ時の温度降下量を脱
珪反応効率に対応して示す。第1図から、溶銑の温度降
下量は脱珪反応効率に依存し、反応効率が80%以下で
温度降下をきたし、50%以下になれば30〜40℃も
のm度降下量とガることが明らかである。通常脱珪反応
効率は40〜90チ程度であるから、実際の操業におい
てはほとんどの場合温度降下が生じ、極端な場合は40
℃近くも温度降下することがらυ、したがって従来の脱
珪処理においては熱損失が無視てきないのが実情であっ
た。
Sl+02→sho.・・・・・・ (
2)7 However, while the desiliconization reaction in equation (2) is an exothermic reaction, the decomposition reaction in equation (1) is an endothermic reaction, so the lower the desiliconization reaction efficiency is, the lower the temperature of the hot metal will be. growing. FIG. 1 shows the amount of temperature drop corresponding to the desiliconization reaction efficiency when iron ore is injected into hot metal tons 13 to 18 together with an inert gas. From Figure 1, the amount of temperature drop in hot metal depends on the desiliconization reaction efficiency, and if the reaction efficiency is less than 80%, the temperature will drop, and if it is less than 50%, the temperature drop will be as much as 30 to 40 degrees Celsius. is clear. Normally, the desiliconization reaction efficiency is about 40 to 90 degrees, so in actual operation, a temperature drop occurs in most cases, and in extreme cases, the temperature drops by 40 to 90 degrees.
Since the temperature can drop by as much as ℃, the reality is that heat loss cannot be ignored in conventional desiliconization treatments.

上述のような脱珪処理における熱損失を防止するため、
脱珪処理中に酸素ガスを溶銑浴表面に吹+Jけ(上吹き
)する方法も従来から知られているが、この方法では上
吹き酸素ガスによって溶銑の脱炭が進行し、そのため脱
珪処理後の溶銑のC含有量が少なくなる問題がある。す
なわちその後の方法ではC含有量が少なくなるため転炉
吹錬等における熱源不足の問題が生じて必要な出鋼温度
が確保できなくなることもある。
In order to prevent heat loss during the desiliconization process as described above,
A method of blowing oxygen gas onto the surface of the hot metal bath during the desiliconization process (top blowing) has also been known, but in this method, the decarburization of the hot metal progresses due to the top blown oxygen gas, and as a result, the desiliconization process There is a problem that the C content of the subsequent hot metal decreases. That is, in the subsequent method, the C content decreases, resulting in the problem of insufficient heat source in converter blowing, etc., and it may become impossible to secure the necessary tapping temperature.

この発明は以上の事情に鑑みてなされたもので、熱損失
を防ぐと同時に脱炭反応を抑制しつつ効率良く脱珪を行
わせるようにした溶銑脱珪処理方法を提供することを目
的とするものである。
This invention was made in view of the above circumstances, and aims to provide a hot metal desiliconization treatment method that efficiently performs desiliconization while preventing heat loss and suppressing decarburization reactions. It is something.

すなわちこの発明の脱珪処理方法は、溶銑中にF・20
3を主成分とする脱珪剤をF・20,1kg当シ4〜2
0ON−1Jの酸素量を有する搬送ガスとともに吹込む
ことを%徴とするものである。
That is, the desiliconization treatment method of the present invention includes F.20 in hot metal.
F・20.1kg of desiliconizing agent mainly composed of 4 to 2
The percentage indicates that it is blown in with a carrier gas having an oxygen content of 0ON-1J.

以下この発明の溶銑脱珪処理方法をさらに詳細に説明す
る。
The hot metal desiliconization treatment method of the present invention will be explained in more detail below.

この発明の方法においては、前述のようにFe 203
を主成分とする脱珪剤をF・203に対し所定の酸素量
を含有する搬送ガスとともに溶銑中に吹込む。
In the method of this invention, as mentioned above, Fe 203
A desiliconization agent mainly composed of F.203 is blown into hot metal together with a carrier gas containing a predetermined amount of oxygen.

溶銑中に吹込まれたF・203が前記(1)式に示すよ
うに分解して02を発生し、その02が前記(2)式に
ょ9脱珪に寄与するのは前述の通りである。ここで、前
述の第1図に示すようにF・203吹込みによる温度降
下量は脱珪反応効率に依存し、脱珪反応効率が高くなれ
ば温度降下が防止される。そこでこの発明では酸素ガス
を含有するガスを脱珪剤吹込みの搬送ガスとして用いて
、その酸素ガスの02によっても前記(2)式の脱珪反
応を遂行させ、これによって吹込んだF・203に対す
る見掛は上の脱珪効率を向上させ、温度降下を抑制する
のである。温度降下防止策としては従来から知られてい
るように浴面上に酸素ガスを吹付けることも考えられる
が、この場合には前述のように脱炭反応が同時に進行し
、転炉吹錬の際において熱源不足の問題を招く。これに
対しこの発明の方法では酸素を含有するガスを溶銑中に
、すなわち溶銑の浴面からある深さだけ下がった位置の
溶銑中に吹込む丸め、その吹込み位置における静鉄圧力
だけ脱炭反応が抑制され、その結果処理後の溶銑の炭素
含有量の低下が防止されて前述の問題が生じ難くなると
ともに、脱炭反応の抑制により脱珪反応が優先的に進行
し、脱珪効率が良好となる。
As mentioned above, the F.203 injected into the hot metal decomposes as shown in the above formula (1) and generates 02, and the 02 contributes to the desiliconization in the above formula (2). Here, as shown in the above-mentioned FIG. 1, the amount of temperature drop due to F.203 injection depends on the desiliconization reaction efficiency, and as the desiliconization reaction efficiency increases, the temperature drop is prevented. Therefore, in this invention, a gas containing oxygen gas is used as a carrier gas for injecting the desiliconizing agent, and the desiliconizing reaction of the formula (2) is carried out also by the oxygen gas 02, thereby causing the injected F. The apparent effect of 203 is to improve the desiliconization efficiency and suppress the temperature drop. As a conventional measure to prevent temperature drop, spraying oxygen gas onto the bath surface may be considered, but in this case, as mentioned above, the decarburization reaction will proceed at the same time and the converter blowing process will be delayed. In some cases, this may lead to the problem of insufficient heat source. In contrast, the method of the present invention involves injecting oxygen-containing gas into hot metal, that is, into the hot metal at a certain depth below the hot metal bath surface, and decarburizing by the static iron pressure at that injection position. The reaction is suppressed, and as a result, a decrease in the carbon content of the hot metal after treatment is prevented, making it difficult for the above-mentioned problems to occur.In addition, by suppressing the decarburization reaction, the desiliconization reaction proceeds preferentially, increasing the desiliconization efficiency. Becomes good.

(5) ところで酸素ガスを溶銑中へ吹込む場合、吹込みランス
が溶」し易く、そのための対策、例えば特殊かつ高価な
ランスを用いる等の対策が必要と考えられていた。しか
しながらF e 203を主成分とする脱珪剤とともに
酸素を吹込む場合、酸素ガス量がある量以下であればF
 e 203の分解(前記(1)式)による吸熱効果に
よって通常のランスでもその溶損程度が少なくなるもの
と考えられる。そこで本発明者等は酸素ガスを鉄鉱石と
ともに溶銑中へ吹込む実験を、酸素ガス流−脆および鉄
鉱石吹込速度を種々変化させて行ない、ランスの溶損状
況を調べたところ、第2図に示す結果が得られた。第2
図から、酸素ガス10 N7717m1nを吹込む場合
、鉄鉱石の吹込み速度が50 kg/min以上であれ
ばランスが溶損しないことが明らかとなった。この鉄鉱
石は実質的にF e 205と考えられるから、結局吹
込む酸素量をFe2O31匈当如200石以下に制限す
ればランス溶損が防止されることになる。なお酸素量が
200−13を越えればランス溶損の問題のほか、温度
上昇に伴って脱炭反応が助長されるとい(6) う不都合が生じる。これらの理由からこの発明の脱珪処
理方法においては脱珪剤とともに吹込む搬送ガスの酸素
量の上限を脱珪剤中のFe2O51kg当p 200 
Nff1と定めた。
(5) By the way, when blowing oxygen gas into hot metal, the blowing lance tends to melt, and it has been thought that countermeasures for this, such as using a special and expensive lance, are necessary. However, when blowing oxygen together with a desiliconizing agent whose main component is F e 203, if the amount of oxygen gas is less than a certain amount, F
It is thought that the degree of melting loss even in a normal lance is reduced due to the endothermic effect caused by the decomposition of e203 (formula (1) above). Therefore, the present inventors conducted an experiment in which oxygen gas was injected into hot metal together with iron ore by varying the oxygen gas flow - brittleness and iron ore injection speed, and investigated the state of corrosion of the lance, as shown in Figure 2. The results shown are obtained. Second
From the figure, it is clear that when 7717 m1n of oxygen gas is injected, the lance will not be eroded if the iron ore injection rate is 50 kg/min or more. Since this iron ore is considered to be substantially Fe 205, lance erosion can be prevented by limiting the amount of oxygen blown to less than 200 kol of Fe2O31. If the oxygen content exceeds 200-13, there will be problems such as melting of the lance and the decarburization reaction will be accelerated as the temperature rises (6). For these reasons, in the desiliconization treatment method of the present invention, the upper limit of the amount of oxygen in the carrier gas blown together with the desiliconization agent is set at p 200 per kg of Fe2O5 in the desiliconization agent.
It was set as Nff1.

一方、酸素量の下限は前述のような溶銑温度下降防止の
観点から次の如くして定められる。すなわち前記(1)
式の反応の吸熱景よりも前記(2)式の反応による発熱
量が大きいかまえは等しくなるように02を外部から与
えてやれば溶銑の温度降下が防止されることになるから
、温度降下防止に必要な酸素量は、前記(1) 、 (
2)式の反応の熱収支から次の(3)式で求められる。
On the other hand, the lower limit of the amount of oxygen is determined as follows from the viewpoint of preventing the hot metal temperature from falling as described above. That is, the above (1)
If 02 is applied externally so that the calorific value due to the reaction of the above equation (2) is greater than the endothermic scene of the reaction of the equation (2), the temperature drop of the hot metal will be prevented, so the temperature drop will be prevented. The amount of oxygen required for
It is determined by the following equation (3) from the heat balance of the reaction in equation 2).

Vo2≧(0,193−0,210η)WF、2o、 
 −=−(3)但しVo2:酸素ガス吹込量(N@7m
1n )WF@2o5:F・203吹込量(kg/mi
n )η : Fe2O3の脱珪反応効率 (3)式において、反応効率ηは吹込み条件等によって
も異なるが、主として溶銑温度と脱珪前Si含有量と目
標S1含有量によシ左右され、溶銑温度が1250〜1
450℃の通常の条件下では40〜90%(η−04〜
0.9)の範囲が一般的である。
Vo2≧(0,193-0,210η) WF, 2o,
-=-(3) However, Vo2: Oxygen gas injection amount (N@7m
1n) WF@2o5: F・203 injection amount (kg/mi
n) η: Fe2O3 desiliconization reaction efficiency In equation (3), the reaction efficiency η varies depending on the blowing conditions, etc., but mainly depends on the hot metal temperature, the Si content before desiliconization, and the target S1 content, Hot metal temperature is 1250~1
Under normal conditions of 450℃ 40~90% (η-04~
A range of 0.9) is common.

反応効率90%(η=09)の場合、(3)式からvo
2≧0.004 WF、□。3となシ、温度降下防止に
必要な最低限の酸素ガス量はF(as 1 kgに対し
て4N−ey勺となる。第3図に温度降下防止に必要な
最低限の酸素ガス量(臨界02ガス:li:)と反応効
率との関係を(3)式による理論値と実測値とを比較[
〜で示す。第3図において、理論値と実測値との差は若
干あるが、反応効率が通常の条件下で最大と考えられる
90%(η=09)附近では両者がほぼ一致して、臨界
02ガス量が4 AA9前後となっている。したがって
実際の操業条件下でも、反応効率が最も良い場合でも少
くとも4沼7kg−Fe2o、の酸素ガス吹込みが必要
である。
When the reaction efficiency is 90% (η=09), from equation (3), vo
2≧0.004 WF, □. 3, the minimum amount of oxygen gas required to prevent temperature drop is 4N-ey for F(as 1 kg). Figure 3 shows the minimum amount of oxygen gas required to prevent temperature drop ( Compare the relationship between the critical 02 gas (li:) and the reaction efficiency with the theoretical value based on equation (3) and the actual value [
Indicated by ~. In Figure 3, there is a slight difference between the theoretical value and the measured value, but near 90% (η = 09), where the reaction efficiency is considered to be maximum under normal conditions, they almost match, and the critical 02 gas amount is around 4AA9. Therefore, even under actual operating conditions, it is necessary to inject at least 4 7 kg of oxygen gas even if the reaction efficiency is the best.

なおこの発明の方法を実施するにあたっては、脱珪剤と
ともに吹込む搬送ガスは酸素ガス単独である必要はなく
、必要な吹込み圧力等に応じて適宜窒素ガスや不活性ガ
スと酸素ガスとを混合して吹込めば良く、その場合混合
ガス中の酸素ガス箭が4〜20ON−eAg−Fe2o
3トナルヨウニ吹込ミカス1を定めれば良い。
In carrying out the method of the present invention, the carrier gas to be blown in together with the desiliconizing agent does not need to be oxygen gas alone; nitrogen gas or inert gas and oxygen gas may be used as appropriate depending on the required blowing pressure, etc. It is sufficient to mix and blow in, in which case the oxygen gas in the mixed gas is 4 to 20ON-eAg-Fe2o
All you have to do is determine 3 tonal yōni blowing mikasu 1.

なおまた、この発明の脱珪処理方法で使用する脱珪剤け
F e 205を主成分とするものであって、従来の方
法に使用されているものであれば良く、例えば鉄鉱石の
微粉末やミルスケール等を用いることができ、またFe
2O5のほか、造滓等のためにCaOやCaF2 ! 
Na2CO3等を含有していても良いことは勿論である
。但し、脱珪剤のF@203含有量は60%以上とする
のが望ましい。
Furthermore, the desiliconizing agent used in the desiliconizing treatment method of the present invention may be a desiliconizing agent containing Fe 205 as a main component and that is used in conventional methods, such as fine powder of iron ore. or mill scale, etc. can be used, and Fe
In addition to 2O5, we also use CaO and CaF2 for slag, etc.
Of course, it may contain Na2CO3 or the like. However, it is desirable that the F@203 content of the desiliconizing agent be 60% or more.

以下にこの発明の実施例および比較例を記す。Examples and comparative examples of this invention are described below.

実施例 混銑車内の溶銑200トンの浴中にFe2O390%、
Cationを含有する脱珪剤を、搬送ガスとして酸素
ガスと窒素ガスとの混合ガスを用いて吹込んだ。
Example: Fe2O390% in a 200 ton hot metal bath in a pig iron mixing car.
A desiliconizing agent containing Cation was blown in using a mixed gas of oxygen gas and nitrogen gas as a carrier gas.

比較例1 混銑車内の溶銑200トンの浴中に、前記同様な脱珪剤
を、搬送ガスとして窒素単独ガスを用いて吹込んだ。
Comparative Example 1 A desiliconizing agent similar to that described above was blown into a bath containing 200 tons of hot metal in a pig iron mixing car using nitrogen alone as a carrier gas.

比較例2 (9) 混銑車内の浴銑200トンの浴表面に酸素ガスを吹付け
つつ、浴中に前記同様り:脱珪剤を搬送−)yスとして
窒素単独ガスを用いて吹込んた。
Comparative Example 2 (9) While oxygen gas was being blown onto the surface of a 200 ton pig iron bath in a pig iron mixing car, nitrogen alone was used as a gas to blow the desiliconizing agent into the bath as described above. .

上記実施例および各比較例におけるその他の条件、およ
び脱珪処理前後の溶銑成分、溶銑温度を第1表に示す。
Other conditions in the above examples and comparative examples, as well as hot metal components and hot metal temperatures before and after the desiliconization treatment are shown in Table 1.

(10) H聞昭’、)8−27!J1G(4) 第1表から、この発明による実施例によれば、脱珪量と
して0,31%が得られ、ブだ炭素含有(jlの低下お
よび温度低1は極めて微小であった。1だ酸素ガスを用
いなかった比較り01によれば、脱珪量として0.24
チがイ禅ら扛たが、25℃もの温度降下が生じた。一方
、酸素ガスを浴面に吹付けだ比較例2によれば、脱珪量
として0.29%が・得られたが、0.19%もの炭素
含有量低下が生じ、また温度低下が5℃あった。したが
ってこの発明の方法によれば、脱炭および溶銑温度低下
を抑制しつつ効果的に脱珪し得ることが明らかと々った
(10) H Mimaki', )8-27! J1G (4) From Table 1, according to the examples according to the present invention, a desiliconization amount of 0.31% was obtained, and the reduction in carbon content (the decrease in jl and the decrease in temperature 1) was extremely small. However, according to Comparison 01 which did not use oxygen gas, the amount of silicon removed was 0.24.
Despite efforts by the authorities, the temperature dropped by as much as 25 degrees Celsius. On the other hand, according to Comparative Example 2 in which oxygen gas was sprayed onto the bath surface, a desiliconization amount of 0.29% was obtained, but the carbon content decreased by as much as 0.19%, and the temperature decreased by 5. It was ℃. Therefore, it is clear that according to the method of the present invention, it is possible to effectively desiliconize while suppressing decarburization and a drop in hot metal temperature.

以上のようにこの発明の脱珪処理方法によれば、処理中
の温度低下を防止しかつ脱炭の進行を防止しつつ、高い
脱珪効率を得ることができ、しかも吹込み用う/スの#
損も可及的に防止されるから通常の安価ガランスを用い
ることができる等、各種の効果が得られる。
As described above, according to the desiliconization treatment method of the present invention, it is possible to obtain a high desiliconization efficiency while preventing a temperature drop during the treatment and preventing the progress of decarburization. of#
Since damage is prevented as much as possible, various effects can be obtained, such as being able to use ordinary inexpensive glasses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶銑の脱珪処理における溶銑@度降下と脱珪反
応効率との関係を示す図、第2図は吹込み用ランスの溶
損におよぼす酸素ガス流量と鉄鉱石の吹込み速度の影響
を示す図、第3図は脱珪処理における溶銑温度低下防止
に必要な臨界酸素ガス流量と脱珪反応効率との関係を示
すグラフである。 出願人 川崎製鉄株式会社 (13) 第1図 私語f−り9も%) 第2図 aLl”−刀・人 ’y;u 号LNrn3/min第
3図 4ノ二ノ1七’、、t、と7デ(=ン;)−8′
Figure 1 shows the relationship between hot metal temperature drop and desiliconization reaction efficiency in the desiliconization process of hot metal, and Figure 2 shows the relationship between oxygen gas flow rate and iron ore injection speed on blowing lance erosion FIG. 3 is a graph showing the relationship between the critical oxygen gas flow rate required to prevent a drop in hot metal temperature in the desiliconization process and the desiliconization reaction efficiency. Applicant: Kawasaki Steel Corporation (13) Fig. 1 Private language f-ri9%) Fig. 2 aLl''-Sword/person'y; and 7 de(=n;)−8′

Claims (1)

【特許請求の範囲】[Claims] Fe2O5を主成分とする脱珪剤を、その脱珪剤中のF
e2O31kg当!54〜20ONAの酸素量を含有す
る搬送ガスとともに溶銑中に吹込むことを特徴とする溶
銑の脱珪処理方法。
A desiliconizing agent containing Fe2O5 as a main component is
Win 1kg of e2O3! 1. A method for desiliconizing hot metal, which comprises blowing into hot metal together with a carrier gas containing 54 to 20 ONA of oxygen.
JP12620181A 1981-08-12 1981-08-12 Desiliconizing method for molten iron Pending JPS5827916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12620181A JPS5827916A (en) 1981-08-12 1981-08-12 Desiliconizing method for molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12620181A JPS5827916A (en) 1981-08-12 1981-08-12 Desiliconizing method for molten iron

Publications (1)

Publication Number Publication Date
JPS5827916A true JPS5827916A (en) 1983-02-18

Family

ID=14929202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12620181A Pending JPS5827916A (en) 1981-08-12 1981-08-12 Desiliconizing method for molten iron

Country Status (1)

Country Link
JP (1) JPS5827916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071276A (en) * 2010-12-22 2011-05-25 中钢集团邢台机械轧辊有限公司 Method for reducing silicon content of molten iron
CN103160631A (en) * 2011-12-17 2013-06-19 鞍钢重型机械有限责任公司 Operation method for molten iron silicon reduction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115913A (en) * 1979-02-28 1980-09-06 Sumitomo Metal Ind Ltd Pretreating method of molten iron
JPS5655511A (en) * 1979-10-06 1981-05-16 Nippon Steel Corp Desiliconization method of molten iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115913A (en) * 1979-02-28 1980-09-06 Sumitomo Metal Ind Ltd Pretreating method of molten iron
JPS5655511A (en) * 1979-10-06 1981-05-16 Nippon Steel Corp Desiliconization method of molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071276A (en) * 2010-12-22 2011-05-25 中钢集团邢台机械轧辊有限公司 Method for reducing silicon content of molten iron
CN103160631A (en) * 2011-12-17 2013-06-19 鞍钢重型机械有限责任公司 Operation method for molten iron silicon reduction

Similar Documents

Publication Publication Date Title
EP0523167A1 (en) Compositions and methods for synthesizing ladle slags, treating ladle slags, and coating refractory linings
US4295882A (en) Steel making process
JPH07216434A (en) Production of very low carbon and very low sulfur steel
JP3345677B2 (en) Hot metal dephosphorization method
JP3525766B2 (en) Hot metal dephosphorization method
JPS5827916A (en) Desiliconizing method for molten iron
US4891064A (en) Method of melting cold material including iron
JP3297801B2 (en) Hot metal removal method
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JPH09165615A (en) Denitrifying method for molten metal
JPS63169318A (en) Method of de-phosphorizing molten iron
JPH10102119A (en) Production of sulfur free-cutting steel resulfurized carbon steel
GB2141739A (en) Process for producing low P chromium-containing steel
US4525209A (en) Process for producing low P chromium-containing steel
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JPS58147506A (en) Preliminary treatment of molten iron
JP3297997B2 (en) Hot metal removal method
JPS6121285B2 (en)
US5156671A (en) Method for dephosphorization of chromium-containing molten pig iron with reduced oxidation loss of chromium
JP3503376B2 (en) Hot metal pretreatment method
JPS636606B2 (en)
JPS61227117A (en) Treatment of molten pig iron
JPH0813016A (en) Method for dephosphorizing and desulfurizing molten iron
JPH11100608A (en) Method for desiliconizing and desulfurizing molten iron
JP3718263B2 (en) Hot metal pretreatment method