JPH11100608A - Method for desiliconizing and desulfurizing molten iron - Google Patents

Method for desiliconizing and desulfurizing molten iron

Info

Publication number
JPH11100608A
JPH11100608A JP26163497A JP26163497A JPH11100608A JP H11100608 A JPH11100608 A JP H11100608A JP 26163497 A JP26163497 A JP 26163497A JP 26163497 A JP26163497 A JP 26163497A JP H11100608 A JPH11100608 A JP H11100608A
Authority
JP
Japan
Prior art keywords
slag
iron oxide
desiliconization
hot metal
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26163497A
Other languages
Japanese (ja)
Inventor
Masaki Miyata
政樹 宮田
Toru Matsuo
亨 松尾
Minoru Ishikawa
稔 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP26163497A priority Critical patent/JPH11100608A/en
Publication of JPH11100608A publication Critical patent/JPH11100608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently execute the desiliconization and desulfurization of molten iron while restraining the use of CaF2 by adding iron oxide, CaO and CaF2 into the molten iron having high silicon concn while stirring the molten steel to execute the desiliconization mainly, and then adding desulfurizing agent containing CaO and CaF2 to execute the desulfurization. SOLUTION: While stirring the molten iron having >=0.1% silicon concn. with an impeller system, etc., the iron oxide of iron ore, mill scale, etc., CaO and CaF2 are added into the molten iron so as to become >=5% Fe conversion value in the iron oxide concn. in slag and a first process mainly executing the desiliconization is executed. In this process, the iron oxide is low m.p. and the fluidity of the slag is improved with the min. consumption of CaF2 as the m.p. lowering agent, and also, the desiliconizing reactivity is improved and the wearing of a refractory can be reduced. Thereafter, the iron oxide in the slag is reduced by adding Al and then, it is desirable to lower the oxygen potential. Successively, a second process mainly executing the desulfurization by adding the desulfurizing agent containing suitable quantities of CaO and CaF2 into the molten iron under stirring.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶銑の脱珪・脱硫
方法に関する。
TECHNICAL FIELD The present invention relates to a method for desiliconizing and desulfurizing hot metal.

【0002】[0002]

【従来の技術】高炉で製造される溶銑には通常珪素が
0.2〜0.6%、硫黄が0.02〜0.04%含有さ
れている。これらの成分を転炉で脱リン脱炭精錬する前
に除去する溶銑予備処理が広く実施されている。
2. Description of the Related Art Hot metal manufactured in a blast furnace usually contains 0.2 to 0.6% of silicon and 0.02 to 0.04% of sulfur. Hot metal pretreatment for removing these components before dephosphorization and decarburization in a converter is widely practiced.

【0003】下記式(1)、(2)に示すように、脱珪
反応は鉄酸化物(鉄鉱石、ミルスケール等)もしくは気
体酸素を溶銑に添加することにより進行する。尚、[
] は溶銑中の成分を、( )はスラグ中の成分をそれ
ぞれ示す。
As shown in the following formulas (1) and (2), the desiliconization reaction proceeds by adding iron oxide (iron ore, mill scale, etc.) or gaseous oxygen to hot metal. still,[
] Indicates the components in the hot metal, and () indicates the components in the slag.

【0004】 [Si]+(2/3Fe2 3 )=[4/3Fe]+(SiO2 )(1) [Si]+O2 =(SiO2 ) (2) 上記脱珪反応をより速くするには、反応系(左辺)の酸
素ポテンシャルがより高いことが必要である。
[Si] + (2 / 3Fe 2 O 3 ) = [4 / 3Fe] + (SiO 2 ) (1) [Si] + O 2 = (SiO 2 ) (2) Speed up the desiliconization reaction Requires that the oxygen potential of the reaction system (left side) be higher.

【0005】下記式(3)に示す脱硫反応はCaOを溶
銑に添加することにより進行する。脱硫反応をより速く
するには、反応系(左辺)の酸素ポテンシャルをより低
くすることが必要である。
The desulfurization reaction represented by the following formula (3) proceeds by adding CaO to hot metal. To make the desulfurization reaction faster, it is necessary to lower the oxygen potential of the reaction system (left side).

【0006】 [S]+(CaO) =(CaS)+ 1/2O2 (3) 以上のように、脱珪と脱硫を同時に進行させることは原
理的に難しく、従来脱珪スラグを除去した後脱硫処理し
ていた。
[S] + (CaO) = (CaS) + O 2 (3) As described above, it is theoretically difficult to simultaneously advance desiliconization and desulfurization. Conventionally, after removing desiliconized slag, Had been desulfurized.

【0007】特開平6−271920号公報には、溶銑
中の珪素、硫黄を除去すると同時に溶銑にマンガンの添
加をする方法が開示されている。しかし、この方法で
は、次の問題があり、改善が求められていた。
Japanese Patent Application Laid-Open No. 6-271920 discloses a method of removing silicon and sulfur in hot metal and simultaneously adding manganese to the hot metal. However, this method has the following problems, and improvements have been demanded.

【0008】(1)スラグ中酸化マンガンの含有量が多
くなり、スラグの融点が上がるため、螢石(CaF2
有物質)を多量に必要とすること。 (2)螢石を多量に使用するため、耐火物の損傷が大き
いこと。
(1) Since the content of manganese oxide in slag increases and the melting point of slag increases, a large amount of fluorite (a CaF 2 -containing substance) is required. (2) The use of a large amount of fluorite causes significant damage to refractories.

【0009】(3)螢石を多量に使用した場合でも酸化
マンガンと溶銑中珪素との反応速度が遅く、処理に長時
間を要すること。 (4)原料としてマンガン鉱物(マンガン鉱石、鉄マン
ガン鉱石)を使用するので、低マンガン規格鋼を生産で
きないこと。
(3) Even when a large amount of fluorite is used, the reaction rate between manganese oxide and silicon in the hot metal is slow, and the treatment requires a long time. (4) Since manganese minerals (manganese ore, iron manganese ore) are used as raw materials, low manganese standard steel cannot be produced.

【0010】(5)使用マンガン鉱物中は、一般的に脈
石成分が多いため、生成スラグ量が多くなり、スラグ処
理面での処理コストが高いこと等 更に、この方法の処理時間は約30分であり、前後工程
の現状ピッチから許容される処理時間(約15分)を大
幅に超過し短縮化が必要であった。0.005%以下の
低硫黄銑の低硫黄のニーズも高まってきており、一層の
効率的な方法が必要であった。
(5) The manganese minerals used generally contain a large amount of gangue components, so that the amount of slag produced is large and the cost of treating slag is high. Further, the processing time of this method is about 30 minutes. Minutes, which greatly exceeds the processing time (about 15 minutes) allowed from the current pitch of the preceding and succeeding processes, and it is necessary to reduce the processing time. The need for low sulfur pig iron of 0.005% or less has been increasing, and a more efficient method was needed.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、Ca
2 使用を最小限(5%未満)に抑えて効率的に溶銑の
脱珪・脱硫(目標溶銑中硫黄濃度:0.005%以下)
をする処理方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Ca
Efficient desiliconization and desulfurization of hot metal by minimizing the use of F 2 (less than 5%) (target sulfur concentration in hot metal: 0.005% or less)
To provide a processing method for performing

【0012】[0012]

【課題を解決するための手段】本発明は、下記の知見を
もとに完成されたものである。 (1)マンガン鉱物に比べ融点が低い鉄酸化物(鉄鉱
石、ミルスケール、焼結鉱等)を脱珪剤として使用する
ことにより融点降下剤のCaF2 の使用を抑えることが
できる。
The present invention has been completed based on the following findings. (1) By using an iron oxide (iron ore, mill scale, sinter or the like) having a lower melting point than that of a manganese mineral as a desiliconizing agent, it is possible to suppress the use of CaF 2 as a melting point depressant.

【0013】(2)脱炭反応の優先領域である溶銑中珪
素濃度が0. 1%未満の領域を避け、0. 1%以上のレ
ベルで脱珪することにより脱珪反応を速くすることがで
きる。
(2) It is possible to speed up the desiliconization reaction by avoiding a region where the silicon concentration in the hot metal is less than 0.1%, which is a priority region of the decarburization reaction, and desiliconizing at a level of 0.1% or more. it can.

【0014】(3)スラグの流動性が良好であれば、酸
化鉄の反応効率を上げることができ、スラグ中の酸化鉄
濃度を速やかに低下させることができる。この結果、酸
素ポテンシャルの低いスラグ状態で後続の脱硫反応を進
ませることができ、脱珪・脱硫の全体処理時間の短縮化
ができる。
(3) If the fluidity of the slag is good, the reaction efficiency of the iron oxide can be increased, and the iron oxide concentration in the slag can be rapidly reduced. As a result, the subsequent desulfurization reaction can proceed in a slag state having a low oxygen potential, and the overall processing time for desiliconization and desulfurization can be reduced.

【0015】(4)脱珪期末期のスラグ中酸化鉄濃度(
Fe換算値) を5%以下にまで低下すれば、その後にC
aO、CaF2 を適量追加することにより溶銑中硫黄濃
度を0. 005%以下にまで低下できる (5)Alの添加はスラグ中の鉄酸化物を還元する手段
として有効であるが、添加時期は、スラグ中酸化鉄濃度
が鉄換算で5重量%以下の時点以降が効果的である。A
lの添加により、さらにスラグ中酸化鉄濃度がさらに低
下し、脱硫反応速度を速くできる。添加するAlは、A
l灰等のAlを含む物質であり、必ずしも純金属のAl
でなくてもよい。 (6)攪拌下、脱珪・脱硫処理を実施すると各反応が一
層速くできる。
(4) Iron oxide concentration in slag at the end of the desiliconization period (
Fe conversion value) to 5% or less, then C
By adding appropriate amounts of aO and CaF 2 , the sulfur concentration in the hot metal can be reduced to 0.005% or less. (5) The addition of Al is effective as a means for reducing iron oxide in slag, It is effective when the iron oxide concentration in the slag is 5% by weight or less in terms of iron. A
By the addition of 1, the iron oxide concentration in the slag is further reduced, and the desulfurization reaction rate can be increased. Al to be added is A
It is a substance containing Al such as ash, and is not necessarily pure metal Al
It does not have to be. (6) If desiliconization / desulfurization treatment is carried out under stirring, each reaction can be further accelerated.

【0016】以上の知見から本発明の構成は次に示すよ
うになる。 (1):攪拌下、溶銑中珪素濃度が0. 1%以上の溶銑
に、鉄酸化物と、CaOと、CaF2 を添加し、スラグ
中酸化鉄濃度がFe換算値で5%以下とする脱珪を主と
する第一工程と、その後、攪拌下、CaOとCaF2
含む脱硫剤を添加する脱硫を主とする第二工程とから構
成される。 (2):第二工程に先立って、Alを添加する。
From the above findings, the configuration of the present invention is as follows. (1): Under stirring, iron oxide, CaO, and CaF 2 are added to hot metal having a silicon concentration of 0.1% or more in the hot metal to make the iron oxide concentration in the slag 5% or less in terms of Fe. The first step mainly includes desiliconization, and the second step mainly includes desulfurization in which a desulfurizing agent containing CaO and CaF 2 is added under stirring. (2): Prior to the second step, Al is added.

【0017】[0017]

【発明の実施の形態】溶銑中の珪素濃度が0. 1%以上
の条件下、マンガン鉱物に比べ融点が低い鉄酸化物(鉄
鉱石、ミルスケール、焼結鉱等)用いて効率的に脱珪し
た後、脱硫処理を実施する方法である。
BEST MODE FOR CARRYING OUT THE INVENTION Under the condition that the silicon concentration in hot metal is 0.1% or more, iron oxide (iron ore, mill scale, sintered ore, etc.) having a melting point lower than that of manganese mineral is efficiently removed. This is a method of performing desulfurization treatment after siliconization.

【0018】溶銑中珪素濃度が0. 1%以上と規定した
のは、珪素濃度が0. 1%未満の範囲では、脱炭反応が
優先反応になるため、脱珪速度が顕著に低下するからで
ある。
The reason why the silicon concentration in the hot metal is specified to be 0.1% or more is that when the silicon concentration is less than 0.1%, the decarburization reaction becomes a preferential reaction, so that the desiliconization rate is significantly reduced. It is.

【0019】本発明の特徴とするところは、脱珪処理時
のスラグ塩基度を極力低めとすることにより、スラグの
融点を下げて流動性を良好に保ち、しかも脱珪反応優先
領域にて反応させることにより、スラグ中の酸化鉄濃度
を速やかに低下させて、酸素ポテンシャルの低い状態で
後続の脱硫反応を効率良く進ませることにある。
The feature of the present invention is that the slag basicity at the time of desiliconization treatment is made as low as possible, thereby lowering the melting point of slag and maintaining good fluidity, and furthermore, the reaction is performed in the desiliconization reaction priority region. By doing so, the concentration of iron oxide in the slag is rapidly reduced, and the subsequent desulfurization reaction proceeds efficiently with a low oxygen potential.

【0020】本方法により脱珪期末期の酸化鉄濃度( F
e換算値) を5%以下にまで低下すれば、その後にCa
O、CaF2 を適量追加することにより溶銑中硫黄濃度
を0. 005%以下にまで低下できる。
According to this method, the iron oxide concentration at the end of the desiliconization period (F
e converted value) to 5% or less, then Ca
By adding appropriate amounts of O and CaF 2 , the sulfur concentration in the hot metal can be reduced to 0.005% or less.

【0021】Alを添加するのは、スラグ中酸化鉄を還
元し、酸素ポテンシャルを低下させて脱硫反応をさらに
低硫黄レベルまで進ませるためである。Alの添加は、
スラグ中酸化鉄濃度が鉄換算で5重量%以下の時点以降
が有効である。その理由は5%超えると脱珪反応が十分
進んでおらず、脱珪反応そのものを阻害するおそれがあ
るからである。
The reason for adding Al is to reduce the iron oxide in the slag and reduce the oxygen potential to further advance the desulfurization reaction to a low sulfur level. The addition of Al
It is effective when the iron oxide concentration in the slag is 5% by weight or less in terms of iron. The reason is that if it exceeds 5%, the desiliconization reaction does not sufficiently proceed, and the desiliconization reaction itself may be inhibited.

【0022】脱珪処理の末期にスラグ中酸化鉄濃度が5
%以下でAlを添加すると、酸化鉄濃度( Fe換算値)
を2%以下にまで速やかに低下でき、溶銑中の硫黄濃度
を0. 002%以下にまで低減できる。
At the end of the desiliconization treatment, the iron oxide concentration in the slag is 5
% Or less, if Al is added, iron oxide concentration (Fe equivalent value)
Can be quickly reduced to 2% or less, and the sulfur concentration in the hot metal can be reduced to 0.002% or less.

【0023】脱珪効率をさらに向上させる方法を詳細に
検討した結果、以下の知見を得た。脱珪処理における望
ましいスラグ組成は、(1)0. 5≦塩基度( CaO/
SiO2 重量比) ≦2. 0(2)CaF2 <5%であ
る。
As a result of a detailed study of a method for further improving the desiliconization efficiency, the following findings were obtained. The desirable slag composition in the desiliconization treatment is as follows: (1) 0.5 ≦ basicity (CaO /
(SiO 2 weight ratio) ≦ 2.0 (2) CaF 2 <5%.

【0024】塩基度の望ましい下限を0. 5としたの
は、0. 5未満であるとスラグ中のSiO2 活量が増加
して脱珪速度が低下し、しかも耐火物溶損量が極めて多
くなるおそれがあるからである。
The reason why the lower limit of the basicity is preferably 0.5 is that if the basicity is less than 0.5, the SiO 2 activity in the slag increases, the desiliconization speed decreases, and the amount of refractory erosion extremely decreases. This is because there is a possibility that it will increase.

【0025】塩基度の望ましい上限を2. 0としたの
は、2. 0を超えるとスラグの融点が上昇しスラグ中C
aF2 濃度を5%以上としなければスラグの流動性を確
保できず、CaO添加量および高価なCaF2 添加量が
増加することから媒溶剤コストが増加するおそれがある
からである。また、CaF2 添加量5%以上に増加する
と、前述のように耐火物の損傷が大きくなり安定操業が
困難となるおそれがある。
The reason why the upper limit of the basicity is preferably set to 2.0 is that if the basicity exceeds 2.0, the melting point of the slag increases and the C in the slag increases.
Unless the aF 2 concentration is 5% or more, the fluidity of the slag cannot be secured, and the amount of CaO added and the amount of expensive CaF 2 added increase, so that the cost of the solvent may increase. Further, when the amount of CaF 2 added is increased to 5% or more, as described above, damage to the refractory may increase, and stable operation may be difficult.

【0026】特開平6−271920号公報に記載の前
記マンガン鉱物を使用する場合、スラグの流動性を確保
するためにスラグ中CaF2 濃度を5〜30%、望まし
くは10〜20%と高めなければならないが、本法のご
とく鉄酸化物を用いる場合には、スラグ中CaF2 濃度
を5%未満であっても脱珪反応を速やかに進行させるこ
とができる。この理由は、前記マンガン鉱物に比べ鉄酸
化物の融点が低いので、融点降下剤であるCaF2 の添
加をそれほど必要としないからである。
When the manganese mineral described in JP-A-6-271920 is used, the CaF 2 concentration in the slag must be increased to 5 to 30%, preferably 10 to 20% in order to secure the fluidity of the slag. However, when an iron oxide is used as in the present method, the desiliconization reaction can proceed promptly even if the CaF 2 concentration in the slag is less than 5%. The reason for this is that the melting point of iron oxide is lower than that of the manganese mineral, so that it is not necessary to add CaF 2 as a melting point depressant so much.

【0027】鉄鉱石等の鉄酸化物、CaOおよびCaF
2 からなる脱珪剤は脱珪処理初期に一括添加しても良い
し、CaOおよびCaF2 のみ脱珪処理中に分割添加も
しくは連続添加しても良いが、2段添加の場合は脱珪初
期に形成されるスラグが低塩基度であるため低融点とな
り、溶銑中の珪素と反応し易くなり脱珪反応速度が速く
なる。その後は、滓化したスラグ中に、CaOを分割添
加もしくは連続添加することにより、溶融スラグの塩基
度が徐々に上がり、スラグ中の酸化鉄の活量係数が増加
し、一方、SiO2 の活量が低下し、溶銑中の珪素によ
る酸化鉄の還元反応すなわち脱珪反応が効率よく進行す
る。
Iron oxides such as iron ore, CaO and CaF
2 may be added all at once in the early stage of the desiliconization treatment, or only CaO and CaF 2 may be added separately or continuously during the desiliconization process. Since the slag formed at a low basicity has a low melting point, it easily reacts with the silicon in the hot metal, and the desiliconization reaction rate is increased. Thereafter, the basicity of the molten slag is gradually increased by adding CaO to the slag in a divided or continuous manner, and the activity coefficient of iron oxide in the slag is increased, while the activity of SiO 2 is increased. As a result, the reduction reaction of iron oxide by silicon in the hot metal, that is, the desiliconization reaction proceeds efficiently.

【0028】脱珪後に除滓をしてもよいが、除滓による
処理時間延長および熱ロスを避けるために除滓をしなく
てもよい。溶銑の攪拌法は、特に限定しないが、インペ
ラー方式の攪拌法が望ましく、例えば溶銑の脱硫処理に
広く使用されているKR式の攪拌法が望ましい。脱珪の
ための酸素源として、酸化鉄のみならず、酸素ガスも使
用できる。
Although deslagging may be carried out after desiliconization, deslagging may not be carried out in order to prolong the treatment time and to avoid heat loss. The method for stirring the hot metal is not particularly limited, but an impeller-type stirring method is preferable, and for example, a KR-type stirring method widely used for desulfurizing hot metal is preferable. As an oxygen source for desiliconization, not only iron oxide but also oxygen gas can be used.

【0029】[0029]

【実施例】使用した処理剤の含有濃度(重量%)示す。 (1)ミルスケール:鉄含有量74%(2)生石灰:C
aO含有量92%(3)蛍石:CaF2 含有量70%
(4)粒状の金属Al:含有量99%。
EXAMPLES The contents (% by weight) of the treating agents used are shown. (1) Mill scale: 74% iron content (2) Quicklime: C
aO content 92% (3) fluorite: CaF 2 content 70%
(4) Granular metal Al: content 99%.

【0030】(本発明例1)表1に示すように、取鍋に
成分調整した1350℃の溶銑250tを装入後、KR
式の攪拌下、脱珪剤を添加したところ、スラグ中酸化鉄
濃度 (Fe換算値)を5%以下まで低減するのに約5分
を要した。KR式の攪拌下、除滓せずに続けて脱硫剤を
添加後、約10分で溶銑中硫黄濃度を0. 005%にま
で低下できた。
(Example 1 of the present invention) As shown in Table 1, after charging 250 t of 1350 ° C hot metal whose components were adjusted into a ladle,
When the desiliconizing agent was added under the stirring of the formula, it took about 5 minutes to reduce the iron oxide concentration in slag (in terms of Fe) to 5% or less. After the desulfurizing agent was continuously added without removing the slag under KR stirring, the sulfur concentration in the hot metal could be reduced to 0.005% in about 10 minutes.

【0031】[0031]

【表1】 [Table 1]

【0032】(本発明例2)表2に示すように、取鍋に
成分調整した1350℃の溶銑250tを装入後、KR
式の攪拌下、スケールのみを添加した後に生石灰、蛍石
を連続添加したところ、スラグ中 (Fe換算値) を5%
以下まで低減するのに約4. 5分を要した。KR式の攪
拌下、除滓せずに続けて脱硫剤を添加後、約10分で溶
銑中硫黄濃度を0. 004%にまで低下できた。
(Example 2 of the present invention) As shown in Table 2, after charging 250 t of 1350 ° C hot metal whose components were adjusted into a ladle,
Under the stirring of the formula, when only the scale was added and then quicklime and fluorite were continuously added, the content of slag (in terms of Fe) was 5%.
It took about 4.5 minutes to reduce to below. After the desulfurizing agent was continuously added without removing the slag under KR stirring, the sulfur concentration in the hot metal could be reduced to 0.004% in about 10 minutes.

【0033】[0033]

【表2】 [Table 2]

【0034】(本発明例3)表3に示すように、取鍋に
成分調整した1350℃の溶銑250tを装入後、KR
式の攪拌下、スケールのみを添加した後に生石灰、蛍石
を連続添加して攪拌開始から約3分後に粒状の金属Al
を約0. 48t追加したところ、その1分後には酸化鉄
濃度 (Fe換算値) 1. 5%にまで低下でき、溶銑中硫
黄濃度も0.008%にまで低下できた。KR式の攪拌
下、除滓せずに続けて脱硫剤を添加後、約10分で溶銑
中硫黄濃度を0. 002%にまで低下できた。
(Example 3 of the present invention) As shown in Table 3, after charging 250t of 1350 ° C hot metal whose components were adjusted into a ladle,
Under the agitation of the formula, after adding only the scale, lime and fluorite are continuously added, and after about 3 minutes from the start of the agitation, the granular metal Al is added.
Was added about 0.48 t, and one minute later, the iron oxide concentration (in terms of Fe) could be reduced to 1.5%, and the sulfur concentration in the hot metal could be reduced to 0.008%. After the desulfurizing agent was continuously added without removing the slag under KR stirring, the sulfur concentration in the hot metal could be reduced to 0.002% in about 10 minutes.

【0035】[0035]

【表3】 [Table 3]

【0036】(本発明例4)表4に示すように、取鍋に
成分調整した1350℃の溶銑250tを装入後、KR
式の攪拌下、スケールのみを添加した後に生石灰、蛍石
を連続添加して攪拌開始から約3. 5分後に粒状の金属
Alを0. 48t追加したところ、その1分後には酸化
鉄濃度 (Fe換算値) を1. 5%にまで低下でき、溶銑
中硫黄濃度も0.008%にまで低下できた。KR式の
攪拌下、除滓せずに続けて脱硫剤を添加後、約9分で溶
銑中硫黄濃度を0. 001%にまで低下できた。
(Example 4 of the present invention) As shown in Table 4, after charging 250 t of 1350 ° C hot metal whose components were adjusted into a ladle,
Under the agitation of the formula, quick lime and fluorite were continuously added after adding only the scale, and after about 3.5 minutes from the start of stirring, 0.48 t of granular metal Al was added. One minute later, the iron oxide concentration ( Fe conversion value) could be reduced to 1.5%, and the sulfur concentration in the hot metal could be reduced to 0.008%. After the desulfurizing agent was continuously added without removing the slag under KR stirring, the sulfur concentration in the hot metal could be reduced to 0.001% in about 9 minutes.

【0037】[0037]

【表4】 [Table 4]

【0038】(比較例1)表5に示すように、取鍋に成
分調整した1350℃の溶銑250tを装入後、KR式
の攪拌下、脱珪剤としてマンガン鉱石、生石灰、蛍石を
使用して7分間反応させ、KR機械方式の攪拌下、除滓
せずに続けて生石灰を添加後、約10分で溶銑中硫黄濃
度は0. 013%になった。CaF2 を多量に添加して
スラグ中濃度で13%としても、処理後の溶銑中硫黄濃
度を0. 006%程度までしか低下できなかった。
(Comparative Example 1) As shown in Table 5, 250 t of 1350 ° C. hot metal whose components were adjusted was charged into a ladle, and manganese ore, quicklime, and fluorite were used as a desiliconizing agent under KR stirring. The reaction was continued for 7 minutes, and the lime was continuously added without removing the slag under the stirring of the KR mechanical system. After about 10 minutes, the sulfur concentration in the hot metal became 0.013%. Even if a large amount of CaF 2 was added to make the slag concentration 13%, the sulfur concentration in the hot metal after the treatment could only be reduced to about 0.006%.

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【発明の効果】本発明により、CaF2 使用を最小限
(5%未満)に抑えて効率よく脱珪、脱硫(目標溶銑中
硫黄濃度:0.005%以下)処理をすることができ
る。
According to the present invention, it is possible to carry out desiliconization and desulfurization (target sulfur concentration in hot metal: 0.005% or less) efficiently while minimizing the use of CaF 2 (less than 5%).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 攪拌下、溶銑中珪素濃度が0. 1%以上
の溶銑に、鉄酸化物と、CaOと、CaF2 を添加し、
スラグ中酸化鉄濃度がFe換算値で5%以下とする脱珪
を主とする第一工程と、その後、攪拌下、CaOとCa
2 を含む脱硫剤を添加する脱硫を主とする第二工程と
から構成されることを特徴とする溶銑の脱珪・脱硫方
法。
1. An iron oxide, CaO and CaF 2 are added to hot metal having a silicon concentration of 0.1% or more in hot metal under stirring.
The first step mainly includes desiliconization in which the iron oxide concentration in the slag is 5% or less in terms of Fe, and then CaO and Ca
A desulfurization / desulfurization method for hot metal comprising a second step mainly including desulfurization in which a desulfurizing agent containing F 2 is added.
【請求項2】 第二工程に先立って、Alを添加するこ
とを特徴とする請求項1記載の溶銑の脱珪脱硫方法。
2. The method for desiliconizing and desulfurizing hot metal according to claim 1, wherein Al is added prior to the second step.
JP26163497A 1997-09-26 1997-09-26 Method for desiliconizing and desulfurizing molten iron Pending JPH11100608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26163497A JPH11100608A (en) 1997-09-26 1997-09-26 Method for desiliconizing and desulfurizing molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26163497A JPH11100608A (en) 1997-09-26 1997-09-26 Method for desiliconizing and desulfurizing molten iron

Publications (1)

Publication Number Publication Date
JPH11100608A true JPH11100608A (en) 1999-04-13

Family

ID=17364629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26163497A Pending JPH11100608A (en) 1997-09-26 1997-09-26 Method for desiliconizing and desulfurizing molten iron

Country Status (1)

Country Link
JP (1) JPH11100608A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832698B1 (en) * 2001-12-20 2008-05-28 주식회사 포스코 Desulfurization of the molten steel for tire-cord
JP2011256445A (en) * 2010-06-10 2011-12-22 Kobe Steel Ltd Method for desulfurizing molten iron
JP2014091836A (en) * 2012-10-31 2014-05-19 Nisshin Steel Co Ltd Desulfurization processing method of molten iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832698B1 (en) * 2001-12-20 2008-05-28 주식회사 포스코 Desulfurization of the molten steel for tire-cord
JP2011256445A (en) * 2010-06-10 2011-12-22 Kobe Steel Ltd Method for desulfurizing molten iron
JP2014091836A (en) * 2012-10-31 2014-05-19 Nisshin Steel Co Ltd Desulfurization processing method of molten iron

Similar Documents

Publication Publication Date Title
JP7151494B2 (en) Method for recycling converter slag
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP3097474B2 (en) Hot metal dephosphorization method
JP2007270238A (en) Method for applying dephosphorize-treatment to molten iron
JPH11100608A (en) Method for desiliconizing and desulfurizing molten iron
JPH10102119A (en) Production of sulfur free-cutting steel resulfurized carbon steel
JP2001115205A (en) Method for dephosphorizing molten iron
JP2002241829A (en) Desiliconizing method for molten iron
JP3288208B2 (en) Hot metal dephosphorization method
JP2653301B2 (en) Reusing method of low P converter slag
JPH07179920A (en) Production of molten steel
JP2001049320A (en) Production of iron and steel using high phosphorus ore as raw material
JP3704267B2 (en) Method for refining molten steel
JP3505791B2 (en) Dephosphorization and desulfurization of hot metal
JPH09176717A (en) Method for steelmaking molten iron of blast furnace
JPH111714A (en) Steelmaking method
JP3218629B2 (en) Hot metal dephosphorization method
JPH07109507A (en) Method for pretreating molten iron
JP3684953B2 (en) Pre-silicidation / phosphorization method of hot metal
JP3704912B2 (en) Hot metal desiliconization and desulfurization methods
SU956567A1 (en) Process for treating molten cast iron
JP3531480B2 (en) Hot metal dephosphorization method
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JP3297997B2 (en) Hot metal removal method
JPS636606B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020827