JPH0499112A - Method for desiliconizing and desulfurizing molten iron at the same time - Google Patents

Method for desiliconizing and desulfurizing molten iron at the same time

Info

Publication number
JPH0499112A
JPH0499112A JP20480890A JP20480890A JPH0499112A JP H0499112 A JPH0499112 A JP H0499112A JP 20480890 A JP20480890 A JP 20480890A JP 20480890 A JP20480890 A JP 20480890A JP H0499112 A JPH0499112 A JP H0499112A
Authority
JP
Japan
Prior art keywords
molten iron
hot metal
desulfurization
desiliconization
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20480890A
Other languages
Japanese (ja)
Inventor
Yoshio Nakajima
義夫 中島
Masato Mukai
向 政登
Takashi Fujimoto
藤本 孝士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP20480890A priority Critical patent/JPH0499112A/en
Publication of JPH0499112A publication Critical patent/JPH0499112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To execute desulfurization and desiliconization in molten iron at the same time without lowering the temp. of molten iron by injecting a powdery desulfurizing agent together with gaseous oxygen into the molten iron containing silicon and sulfur. CONSTITUTION:The molten iron 3 is charged to a refining vessel 1. As the molten iron 3, the molten iron for producing stainless steel containing about 12% chromium and Si and S, is used. Successively, powder of a desulfurizing agent and gaseous oxygen are directly blown into the molten iron 3 through nozzle of a single pipe 2 for injection. As the above powdery desulfurizing agent, it is desirable to use the powdery bodies containing each 10-80wt.% of lime stone powder and quick lime powder. By this method, the desiliconization and the desulfurization in the molten iron 3 can be executed at the same time without lowering the temp., and particularly, the molten iron with high silicon and sulfur concns., is effectively subjected to the desiliconization and desulfurizaation at the same time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、シリコンを含有し、しかも比較的硫黄濃度の
高い溶銑の脱硫を、脱珪とともに、溶銑の温度を低下さ
せずに行う方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for desulfurizing hot metal containing silicon and having a relatively high sulfur concentration, as well as desiliconization, without lowering the temperature of the hot metal. .

〔発明の背景〕[Background of the invention]

近年、ステンレス鋼あるいは普通鋼の製造プロセスとし
て溶融還元法が種々開発・検討されている。これは従来
の電気炉や高炉に替えてシャフト炉や転炉を用い、コー
クスや石炭などの炭材を還元剤および熱源として、クロ
ム鉱石、鉄鉱石を直接溶融還元する方法である。また、
これら溶融還元機能に加えスクラップの同時溶解機能を
具備したものも検討されている。
In recent years, various melt reduction methods have been developed and studied as a manufacturing process for stainless steel or ordinary steel. This method uses a shaft furnace or a converter instead of a conventional electric furnace or blast furnace, and uses carbonaceous materials such as coke or coal as a reducing agent and heat source to directly melt and reduce chromium ore and iron ore. Also,
In addition to these melting and reduction functions, devices with a simultaneous scrap melting function are also being considered.

これら種々の溶融還元法のうち、シャフト炉を用いる場
合には1溶銑中にシリコンと硫黄を同時にしかも高濃度
で含有されるときがある。シリコンがシャフト炉の場合
高くなるのは、この方法が原理上酸素ポテンシャルの非
常に低いところで行われるためであり、Singも還元
されてしまうことによる。この還元反応はSin、ガス
を介して行われるとされている。また、シャフト炉内で
の生産性を向上させるためにスラグの塩基度を小さくし
且つその融点を低下させることが行われ、これによって
炉内でのガスの通気性およびスラグやメタルの溶融滴下
性を改善する方策が採られることがある。この場合、ス
ラグの塩基度が低いために炉内で脱硫が進行せず、溶銑
中の硫黄濃度が必然的に高くなる。特に、クロム鉱石の
還元が必要なステンレス鋼母溶銑の製造の場合にはスラ
グの流動性を確保する観点から塩基度を小さくせざるを
得ない場合が多く、溶銑中の硫黄濃度が0.1%を超え
る場合もめずらしくない。
Among these various smelting reduction methods, when a shaft furnace is used, silicon and sulfur are sometimes contained simultaneously and at a high concentration in one hot metal. The reason why silicon is expensive in a shaft furnace is because this method is performed in principle at a very low oxygen potential, and Sing is also reduced. This reduction reaction is said to be carried out via Sin gas. In addition, in order to improve productivity in shaft furnaces, the basicity of slag is reduced and its melting point is lowered. Measures may be taken to improve this. In this case, desulfurization does not proceed in the furnace because the basicity of the slag is low, and the sulfur concentration in the hot metal inevitably increases. In particular, in the production of stainless steel mother hot metal that requires the reduction of chromium ore, the basicity must be reduced in many cases to ensure fluidity of the slag, and the sulfur concentration in the hot metal is 0.1. It is not uncommon for it to exceed %.

この硫黄濃度の高い溶銑の脱硫を、現状の脱硫法で、す
なわちCab−CaFz系フラックスの不活性ガスによ
る吹き込みという方法で行えば、フラックスの原単位が
大きいために大きな温度低下をまねくことになる。その
ため、ハンドリング温度が確保できなかったり、また、
この温度を確保しようとすれば溶銑温度を上げる必要が
あり、シャフト炉での熱負荷が増大することになり、設
備。
If this hot metal with a high sulfur concentration is desulfurized using the current desulfurization method, that is, by blowing Cab-CaFz-based flux with inert gas, the basic unit of flux is large, resulting in a large temperature drop. . As a result, the handling temperature may not be secured, or
In order to maintain this temperature, it is necessary to raise the hot metal temperature, which increases the heat load on the shaft furnace, which increases the equipment.

操業、コストすべての面で不利な条件となってしまう。This would result in disadvantageous conditions in terms of operation and cost.

本発明はこのような問題を解決することを目的としたも
のである。
The present invention aims to solve such problems.

〔発明の構成] 本発明は、シリコンと硫黄を含有した溶銑中に粉状脱硫
剤を気体酸素と共にインジェクションすることを特徴と
する。粉状脱硫剤は1石灰石粉と生石灰粉をそれぞれ1
0から80重量%の範囲で含有した粉体を使用する。溶
銑は含クロム溶銑であることができ、含クロム溶銑であ
っても、クロムの酸化ロスを抑制できる。
[Structure of the Invention] The present invention is characterized in that a powdered desulfurizing agent is injected together with gaseous oxygen into hot metal containing silicon and sulfur. Powdered desulfurization agent is 1 limestone powder and 1 quicklime powder each.
A powder with a content in the range of 0 to 80% by weight is used. The hot metal can be chromium-containing hot metal, and even if it is chromium-containing hot metal, oxidation loss of chromium can be suppressed.

〔作用] 本発明によれば、シリコンを含有し且つ比較的硫黄濃度
の高い溶銑の脱硫を脱珪と同時にしかも溶銑の温度を低
下させずに行うことができる。
[Operation] According to the present invention, desulfurization of hot metal containing silicon and having a relatively high sulfur concentration can be performed simultaneously with desiliconization without lowering the temperature of the hot metal.

本発明者らは、前記の問題を解決すべく、脱珪時の発熱
反応を利用し同時に脱硫することを考えた。すなわち、
気体酸素をCa0−flpとともに吹き込み9発熱反応
であるSi+0□=SiO□(気体酸素による脱珪反応
)やC+1/202= CO(気体酸素による脱炭反応
)などの反応熱を用いながら温度低下を抑制しつつ、一
方ではメタル浴面上に還元性のトップスラグを生成させ
、このスラグムこより脱硫しようとする方法である。こ
こでCaO源としては生石灰と石灰石を温度コントロー
ルを兼ねて用いる。さらに具体的にいえば、吹き込み羽
口近傍では脱珪反応とそれに伴う発熱とを、また浮上過
程では生成したFeOを含むCab−3in2系スラグ
をSiおよびCで1次式のように2 FeO+Si= 
2 Fe+5iOz。
In order to solve the above problem, the present inventors considered desulfurization at the same time by utilizing the exothermic reaction during desiliconization. That is,
Gaseous oxygen is blown in with Ca0-flp to lower the temperature while using the reaction heat of exothermic reactions such as Si+0□=SiO□ (desiliconization reaction with gaseous oxygen) and C+1/202=CO (decarburization reaction with gaseous oxygen). In this method, while suppressing the sulfur content, on the other hand, a reducing top slag is generated on the metal bath surface, and this slag is used to desulfurize. Here, quicklime and limestone are used as CaO sources, which also serve as temperature control. More specifically, in the vicinity of the blowing tuyere, the desiliconization reaction and associated heat generation are carried out, and in the flotation process, the generated Cab-3in2 slag containing FeO is treated with Si and C as shown in the linear equation 2FeO+Si=
2 Fe+5iOz.

FeO+ C= CO。FeO+C=CO.

還元させ、これによって、トップスラグ中の(%Fed
)を十分低下させて脱硫のための還元性を付与させると
いう原理である。
This reduces the (%Fed) in the top slag.
) is sufficiently lowered to provide reducing properties for desulfurization.

なお、ここで石灰石を添加する理由は CaCO5→CaO+COt の分解反応による吸熱を利用し、Sin、生成時の発熱
反応とのバランスでメタル浴の温度を一定に保持するこ
と、および安価な石灰石をCaO源としても用いること
である。また、吹き込み羽口あるいは吹き込みノズル先
端近傍での過大な温度上昇を防ぎ、これら羽口やノズル
の溶損を防止し長寿命で用いることもそのねらいとして
いる。
The reason for adding limestone here is to utilize the endothermic reaction of the decomposition reaction of CaCO5 → CaO + COt, to maintain the temperature of the metal bath constant in balance with the exothermic reaction during the generation of Sin, and to use inexpensive limestone as CaO. It can also be used as a source. The aim is also to prevent excessive temperature rise near the tip of the blowing tuyeres or blowing nozzles, and to prevent these tuyeres and nozzles from being melted and damaged so that they can be used for a long time.

使用する石灰石粉と生石灰粉はそれぞれ10から80重
量%の範囲でインジェクションする粉体中に含有させれ
ばよい。また気体酸素は純酸素、酸素冨化空気或いは空
気であってもよい。
The limestone powder and quicklime powder used may each be contained in the powder to be injected in a range of 10 to 80% by weight. The gaseous oxygen may also be pure oxygen, oxygen-enriched air, or air.

〔実施例〕〔Example〕

第1図に示した精錬容器lを使用して1本発明法を実施
した。精錬容器Iの側壁にはインジェクション用のノズ
ル2が設けられている。このノズル2は、そのノズル口
の方向が炉底のほぼ中心に向かうように、容器側壁の外
側から内側に向けて傾斜を有した単管ノズルであり、セ
ラミックスバイブからなっている。ノズル口は炉内溶銑
3より場面下に位置していることから、溶銑3内に直接
インジェクションが行われる。インジェクション操作を
行なうとノズル口には凝固物からなる別のノズル口(マ
ンシュルーム形状)が形成し、このためにノズルが保護
される。4は測温管を示している。
One method of the present invention was carried out using the refining vessel 1 shown in FIG. An injection nozzle 2 is provided on the side wall of the refining vessel I. This nozzle 2 is a single tube nozzle having an inclination from the outside to the inside of the side wall of the container so that the direction of the nozzle opening is directed toward approximately the center of the furnace bottom, and is made of a ceramic vibrator. Since the nozzle opening is located below the hot metal 3 in the furnace, injection is performed directly into the hot metal 3. When the injection operation is performed, another nozzle opening (manshroom shape) made of solidified material is formed at the nozzle opening, thereby protecting the nozzle. 4 indicates a temperature measuring tube.

実験は、該容器l内に5 tonの溶銑3を入れて行わ
れた。溶銑3としては、クロムを約12%含有するステ
ンレス製造用溶銑が使用された。この溶銑の初期成分は
Cr : 12.5%、C:5.49%、Si:0.9
4%、  S : 0.061%である。処理前の溶銑
温度は1415°Cであり、粉体と気体酸素を直接溶銑
中に吹き込んで同時脱珪脱硫と温度低下の防止を狙った
実験を行った。
The experiment was conducted with 5 tons of hot metal 3 placed in the vessel 1. As hot metal 3, hot metal for producing stainless steel containing about 12% chromium was used. The initial components of this hot metal are Cr: 12.5%, C: 5.49%, Si: 0.9
4%, S: 0.061%. The temperature of the hot metal before treatment was 1415°C, and an experiment was conducted with the aim of simultaneous desiliconization and desulfurization and prevention of temperature drop by blowing powder and gaseous oxygen directly into the hot metal.

用いた粉体の組成は62%生石灰粉−30%石灰石粉−
8%ホタル石破砕粉である。ホタル石はスラグの流動性
を確保するために添加されたものである。気体酸素の供
給速度は3 Nm3/win、粉体の吹き込み速度は2
5.9kg/minとした。吹き込み時間は11.2分
であった。得られた結果を表1にまとめて示した。また
1本例のヒートバランスを表2に。
The composition of the powder used was 62% quicklime powder - 30% limestone powder.
It is 8% fluorite crushed powder. Fluorite is added to ensure the fluidity of the slag. The gaseous oxygen supply rate is 3 Nm3/win, and the powder blowing rate is 2
The speed was set at 5.9 kg/min. Blow time was 11.2 minutes. The obtained results are summarized in Table 1. Also, the heat balance of one example is shown in Table 2.

その計算に用いた熱データを表3に示した。The thermal data used in the calculation is shown in Table 3.

表1の結果に見られるように、シリコン濃度は0.94
%から0.32%まで低下するともに硫黄濃度は0.0
61%から0.009%まで低下し、脱珪と脱硫が同時
に行われた。溶銑温度について見ると、処理開始時14
15℃であったものが処理後は1409℃になっており
、処理中の温度低下は9°Cと非常に少ない 表2のヒートバランスから見るかぎり1本例での理論発
熱量は温度に換算すると272.6°C1理論吸熱量は
温度に換算すると203°Cとなり、計算上は69.4
°Cの温度上昇となる筈である0本実験例では溶銑量が
5 tonと小規模であり、また1ヒートのみの間欠操
業のために耐火物等への抜熱量が大きいこと等の理由に
よって9℃の温度低下となったものと考えられる。実際
の製造ラインでは連続的な操業となりまた処理量もより
大きくなることから、このような熱放散は少なくなって
表2に示した計算値69.6℃に近い温度上昇が起こる
であろうと考えられる。
As seen in the results in Table 1, the silicon concentration is 0.94
% to 0.32% and the sulfur concentration was 0.0
The content decreased from 61% to 0.009%, and desiliconization and desulfurization were performed simultaneously. Looking at the hot metal temperature, at the start of treatment 14
What was 15℃ became 1409℃ after treatment, and the temperature drop during treatment was 9℃, which is very small.As far as we can see from the heat balance in Table 2, the theoretical calorific value in this example is converted to temperature. Then, the theoretical endothermic amount of 272.6°C1 becomes 203°C when converted to temperature, which is calculated as 69.4°C.
In this example, the amount of hot metal was small at 5 tons, and because of the intermittent operation with only one heat, the amount of heat removed from the refractories was large. It is thought that the temperature decreased by 9°C. Since actual production lines operate continuously and have a larger throughput, it is thought that such heat dissipation will be reduced and a temperature rise close to the calculated value of 69.6°C shown in Table 2 will occur. It will be done.

なお1表1に示すごとく本処理においてクロム濃度にほ
とんど変化はなく、クロムの酸化ロスは認められなかっ
た。またスラグ中の(%T、Fe)も2%であり本発明
者らが狙ったとおりの低いレベルになっている。引続き
さらにスラグ中の(%Fed)を低下させて脱硫を促進
させようとすれば、窒素などの不活性ガスのみのバブリ
ングによるいわゆるリンシングを行い、さらに(%Fe
d)を低下させることも有利である。
As shown in Table 1, there was almost no change in the chromium concentration in this treatment, and no chromium oxidation loss was observed. Furthermore, (%T, Fe) in the slag was 2%, which is the low level that the inventors aimed for. In order to further reduce (%Fe
It is also advantageous to reduce d).

〔本発明の実施手順〕[Procedure for implementing the present invention]

次に9本発明を実施する際の生石灰1石灰石および気体
酸素の必要原単位の好ましい決定方法について説明する
。与えられた溶銑の成分値と温度に対し、必要とする処
理後シリコン濃度、硫黄濃度および処理後温度から、こ
れら吹き込み剤の原単位を次のようにして求めることが
できる。
Next, a preferred method for determining the required unit consumption of quicklime, limestone and gaseous oxygen when carrying out the present invention will be described. For a given hot metal component value and temperature, the basic unit of these blowing agents can be determined from the required post-treatment silicon concentration, sulfur concentration, and post-treatment temperature as follows.

まず、必要O3原単位(Nm3/1on)は、脱珪必要
量(Δ〔%5t))から脱珪の酸素効率η、5.を考慮
して(1)式より求められる。
First, the required O3 basic unit (Nm3/1on) is calculated from the required amount of desiliconization (Δ[%5t)), the oxygen efficiency of desiliconization η, 5. It is obtained from equation (1) taking into account.

Oz(Nm3/1on) =Δ〔%Si) X8.O/
η。1・ (1) ここで脱珪の酸素効率ηfsilは本発明法の場合0.
6であることが確認された。これ以外の酸素は脱炭に消
費されることになる。このη18..を用いて発生する
熱量(Si、Cの燃焼熱)および生成するS i Oz
量(kg/ ton)が求められる。
Oz (Nm3/1on) =Δ[%Si) X8. O/
η. 1. (1) Here, the oxygen efficiency ηfsil for desiliconization is 0.
It was confirmed that it was 6. Other oxygen will be consumed for decarburization. This η18. .. The amount of heat generated using (heat of combustion of Si, C) and the generated S i Oz
The amount (kg/ton) is determined.

次に、必要な脱硫率に応して塩基度(CaO/5iOz
)を決める。通常は塩基度=2〜3の値を処理前後の〔
%S〕に応じて決定する。必要CaO量(kg/ to
n)は2発生S i O!量(kg/ ton)と塩基
度から(2)式より決まる。
Next, the basicity (CaO/5iOz
). Normally, basicity = 2 to 3 values before and after treatment [
%S]. Required amount of CaO (kg/to
n) is 2 occurrence S i O! It is determined from formula (2) based on the amount (kg/ton) and basicity.

Ca O(kg/ ton) =発生Sin、量X(C
aO/5iOz)・(2) また、希望する処理後温度と反応による発生熱量・吹き
込み剤の吸熱量から1表3に示した熱データを用いて石
灰石の使用量が決められる。そして、必要CaO量(k
g/1on)に不足のCaO分は生石灰を用いて(3)
式で与えられる。
Ca O (kg/ton) = generated Sin, amount X (C
aO/5iOz) (2) Furthermore, the amount of limestone to be used is determined from the desired post-treatment temperature, the amount of heat generated by the reaction, and the amount of heat absorbed by the blowing agent using the thermal data shown in Table 1. Then, the required amount of CaO (k
g/1on), use quicklime to compensate for the CaO content (3)
It is given by Eq.

生石灰(kg/1on) =必要CaO−石灰石X0.
56・ (3) 以上のようにして目的とする脱珪、脱硫および温度変化
に対応する生石灰1石灰石および気体酸素の原単位が決
定され、意図する脱珪脱硫の同時処理が合理的に行なえ
る。第2図にはこれらの手順を図解して示した。
Quicklime (kg/1on) = Required CaO - Limestone x0.
56. (3) As described above, the basic units of quicklime 1 limestone and gaseous oxygen corresponding to the desired desiliconization, desulfurization, and temperature change are determined, and the intended simultaneous desiliconization and desulfurization treatment can be carried out rationally. . FIG. 2 illustrates these steps.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、脱珪と脱硫を同時に、しかも温度低下
なしに行うことができる。特にシリコンおよび硫黄濃度
の高い溶銑の同時脱珪脱硫に有効であり、シャフト炉の
ような溶融還元炉の操業負荷を軽減することができる。
According to the present invention, desiliconization and desulfurization can be performed at the same time without reducing the temperature. It is particularly effective for simultaneous desiliconization and desulfurization of hot metal with high silicon and sulfur concentrations, and can reduce the operational load of smelting reduction furnaces such as shaft furnaces.

また、温度コントロール用に安価な石灰石を用いており
、これはまた安価なCaO3ともなりコスト面からも有
利である。なお1本発明の実施例ではステンレス溶銑を
対象とした場合について述べたが、普通鋼溶銑にも適用
できることはいうまでもない。
In addition, inexpensive limestone is used for temperature control, which also produces inexpensive CaO3, which is advantageous from a cost standpoint. Although the embodiments of the present invention have been described with reference to stainless hot metal, it goes without saying that the present invention can also be applied to ordinary steel hot metal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に使用した精錬容器の断面図。 第2図は本発明での原単位設定方法のフローを示す図で
ある。 1・・精錬容器 インジェク ショ ン用のノズル。 溶銑。 測温管。 第 図
FIG. 1 is a sectional view of the refining vessel used in the example. FIG. 2 is a diagram showing the flow of the basic unit setting method according to the present invention. 1. Nozzle for refining vessel injection. Hot metal. Temperature tube. Diagram

Claims (4)

【特許請求の範囲】[Claims] (1)シリコンと硫黄を含有した溶銑中に、粉状脱硫剤
を気体酸素と共にインジェクションすることを特徴とす
る溶銑の同時脱珪脱硫法。
(1) A method for simultaneous desiliconization and desulfurization of hot metal, which is characterized by injecting a powdered desulfurization agent together with gaseous oxygen into hot metal containing silicon and sulfur.
(2)粉状脱硫剤は、石灰石粉と生石灰粉をそれぞれ1
0から80重量%の範囲で含有した粉体である請求項1
に記載の溶銑の同時脱珪脱硫法。
(2) Powdered desulfurization agent consists of 1 part each of limestone powder and quicklime powder.
Claim 1: The powder contains 0 to 80% by weight.
The method for simultaneous desiliconization and desulfurization of hot metal described in .
(3)溶銑は含クロム溶銑である請求項1または2に記
載の溶銑の同時脱珪脱硫法。
(3) The method for simultaneous desiliconization and desulfurization of hot metal according to claim 1 or 2, wherein the hot metal is chromium-containing hot metal.
(4)インジェクションは、容器の底部または側壁に設
けられた単管ノズルを用いて行われる請求項1、2また
は3に記載の溶銑の同時脱珪脱硫法。
(4) The method for simultaneous desiliconization and desulfurization of hot metal according to claim 1, 2 or 3, wherein the injection is performed using a single tube nozzle provided at the bottom or side wall of the container.
JP20480890A 1990-08-01 1990-08-01 Method for desiliconizing and desulfurizing molten iron at the same time Pending JPH0499112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20480890A JPH0499112A (en) 1990-08-01 1990-08-01 Method for desiliconizing and desulfurizing molten iron at the same time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20480890A JPH0499112A (en) 1990-08-01 1990-08-01 Method for desiliconizing and desulfurizing molten iron at the same time

Publications (1)

Publication Number Publication Date
JPH0499112A true JPH0499112A (en) 1992-03-31

Family

ID=16496711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20480890A Pending JPH0499112A (en) 1990-08-01 1990-08-01 Method for desiliconizing and desulfurizing molten iron at the same time

Country Status (1)

Country Link
JP (1) JPH0499112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031437A (en) * 2015-07-28 2017-02-09 日新製鋼株式会社 Desulfurization method of molten pig iron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031437A (en) * 2015-07-28 2017-02-09 日新製鋼株式会社 Desulfurization method of molten pig iron

Similar Documents

Publication Publication Date Title
CN101305105B (en) Method of hot metal dephosphorization treatment
JPH0499112A (en) Method for desiliconizing and desulfurizing molten iron at the same time
US4891064A (en) Method of melting cold material including iron
JP4779464B2 (en) Method for producing low phosphorus hot metal
JPH0563541B2 (en)
JPS62228410A (en) Method for recovering metal from granular ore by melt reduction
US3304172A (en) Process for the manufacture of low phosphorus pig iron
JPS59159963A (en) Production of high chromium molten metal
JPH01252715A (en) Method for operating iron bath type smelting reduction furnace
JP3718263B2 (en) Hot metal pretreatment method
KR970004985B1 (en) Method of denitrification and dephosphorization
SU729251A1 (en) Method of steel casting in hearth steel-melting set
JPS6152208B2 (en)
JPS62167808A (en) Production of molten chromium iron
KR20020042721A (en) Method and use of calcium nitrate for foaming of steel-making slags
JPH01252712A (en) Method for operating smelting reduction furnace
JPH02200715A (en) Method for dephosphorizing and desulfurizing molten iron
JP2001026807A (en) Method for dephosphorizing molten iron
JPS6059961B2 (en) Hot metal pretreatment method
JPS62192513A (en) Method and apparatus for melt reduction
JPH01195212A (en) Method for using powdered coal in iron bath type melting and reducing furnace
JPH032312A (en) Production of low-phosphorus pig iron
JPS60181213A (en) Manufacture of iron in reactor
JPH0243802B2 (en)
JPS59113157A (en) Method for refining iron-chromium alloy