JP2003239008A - Method for operating movable type hearth furnace and solid reducing material for protecting furnace hearth refractory - Google Patents

Method for operating movable type hearth furnace and solid reducing material for protecting furnace hearth refractory

Info

Publication number
JP2003239008A
JP2003239008A JP2002040535A JP2002040535A JP2003239008A JP 2003239008 A JP2003239008 A JP 2003239008A JP 2002040535 A JP2002040535 A JP 2002040535A JP 2002040535 A JP2002040535 A JP 2002040535A JP 2003239008 A JP2003239008 A JP 2003239008A
Authority
JP
Japan
Prior art keywords
hearth
furnace
solid reducing
reducing material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002040535A
Other languages
Japanese (ja)
Other versions
JP4120230B2 (en
Inventor
Tetsuya Yamamoto
哲也 山本
Natsuo Ishiwatari
夏生 石渡
Yoshitaka Sawa
義孝 澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002040535A priority Critical patent/JP4120230B2/en
Publication of JP2003239008A publication Critical patent/JP2003239008A/en
Application granted granted Critical
Publication of JP4120230B2 publication Critical patent/JP4120230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a movable type hearth furnace and a solid reducing material for protecting a furnace hearth refractory which has an excellent protective effect of the furnace hearth refractory and is effective to easily and stably discharge produced molten slag and molten metal. <P>SOLUTION: When the reduced metal is produced by piling raw materials consisting essentially of metal-containing material and a solid-reducing material, on the furnace hearth horizontally moved in the movable type hearth furnace, raising the temperature of the raw material while moving the furnace hearth in the furnace and making the raw materials of molten state at least one time, preceding to piling of the raw materials on the furnace hearth, the solid-reducing material for protecting the furnace hearth refractory showing the characteristic having ≤1.5 (logDDPM) of maximum fluidity, is spread all over, and the raw materials are piled up on this solid-reducing material layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、移動型炉床炉の操
業方法およびこの炉の炉床耐火物保護用固体還元材に関
し、とくに、移動型炉床炉内で、その炉床を水平方向に
移動させる間に、該炉床上の積載物(装入原料)の昇温
を行うことにより、金属含有物の還元を行う移動型炉床
炉の操業方法と、この移動型炉床炉に用いる炉床耐火物
保護用還元材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a moving hearth furnace and a solid reducing material for protecting the hearth refractory of the furnace. And a method for operating a mobile hearth furnace, in which a load (raw material) on the hearth is heated while being moved to The present invention relates to a reducing material for protecting hearth refractories.

【0002】[0002]

【従来の技術】粗鋼は、そのほとんどが高炉−転炉法ま
たは電気炉法によって生産されている。このうち、電気
炉法はスクラップや還元鉄を鉄原料として、それらを電
気エネルギーで加熱溶解し、場合によっては、さらに二
次精錬して、鋼にしている。現在は、スクラップを主な
原料としているが、近年、スクラップ需給の逼迫、電気
炉法での製品の高級化の流れから、スクラップに代えて
還元鉄の使用が増加しつつある。
Most of the crude steel is produced by a blast furnace-converter method or an electric furnace method. Among these, in the electric furnace method, scrap and reduced iron are used as iron raw materials, and they are heated and melted with electric energy, and in some cases, secondary refining is performed to obtain steel. At present, scrap is mainly used as a raw material, but in recent years, the use of reduced iron in place of scrap has been increasing due to the tight supply and demand of scrap and the trend of upgrading products by the electric furnace method.

【0003】ところで、この還元鉄を製造するプロセス
のひとつとして、近年、水平方向に移動する炉床に、鉄
鉱石と固体還元材とを積層し、上方から輻射伝熱によっ
て加熱することにより鉄鉱石を還元し、還元鉄を製造す
るという、移動型炉床炉が知られている。
By the way, in recent years, as one of the processes for producing reduced iron, iron ore and a solid reducing material are laminated on a horizontally moving hearth, and the iron ore is heated by radiant heat transfer from above. There is known a moving hearth furnace that reduces iron to produce reduced iron.

【0004】上記移動型炉床炉というのは、炉内におい
て炉床が水平に移動する過程で該炉床上の原料を加熱す
る新しいタイプの加熱炉であり、このタイプの移動型炉
床炉は、別に回転炉床炉とも呼ばれている。この回転炉
床炉は、図1(a)に示すように、予熱帯10a、還元帯1
0b、溶融帯10cおよび冷却帯10dに区画された炉体10内
に、エンドレスに回転して移動する炉床11を覆ってなる
ものである。この水平に回転移動する炉床11の上には、
図1(b)に示すように、例えば鉄鉱石と固体還元材と
からなる原料2を積みつける。なお、その原料として
は、炭材内装ペレットが用いられる。そして、この炉床
11は、耐火物が張られた炉体10によって覆われており、
その炉体10には、上部にバーナー13が設置され、このバ
ーナー13の燃焼熱を熱源として、炉床11の原料を還元す
るようになっている。なお、この図1において、14は原
料2を炉床11上に装入する装入装置、15は還元物を排出
する排出装置である。
The moving hearth furnace is a new type of heating furnace that heats the raw material on the hearth in the process of horizontal movement of the hearth in the furnace. , It is also called a rotary hearth furnace. As shown in Fig. 1 (a), this rotary hearth furnace has a pre-tropical zone 10a and a reduction zone 1
0b, a melting zone 10c, and a cooling zone 10d are divided into a furnace body 10 and a furnace floor 11 that rotates and moves endlessly is covered. Above the horizontally moving hearth 11,
As shown in FIG. 1 (b), a raw material 2 made of, for example, iron ore and a solid reducing material is stacked. Carbonaceous material-containing pellets are used as the raw material. And this hearth
11 is covered by a furnace body 10 with refractory,
A burner 13 is installed in the upper part of the furnace body 10, and the combustion heat of the burner 13 is used as a heat source to reduce the raw material of the hearth 11. In FIG. 1, 14 is a charging device for charging the raw material 2 onto the hearth 11, and 15 is a discharging device for discharging the reductant.

【0005】この移動型炉床炉の操業において、炉体10
内の雰囲気温度は、1300℃前後に加熱されているのが普
通である。原料の還元が終了した後は、炉外での酸化防
止とハンドリングを容易にするために、冷却帯10cにお
ける炉床上で還元鉄を冷却した後、回収する。ところ
で、原料中の金属含有物、例えば鉄鉱石は、その産地に
よって量に差はあるものの脈石成分を多く含み、一方、
固体還元材の代表例である石炭、石炭チャー、コークス
には灰分が含まれている。そのために、前記還元操作の
みを行うかかる移動型炉床炉では、製品である還元鉄に
脈石が混入することは不可避であり、さらに還元材から
の灰分が製品(還元鉄)に付着して混入する可能性があ
る。
In the operation of this mobile hearth furnace, the furnace body 10
The ambient temperature inside is usually heated to around 1300 ° C. After the reduction of the raw material is completed, the reduced iron is cooled on the hearth in the cooling zone 10c and then recovered in order to facilitate the oxidation prevention and handling outside the furnace. By the way, the metal-containing material in the raw material, for example, iron ore, contains a large amount of gangue components although the amount varies depending on the place of production, while:
Ash is contained in coal, coal char, and coke, which are typical examples of solid reducing materials. Therefore, in such a mobile hearth furnace that performs only the reduction operation, it is inevitable that gangue is mixed in the reduced iron that is the product, and further ash from the reducing material adheres to the product (reduced iron). May be mixed.

【0006】この還元鉄を原料とする電気炉では、脱燐
および脱硫を行うために石灰を使用するので、脈石、灰
分を含んだ還元鉄を電気炉に投入すると、スラグ塩基度
調整のための石灰使用量が多くなり、石灰使用量の増加
によるコストの増加とともに石灰の滓化に必要な熱量増
加に伴う電力使用量の増加を余儀なくされるという不利
がある。従って、従来の移動炉床炉の操業では、できる
だけ脈石成分の少ない高品位の鉄鉱石を使用し、また還
元材としても灰分の少ないものを使用することが、製品
還元鉄中の不純物を低減するために望ましい。しかし、
鉄鉱石や石炭資源の性状の変化に伴い、より低品位のも
のを使用しなければならず、還元鉄を原料とする電気炉
において、上記の問題点は避けられないものとなってい
る。
[0006] In this electric furnace using reduced iron as a raw material, lime is used for dephosphorization and desulfurization. Therefore, when reduced iron containing gangue and ash is put into the electric furnace, the slag basicity is adjusted. There is a disadvantage in that the amount of lime used increases, and the cost increases due to the increase in the amount of lime used, and the amount of electric power used increases with the increase in the amount of heat necessary for slaging lime. Therefore, in the operation of the conventional moving hearth furnace, it is necessary to use high-grade iron ore with as little gangue component as possible and to use a material with a low ash content as a reducing material, which reduces impurities in the reduced iron product. Desirable to do. But,
With the change in properties of iron ore and coal resources, it is necessary to use lower grade ones, and the above problems are unavoidable in the electric furnace using reduced iron as a raw material.

【0007】こうした観点から、移動炉床炉の操業にお
いても、鉄成分と脈石成分などを分離する方法の開発が
必要となってきた。すなわち、鉄成分と脈石成分を分離
するには、移動型炉床炉上において還元鉄とその他の脈
石および灰分を溶融分離することが必要となる。つま
り、還元鉄を溶融してメタルを生成させるとともに、脈
石分、灰分を滓化してスラグを生成する必要がある。た
とえば、特開平11−172312号公報では、移動型炉床炉の
炉床上で還元物を溶融し、スラグとメタルに分離させる
ことで脈石分を除去し、高品位の還元金属を製造するプ
ロセスが開示されている。この技術によれば、脈石や灰
分の少ない高品位の還元鉄が得られ、しかも、この技術
をダストの再資源化に適用した場合、Fe分とZn分の完全
な分離回収ができるようになる。従って、この技術は既
知移動炉床炉の還元鉄製造方法に比べると、優れた還元
鉄製造方法の1つであると言える。
From this point of view, it has become necessary to develop a method for separating the iron component and the gangue component even in the operation of the moving hearth furnace. That is, in order to separate the iron component and the gangue component, it is necessary to melt and separate the reduced iron and other gangue and ash on the moving hearth furnace. That is, it is necessary to melt the reduced iron to generate a metal, and to slag the gangue and ash to generate slag. For example, in Japanese Unexamined Patent Publication No. 11-172312, a process for producing a high-grade reduced metal by melting a reduced material on the hearth of a moving hearth furnace and removing gangue by separating it into slag and metal. Is disclosed. According to this technology, high-quality reduced iron with less gangue and ash can be obtained, and when this technology is applied to the recycling of dust, it is possible to completely separate and recover Fe and Zn. Become. Therefore, it can be said that this technique is one of the excellent reduced iron production methods as compared with the reduced iron production method of the known moving hearth furnace.

【0008】ところで、還元物を溶融するとメタルとス
ラグとを分離するのに有効であるが、単に還元後の還元
鉄、脈石および灰分を溶融分離するだけでは、移動炉床
炉の排出部分全面にスラグ、メタルの層を生成すること
になるため、とくにメタルの円滑な排出が困難になる。
By the way, although it is effective to separate the metal and the slag when the reduced product is melted, if only the reduced iron, gangue and ash after the reduction are melted and separated, the whole discharge part of the moving hearth furnace is discharged. Since a layer of slag and metal is generated, it is difficult to smoothly discharge metal.

【0009】[0009]

【発明が解決しようとする課題】上記移動炉床炉の操業
において最も重要なことは、炉床耐火物と溶融スラグと
溶融メタルとの固着を回避することである。即ち、装入
した原料を確実に溶融することが、脈石や灰分のない高
品位の還元金属を得るとともに、Fe分とZn分を確実に分
離回収する上で、重要なポイントである。しかし、スラ
グや溶融メタルが炉床耐火物と固着したら、スラグおよ
びメタルの炉外への排出が困難になり、排出されずに炉
床上に残留し、その残留したスラグおよびメタルが再度
加熱されることで炉床耐火物をさらに浸食するという悪
循環を招く。そのために従来、炉床耐火物上に固体還元
材の層を形成し、この固体還元材層上で原料を溶融させ
ることで、溶融物と炉床耐火物との接触を防ぐこととし
ている。
The most important factor in the operation of the above moving hearth furnace is to avoid the sticking of the hearth refractory material, the molten slag and the molten metal. That is, reliable melting of the charged raw materials is an important point in order to obtain a high-grade reduced metal free from gangue and ash and to reliably separate and recover Fe and Zn. However, if slag or molten metal adheres to the hearth refractory, it will be difficult to discharge the slag and metal out of the furnace, and the slag and metal will remain on the hearth without being discharged, and the remaining slag and metal will be heated again. This leads to a vicious cycle of further eroding the hearth refractory. Therefore, conventionally, a layer of the solid reducing material is formed on the hearth refractory material, and the raw material is melted on the solid reducing material layer to prevent contact between the melt and the hearth refractory material.

【0010】この固体還元材層は、石炭などの粉状固体
還元材を炉床上に敷き詰めた層である。ところが、使用
する石炭の種類によっては、この固体還元材を400〜500
℃付近の温度で軟化溶融させた後、再固化させることで
粒径が粗大化し、場合によっては、固体還元材層全体が
一体化となったコークス塊となり、亀裂を発生して、炉
床耐火物を溶融物から保護することができなくなる。
The solid reducing material layer is a layer in which a powdery solid reducing material such as coal is laid on the hearth. However, depending on the type of coal used, this solid reducing agent should be 400-500
After softening and melting at a temperature near ℃, re-solidifying causes the particle size to become coarse, and in some cases, the entire solid reducing agent layer becomes an integrated coke lump, causing cracks and hearth fire resistance. It is not possible to protect the object from the melt.

【0011】そこで、本発明の目的は、炉床耐火物の保
護作用に優れるとともに、生成した溶融スラグおよび溶
融メタルを容易にかつ安定して排出するために有効な移
動型炉床炉の操業方法、および炉床耐火物保護用固体還
元材について提案することにある。
Therefore, an object of the present invention is to provide a method for operating a moving hearth furnace, which has an excellent function of protecting the hearth refractory material and is effective for easily and stably discharging the generated molten slag and molten metal. , And to propose a solid reducing material for protecting hearth refractories.

【0012】[0012]

【課題を解決するための手段】上掲の目的を実現するた
めに鋭意研究を行った結果、発明者らは下記の要旨構成
に係る本発明に想到した。すなわち、本発明は、金属含
有物および固体還元材を主とする原料を、移動型炉床炉
の水平移動する炉床上に積み、該炉床を炉内で移動させ
ながら原料を昇温させて、炉床上で少なくとも一度は溶
融状態にすることにより還元金属を生成させるという操
業において、炉床上への原料の積みつけに先立ち、この
炉床上に最高流動度MFが1.5(logDDPM)以下の特性を示す
固体還元材を敷き詰め、その固体還元材層の上に前記原
料の積みつけを行うことを特徴とする移動型炉床炉の操
業方法である。
Means for Solving the Problems As a result of intensive research to realize the above-mentioned objects, the inventors have conceived the present invention having the following gist structure. That is, the present invention is to load a raw material mainly containing a metal-containing material and a solid reducing agent on a horizontally moving hearth of a moving hearth furnace, and raise the temperature of the raw material while moving the hearth in the furnace. In the operation of producing reduced metal by making it in a molten state at least once on the hearth, prior to the loading of raw materials on the hearth, the characteristics of maximum fluidity MF of 1.5 (logDDPM) or less on this hearth It is a method of operating a mobile hearth furnace, which is characterized in that the solid reducing material shown is spread and the raw materials are stacked on the solid reducing material layer.

【0013】また、本発明は、上記移動型炉床炉の炉床
耐火物保護用固体還元材として、移動炉床上に積みつけ
られ、該炉床の耐火物の保護層としても用いられるもの
であって、最高流動度MFが1.5(logDDPM)以下の特性を有
するものを提案する。
Further, the present invention is a solid reducing material for protecting the hearth refractory of the above-mentioned moving type hearth furnace, which is loaded on the moving hearth and is also used as a protective layer for the refractory material of the hearth. Therefore, we propose a material having a maximum fluidity MF of 1.5 (log DDPM) or less.

【0014】ここで、固体還元材の最高流動度MFは、JI
S−M8801によって測定される値である。粉コークスなど
はほとんど溶融しないため測定が困難であるが回転数0
として扱った。また、原料中の金属含有物としては、鉄
鉱石、Cr鉱石、Ni鉱石、砂鉄、還元鉄粉、製鉄ダスト、
ステンレス精錬ダスト、製鉄スラッジなどの鉄分、Ni
分、Cr分などの金属を含有する金属含有物が使用でき
る。固体還元材としては、石炭チャー、コークス、粘結
炭、非微粘炭、一般炭、無煙炭などが使用できる。これ
ら金属含有物および固体還元材は、それぞれ単一の種類
のものを使用してもよいし、また、各々2種以上のもの
を混合して使用してもよい。このような金属含有物と固
体還元材を混合して移動炉床炉の原料とする。さらに、
この原料には、溶融時において還元鉄、灰分の溶融を容
易にするための副原料を添加してもよい。その副原料と
しては、石灰石、蛍石、蛇紋岩、ドロマイトなどが使用
できる。また、上記原料は、8mm程度以下の粉、あるい
はあらかじめブリケット、ペレット等に塊状化したもの
が好適に使用できる。
Here, the maximum fluidity MF of the solid reducing material is JI
It is the value measured by S-M8801. It is difficult to measure powder coke because it hardly melts, but the number of revolutions is 0.
Treated as. Further, as the metal-containing material in the raw material, iron ore, Cr ore, Ni ore, iron sand, reduced iron powder, ironmaking dust,
Iron components such as stainless smelting dust, ironmaking sludge, Ni
And a metal-containing material containing a metal such as Cr can be used. As the solid reducing material, coal char, coke, coking coal, non-fine coking coal, steam coal, anthracite or the like can be used. The metal-containing material and the solid reducing material may be of a single type, or may be a mixture of two or more types. Such a metal-containing material and a solid reducing material are mixed and used as a raw material for a moving hearth furnace. further,
An auxiliary material for facilitating melting of reduced iron and ash during melting may be added to this material. Limestone, fluorite, serpentine, dolomite, etc. can be used as the auxiliary material. Further, as the above-mentioned raw material, powder having a size of about 8 mm or less, or one obtained by agglomerating beforehand into briquettes, pellets or the like can be suitably used.

【0015】そして、炉床の上に敷き詰められる固体還
元材は、原料中に混合したものと同じ種類でもよいし、
これとは別種の固体還元材を使用してもよい。この炉床
上に積む固体還元材も、上記した各種固体還元材の内、
一種あるいは二種以上のものを混合したものでよい。な
お、固体還元材の上に積む原料は、移動炉床炉の炉床上
において、還元、溶融を受けてメタルとスラグに分離す
るが、この還元の時に、炉床のほぼ全表面を、原料が均
一に覆っていれば、炉内からの伝熱を十分に受けて熱的
に効率の良い処理を行うのに、有利である。
The solid reducing material laid on the hearth may be of the same type as that mixed in the raw material,
Other solid reducing agents may be used. Among the various solid reducing materials mentioned above, the solid reducing materials loaded on this hearth are also
One kind or a mixture of two or more kinds may be used. The raw material to be loaded on the solid reducing material undergoes reduction and melting on the hearth of the moving hearth furnace to separate into metal and slag.At the time of this reduction, almost all the surface of the hearth is The uniform coverage is advantageous for sufficiently receiving heat transfer from the inside of the furnace and performing thermally efficient processing.

【0016】[0016]

【発明の実施の形態】移動型炉床炉法による還元金属の
製造方法では、水平移動する炉床上に、粉状の固体還元
材からなる層を予め形成し、この固体還元材層の表面に
金属含有物と粉状固体還元材を主とする原料を積みつ
け、移動型炉床炉内で昇温することで原料中の金属を還
元し、さらに還元金属を溶融させることで脈石および灰
分からなるスラグとメタルを分離し、その後、冷却固化
したスラグとメタルを、炉外へ排出するという処理が行
われる。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing reduced metal by the moving hearth furnace method, a layer made of powdery solid reducing material is formed in advance on a horizontally moving hearth and the surface of this solid reducing material layer is formed. Raw materials consisting mainly of metal-containing materials and powdery solid reducing material are stacked, and the temperature of the material in the moving hearth furnace is reduced to reduce the metal in the raw material, and the reduced metal is further melted to produce gangue and ash. A process is performed in which the slag and the metal are separated and the slag and the metal that have been cooled and solidified are discharged to the outside of the furnace.

【0017】なお、前記固体還元材の層は、移動型炉床
炉の操業を安定して行うための、次のような役割を担う
ものである。第1は、溶融したスラグおよびメタルが炉
床耐火物と接触して固着するのを防ぐ炉床耐火物保護層
としての役割、第2は、粉状固体還元材の表面に凹凸を
形成することでスラグおよびメタルの形状を制御する役
割、第3は、原料中の固体還元材が不足した場合に、還
元材を補給する役割である。中でも、特に第1の炉床耐
火物の保護層としての作用によって、製品であるスラグ
およびメタルを安定的に炉外へ排出させることができる
ようになり、操業が安定化する。
The layer of the solid reducing material plays the following role for stable operation of the moving hearth furnace. The first is the role as a hearth refractory protective layer that prevents molten slag and metal from contacting and sticking to the hearth refractory, and the second is the formation of irregularities on the surface of the powdery solid reducing material. The role of controlling the shapes of the slag and the metal is, and the third is the role of supplementing the reducing agent when the solid reducing agent in the raw material is insufficient. Among them, the slag and metal that are products can be stably discharged to the outside of the furnace by the action as the protective layer of the first hearth refractory, and the operation is stabilized.

【0018】固体還元材層に使用する粉状の固体還元材
は8mm以下のものを使用する。この理由は、固体還元材
粒子があまりに大きいと粒子間に生成する空隙が大きく
なり、固体還元材層上で溶融生成したスラグとメタルが
固体還元材層中の固体還元材間の空隙間に入り込んだ際
に、空隙部分を通過して炉床耐火物にまで達する恐れが
あるからである。したがって、固体還元材層に使用する
粉状の固体還元材は、より好ましくは5mm以下として固
体還元材間に生成する空隙を小さくすることが良い。所
定の粒径の固体還元材で形成された固体還元材層中の空
隙であれば、スラグとメタルが固体還元材層中に入り込
んだ際に、空隙部分で分散され、その表面積を増加する
結果、スラグとメタルは、直ちに冷却凝固して、炉床耐
火物にまで達せず、十分な炉床耐火物保護層として作用
することになる。望ましくは固体還元材は3mm以下とし
て使用する。また、この固体還元材層が軟化溶融してコ
ークス化し1〜2cm程度の亀裂を生じた場合には、溶融し
たスラグとメタルが重力に従い亀裂内に入り込んで、こ
れらの溶融物が炉床耐火物に接触して損傷を与えること
になる。さらには、たとえ固体還元材層表面に凹凸を形
成して溶融メタル等の捕集をよくしても、該固体還元材
層を形成する固体還元材粒子が大きいと、その表面に凹
凸を形成すること自体が困難となる。
The powdery solid reducing agent used for the solid reducing agent layer is 8 mm or less. The reason for this is that if the solid reducing agent particles are too large, the voids generated between the particles become large, and the slag and metal that are melted and generated on the solid reducing agent layer enter the voids between the solid reducing agent in the solid reducing agent layer. At that time, it may pass through the void and reach the hearth refractory. Therefore, the powdery solid reducing material used in the solid reducing material layer is more preferably 5 mm or less to reduce voids generated between the solid reducing materials. If the voids in the solid reducing agent layer are made of solid reducing agent with a predetermined particle size, when slag and metal enter the solid reducing agent layer, they are dispersed in the voids and the surface area is increased. The slag and the metal immediately cool and solidify, and do not reach the hearth refractory, and act as a sufficient hearth refractory protection layer. Desirably, the solid reducing material is used with a thickness of 3 mm or less. In addition, when this solid reducing material layer softens and melts into coke to generate a crack of about 1 to 2 cm, the molten slag and metal enter the crack due to gravity, and these melts form a hearth refractory material. It will cause damage by touching. Furthermore, even if unevenness is formed on the surface of the solid reducing material layer to facilitate collection of molten metal or the like, if the solid reducing material particles forming the solid reducing material layer are large, unevenness is formed on the surface. That itself becomes difficult.

【0019】このことから、上述した移動炉床炉の回転
する炉床上での固体還元材層の役割は、該固体還元材が
高温においても粉の状態をいつまでも維持していること
が必要である。したがって、炉床上に積みつける固体還
元材層の作用効果を安定して獲得するには、炉内での昇
温によってもあまり軟化溶融せず、大きな亀裂を発生せ
ず、いつまでも必要な大きさの粒子径を維持させること
が必要である。
From the above, the role of the solid reducing material layer on the rotating hearth of the moving hearth furnace described above is that the solid reducing material should maintain the powder state at high temperature forever. . Therefore, in order to stably obtain the action and effect of the solid reducing material layer to be stacked on the hearth, it does not soften and melt much even when the temperature rises in the furnace, it does not generate large cracks, and it has the required size forever. It is necessary to maintain the particle size.

【0020】そこで、本発明者らは、500mm×500mmの面
積を加熱できる実験装置を用いて、8mm以下に粉砕した6
種類の固体還元材を、50mmの層厚に積みつけ、1000℃に
保持された炉内に装入して30分加熱した後、取りだして
亀裂の発生状況を調べた。その結果を表1に示す。ここ
で、Roは石炭の平均反射率でJIS−M8816により測定され
た値である。2cm以上の大きな亀裂が発生したのは、最
高流動度MFが1.5(logDDPM)を超える石炭を使用した場
合であり、最高流動度MFが1.5(logDDPM)以下の石炭を
使用した場合は若干溶融した形跡はあるものの粉状を呈
しており大きな亀裂は発生しなかった。すなわち、最高
流動度MFの高い強粘結炭、精錬炭は熱履歴により、塊状
化して亀裂を発生し、固体還元材として使用すると、亀
裂へのメタルのさし込みを生じるが、非粘結炭あるいは
微粘結炭側の最高流動度MFを1.5以下とした場合の石炭
の使用では、塊状化の進行がなく、上述した問題点は全
く発生しなかった。このことから、固体還元材層は最高
流動度MFが1.5(logDDPM)以下の固体還元材を使用する
と、その固体還元材は、回転炉床炉内でほぼ粉の状態を
維持できるため、安定して炉床耐火物保護層としての作
用効果を発揮させることができる。
Therefore, the inventors of the present invention used an experimental device capable of heating an area of 500 mm × 500 mm to pulverize it to 8 mm or less.
The solid reducing agents of various types were stacked in a layer thickness of 50 mm, charged into a furnace maintained at 1000 ° C., heated for 30 minutes, and then taken out and examined for crack generation. The results are shown in Table 1. Here, Ro is the average reflectance of coal and is a value measured by JIS-M8816. Large cracks of 2 cm or more occurred when coal with maximum fluidity MF of more than 1.5 (logDDPM) was used, and when coal with maximum fluidity MF of 1.5 (logDDPM) or less was used, it slightly melted. Although there were traces, they were powdery and no large cracks occurred. In other words, strong coking coal and smelting coal with high maximum fluidity MF agglomerate and crack due to heat history, and when used as a solid reducing material, metal insertion into the crack occurs, but non-caking When coal was used with the maximum fluidity MF on the side of charcoal or slightly coking coal being 1.5 or less, there was no progress of agglomeration and the above-mentioned problems did not occur at all. From this, if the solid reducing agent layer with a maximum fluidity MF of 1.5 (logDDPM) or less is used, the solid reducing agent can be maintained in a powder state in the rotary hearth furnace and is stable. As a result, the function and effect of the hearth refractory protection layer can be exhibited.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【実施例】回転する直径2.2mの上面にアルミナ系の耐
火物を張った炉床とその炉床上方にバーナーがあり、こ
れらを炉体で覆った、図2に示す回転炉床炉を用いて、
以下の実験操業を行った。
[Example] A rotary hearth furnace shown in FIG. 2 in which there is a hearth with an alumina-based refractory on the upper surface of a rotating diameter of 2.2 m and a burner above the hearth and which is covered with a furnace body hand,
The following experimental operation was performed.

【0023】この回転炉炉床は、図2に示すように、予
熱帯10a、還元帯10b、溶融帯10cおよび冷却帯10dに区画
されている。また、この回転移動する炉床11の上には図
2に示すように、鉄含有物と固体還元材からなる原料装
入堆積させる。なお、図2において、図1に示した符号
と同じ符号は同様の構成を示す。符号の17は、還元鉄を
冷却して取り出すために排出口前に設置した冷却器であ
る。メタルは排出装置15で排出した後、磁石によって分
離を行い、磁石に付着したものを製品(還元鉄)とし
た。また、炉の供給口における原料の積みつけは、装入
装置14により金属含有物および固体還元材などの原料
を、図4に示すような原料積層条件(凹部1aを有する固
体還元材層1の上に原料を積む)で、炉床11上に積みつ
けた。なお、固体還元材層1の表面の凹部1aは、固体還
元材層1を積みつけた後に表面に凸部のあるローラーを
押し付けることで成形した。なお、原料2中の金属含有
物には、脈石分(SiO、Al等)を7%以上含有す
る、表2に示すような成分組成の鉄鉱石を用いた。この
原料2に混合し内装する固体還元材としては灰分を6〜11
%含有する表3に示すような成分組成のものを用い、こ
れらは3mm以下の篩いで粒度調整して用いた。
As shown in FIG. 2, this rotary furnace hearth is divided into a pre-tropical zone 10a, a reduction zone 10b, a melting zone 10c and a cooling zone 10d. Further, as shown in FIG. 2, a raw material consisting of an iron-containing material and a solid reducing material is charged and deposited on the rotating and moving hearth 11. In addition, in FIG. 2, the same reference numerals as those shown in FIG. 1 indicate the same configurations. Reference numeral 17 is a cooler installed in front of the discharge port to cool and take out the reduced iron. After the metal was discharged by the discharge device 15, the metal was separated by a magnet, and the metal attached to the magnet was used as a product (reduced iron). The loading of the raw material in the supply port of the furnace is performed by charging the raw material such as the metal-containing material and the solid reducing material with the charging device 14 under the raw material laminating condition (solid reducing material layer 1 having the recess 1a as shown in FIG. The raw material is loaded on the top), and it is loaded on the hearth 11. The concave portion 1a on the surface of the solid reducing material layer 1 was formed by stacking the solid reducing material layer 1 and then pressing a roller having a convex portion on the surface. In addition, as the metal-containing material in the raw material 2, iron ore having a composition as shown in Table 2 containing gangue (7% or more) (SiO 2 , Al 2 O 3, etc.) was used. As a solid reducing material to be mixed with this raw material 2 and installed internally, ash content is 6 to 11
% Of the component composition shown in Table 3 was used, and these were used by adjusting the particle size with a sieve of 3 mm or less.

【0024】以上の条件で回転炉床炉の操業を行った結
果について、表4に示す。表4において、実施番号1〜3
は、本発明方法に適合例である。いずれの条件において
も固体還元材層の粉状のままであり、炉床の耐火物を損
傷することがなかった。一方、実施番号4,5の比較例
は、固体還元材として最高流動度MFが1.5(logDDPM)以
上の本発明不適合の石炭を使用した例である。固体還元
材層の一部がコークス化して亀裂が発生し、溶融したメ
タルおよびスラグが亀裂を通じて炉床に達して耐火物が
一部損傷した。
Table 4 shows the results of the operation of the rotary hearth furnace under the above conditions. In Table 4, implementation numbers 1 to 3
Is an example of adaptation to the method of the present invention. Under all of the conditions, the solid reducing material layer remained powdery and did not damage the refractory material in the hearth. On the other hand, the comparative examples of Examples Nos. 4 and 5 are examples in which coal having a maximum fluidity MF of 1.5 (logDDPM) or more and not conforming to the present invention is used as the solid reducing material. A part of the solid reducing material layer was coke and cracked, and the molten metal and slag reached the hearth through the crack and partly damaged the refractory.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、金
属含有物と固体還元材から、脈石、灰分の混入がない還
元金属を得るに当り、安定して炉床耐火物と溶融したス
ラグおよびメタルとの固着を防ぐことができ、炉床耐火
物その他の設備を損傷させることなく、円滑な移動炉床
炉の操業を行うことができる。
As described above, according to the present invention, when a reduced metal containing no gangue and ash is mixed from the metal-containing material and the solid reducing material, it is stably melted with the hearth refractory material. It is possible to prevent the slag and metal from sticking to each other, and it is possible to smoothly operate the moving hearth furnace without damaging the hearth refractory and other equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1(a)(b)は、従来の回転炉床炉の一
例を示す略線図である。
1A and 1B are schematic diagrams showing an example of a conventional rotary hearth furnace.

【図2】 実施例で用いた回転炉床炉の略線図である。FIG. 2 is a schematic diagram of a rotary hearth furnace used in Examples.

【図3】 炉床上に原料と固体還元材を積みつけたもよ
うを示す断面図(a)および斜視図(b)である。
FIG. 3 is a sectional view (a) and a perspective view (b) showing a state in which a raw material and a solid reducing material are stacked on a hearth.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤 義孝 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4K001 AA10 BA02 BA14 CA19 CA21 CA22 GA07 GB12 HA01 4K012 DE01 DE03 DE06    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshitaka Sawa             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Technical Research Institute of Iron Co., Ltd. F-term (reference) 4K001 AA10 BA02 BA14 CA19 CA21                       CA22 GA07 GB12 HA01                 4K012 DE01 DE03 DE06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属含有物および固体還元材を主とする
原料を、移動型炉床炉の水平移動する炉床上に積み、該
炉床を炉内で移動させながら原料を昇温させて、炉床上
で少なくとも一度は溶融状態にすることにより還元金属
を生成させるという操業において、炉床上への原料の積
みつけに先立ち、この炉床上に最高流動度MFが1.5(logD
DPM)以下の特性を示す固体還元材を敷き詰め、その固体
還元材層の上に前記原料の積みつけを行うことを特徴と
する移動型炉床炉の操業方法。
1. A raw material mainly containing a metal-containing material and a solid reducing material is loaded on a horizontally moving hearth of a moving hearth furnace, and the temperature of the raw material is raised while moving the hearth in the furnace, In the operation of producing reduced metal by making it in a molten state at least once on the hearth, prior to the loading of raw materials on the hearth, the maximum fluidity MF of 1.5 (logD
DPM) A method for operating a mobile hearth furnace, which is characterized in that a solid reducing material having the following characteristics is spread, and the raw material is stacked on the solid reducing material layer.
【請求項2】 請求項1に記載された移動炉床上に積み
つけられ、該炉床の耐火物保護層としても用いられるも
のであって、最高流動度MFが1.5(logDDPM)以下の特性を
有することを特徴とする移動型炉床炉の炉床耐火物保護
用固体還元材。
2. It is also used as a refractory protective layer of the moving hearth according to claim 1 and has a maximum fluidity MF of 1.5 (logDDPM) or less. A solid reducing material for protecting a hearth refractory of a mobile hearth furnace, which is characterized by having.
JP2002040535A 2002-02-18 2002-02-18 Operation method of mobile hearth furnace Expired - Lifetime JP4120230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002040535A JP4120230B2 (en) 2002-02-18 2002-02-18 Operation method of mobile hearth furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002040535A JP4120230B2 (en) 2002-02-18 2002-02-18 Operation method of mobile hearth furnace

Publications (2)

Publication Number Publication Date
JP2003239008A true JP2003239008A (en) 2003-08-27
JP4120230B2 JP4120230B2 (en) 2008-07-16

Family

ID=27781255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002040535A Expired - Lifetime JP4120230B2 (en) 2002-02-18 2002-02-18 Operation method of mobile hearth furnace

Country Status (1)

Country Link
JP (1) JP4120230B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046606A1 (en) * 2004-10-29 2006-05-04 Kabushiki Kaisha Kobe Seiko Sho Process for producing molten iron and apparatus therefor
JP2006258350A (en) * 2005-03-16 2006-09-28 Jfe Steel Kk Material charging device of movable hearth furnace
CN101792860A (en) * 2010-04-13 2010-08-04 李柏荣 Fabric distributing method for trolley in metal reduction reaction and metal reduction method thereof
US7993430B2 (en) * 2006-04-25 2011-08-09 Kobe Steel, Ltd. Process for producing molten iron and apparatus for producing molten iron
WO2016056362A1 (en) * 2014-10-06 2016-04-14 住友金属鉱山株式会社 Method for smelting nickel oxide ore
WO2016103812A1 (en) * 2014-12-24 2016-06-30 住友金属鉱山株式会社 Method for smelting nickel oxide ore
CN106661667A (en) * 2014-07-25 2017-05-10 住友金属矿山株式会社 Method for smelting nickel oxide ore and method for charging pellets
US10301704B2 (en) 2015-02-24 2019-05-28 Sumitomo Metal Mining Co., Ltd. Method for smelting saprolite ore

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046606A1 (en) * 2004-10-29 2006-05-04 Kabushiki Kaisha Kobe Seiko Sho Process for producing molten iron and apparatus therefor
EP1808498A1 (en) * 2004-10-29 2007-07-18 Kabushiki Kaisha Kobe Seiko Sho Process for producing molten iron and apparatus therefor
EP1808498A4 (en) * 2004-10-29 2008-10-15 Kobe Steel Ltd Process for producing molten iron and apparatus therefor
JP2006258350A (en) * 2005-03-16 2006-09-28 Jfe Steel Kk Material charging device of movable hearth furnace
JP4506521B2 (en) * 2005-03-16 2010-07-21 Jfeスチール株式会社 Raw material charging method on moving floor in moving hearth furnace
US7993430B2 (en) * 2006-04-25 2011-08-09 Kobe Steel, Ltd. Process for producing molten iron and apparatus for producing molten iron
US8277536B2 (en) 2006-04-25 2012-10-02 Kobe Steel, Ltd. Process for producing molten iron and apparatus for producing molten iron
CN101792860A (en) * 2010-04-13 2010-08-04 李柏荣 Fabric distributing method for trolley in metal reduction reaction and metal reduction method thereof
CN106661667A (en) * 2014-07-25 2017-05-10 住友金属矿山株式会社 Method for smelting nickel oxide ore and method for charging pellets
CN106661667B (en) * 2014-07-25 2018-04-17 住友金属矿山株式会社 The smelting process of nickel oxide ore, the charging method of particle
JP2016074945A (en) * 2014-10-06 2016-05-12 住友金属鉱山株式会社 Method for refining nickel oxide ore
WO2016056362A1 (en) * 2014-10-06 2016-04-14 住友金属鉱山株式会社 Method for smelting nickel oxide ore
CN106795585A (en) * 2014-10-06 2017-05-31 住友金属矿山株式会社 The smelting process of nickel oxide ore deposit
AU2015329325B2 (en) * 2014-10-06 2019-01-17 Sumitomo Metal Mining Co., Ltd. Method for smelting nickel oxide ore
US10364480B2 (en) 2014-10-06 2019-07-30 Sumitomo Metal Mining Co., Ltd. Method for smelting nickel oxide ore
WO2016103812A1 (en) * 2014-12-24 2016-06-30 住友金属鉱山株式会社 Method for smelting nickel oxide ore
JP2016121371A (en) * 2014-12-24 2016-07-07 住友金属鉱山株式会社 Method for smelting nickel oxide ore
US10072313B2 (en) 2014-12-24 2018-09-11 Sumitomo Metal Mining Co., Ltd. Method for smelting nickel oxide ore
US10301704B2 (en) 2015-02-24 2019-05-28 Sumitomo Metal Mining Co., Ltd. Method for smelting saprolite ore

Also Published As

Publication number Publication date
JP4120230B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
EP1026265B1 (en) Method of producing a reduced metal, and traveling hearth furnace for producing same
RU2194771C2 (en) Method of metallic iron production and device for method embodiment
JP5975093B2 (en) Nickel oxide ore smelting method
US8262766B2 (en) Method for reducing chromium containing raw material
JP2002030319A (en) Method for producing granular metallic iron
WO2012002338A1 (en) Process for producing molten steel using particulate metallic iron
WO2006046606A1 (en) Process for producing molten iron and apparatus therefor
JP2007211296A (en) Agglomerate including carbonaceous material to be used for vertical furnace, and production method therefor
JP5334240B2 (en) Method for producing reduced iron agglomerates for steelmaking
WO2011138954A1 (en) Process for production of metal iron
JP2003239008A (en) Method for operating movable type hearth furnace and solid reducing material for protecting furnace hearth refractory
JP4424338B2 (en) Raw material charging method and apparatus for mobile hearth furnace
WO2009131242A1 (en) Process for production of direct-reduced iron
US9534275B2 (en) Methods and systems for reducing chromium containing raw material
CA2831461C (en) Use of bimodal carbon distribution in compacts for producing metallic iron nodules
JP3539263B2 (en) Method for producing reduced metal from metal-containing material and mobile hearth furnace for producing reduced metal
JP2006152432A (en) Method for producing molten iron
JP4572435B2 (en) Method for producing reduced iron from iron-containing material
US20160237514A1 (en) Method for manufacturing iron nuggets
JP6900699B2 (en) Nickel oxide ore smelting method
JP3879375B2 (en) Raw material charging method for mobile hearth furnace
JPH1112619A (en) Production of reduced iron
JP2011179090A (en) Method for producing granulated iron
JP5119815B2 (en) Operation method of mobile hearth furnace
JPH1129807A (en) Production of molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4120230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term