WO2011138954A1 - Process for production of metal iron - Google Patents

Process for production of metal iron Download PDF

Info

Publication number
WO2011138954A1
WO2011138954A1 PCT/JP2011/060558 JP2011060558W WO2011138954A1 WO 2011138954 A1 WO2011138954 A1 WO 2011138954A1 JP 2011060558 W JP2011060558 W JP 2011060558W WO 2011138954 A1 WO2011138954 A1 WO 2011138954A1
Authority
WO
WIPO (PCT)
Prior art keywords
agglomerate
hearth
sio
forming material
amount
Prior art date
Application number
PCT/JP2011/060558
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 健
原田 孝夫
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US13/696,412 priority Critical patent/US20130055853A1/en
Publication of WO2011138954A1 publication Critical patent/WO2011138954A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/008Use of special additives or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces

Definitions

  • an agglomerate made of a mixture containing an iron oxide source such as iron ore or iron oxide and a carbon-containing reducing agent is charged on the hearth of a moving hearth-type heating furnace and heated.
  • the present invention relates to a method for producing massive metallic iron by reducing iron oxide in a composition.
  • metallic iron A direct reduction iron manufacturing method has been developed.
  • the agglomerate formed from the raw material mixture is placed on the hearth of a moving hearth-type heating furnace, and heated in the furnace by gas heat transfer or radiant heat by a heating burner.
  • Iron oxide is reduced with a carbonaceous reducing agent to obtain massive metallic iron.
  • a part of the agglomerate is pulverized due to rolling, collision, drop impact or the like of the agglomerate.
  • the powder derived from the agglomerate is also charged when the agglomerate is charged on the hearth, and is deposited on the hearth to form a storage layer.
  • This accumulation layer is heated and reduced in the furnace in the same manner as the above agglomerates to produce metallic iron and wustite (FeO).
  • FeO metallic iron and wustite
  • the accumulation layer is discharged by a discharger (discharger).
  • Patent Document 1 As a method for preventing the formation of an iron plate on the hearth, reduced iron obtained by reducing the carbonaceous material-containing iron oxide agglomerate is moved out of the moving hearth type reduction furnace.
  • An operation method has been proposed in which a discharger (discharger) for discharging is provided and the position of the discharger that maintains a gap with the surface of the moving floor is adjusted. According to this technology, it is described that by providing a gap, it is possible to prevent the agglomerate-derived powder mixed into the furnace accompanying the agglomerate from being pushed into the hearth surface and to prevent the formation of a strong iron plate. Has been.
  • Patent Document 2 as a method for removing the fixed matter fixed on the hearth from the hearth surface, a crack was generated in the fixed matter fixed on the hearth by quenching the hearth surface of the rotary hearth type reduction furnace. Later, it has been proposed to remove the adherent from the hearth.
  • Patent Document 3 discloses that metal iron powder staying on the hearth and deposits on the hearth brick are removed, or metal iron powder remaining on the hearth is prevented and the surface of the hearth is always kept clean.
  • a method of maintaining a rotating bed furnace that can be used has been proposed. In this maintenance method, the reduced iron powder remaining on the hearth is removed from the hearth by blowing off with a jet gas flow between the reduced iron discharge part and the raw material charging part.
  • Japanese Patent No. 3075721 Japanese Patent Laid-Open No. 2002-12906 Japanese Patent Laid-Open No. 11-50120
  • Patent Documents 1 to 3 the design of the discharge device for discharging reduced iron to the outside of the moving hearth type reduction furnace, the provision of a new device for rapidly cooling the hearth surface, It is necessary to newly provide a device for blowing off the reduced iron powder, which requires a large capital investment.
  • the present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to use an agglomerate made of a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent as a raw material, and a moving hearth type heating furnace.
  • the iron oxide contained in the powder derived from the agglomerate without drastically changing the design of the equipment when reducing the iron oxide in the agglomerate and producing the metallic iron It is intended to provide a technique for preventing metallic iron and wustite produced by heat reduction of iron from adhering to the hearth.
  • the method for producing metallic iron according to the present invention which has solved the above problems, is an agglomerate (particle size is, for example, 5 to 50 mm) made from a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent.
  • agglomerate particle size is, for example, 5 to 50 mm
  • metallic iron by charging iron oxide in the agglomerated material and heating it (eg, 1200-1400 ° C.) on the hearth of the moving hearth type heating furnace,
  • the main point is that a hearth forming material for preventing metallic iron and / or wustite formed by heat reduction of iron oxide contained in the powder from being fixed to the hearth together with the agglomerates is introduced into the furnace. is doing.
  • the total amount of CaO, SiO 2 , and Al 2 O 3 is 3.0 to 7.0 with respect to the component composition of the powder derived from the agglomerate and the hearth forming material. It is preferable to adjust the component composition of the hearth forming material so as to be%.
  • the total carbon content of the component composition of the powder and the hearth forming material is 122% or more based on the amount of carbon necessary for reducing iron oxide in the agglomerate, and is derived from the agglomerate
  • the composition of the hearth forming material so that the amounts of CaO, SiO 2 and Al 2 O 3 satisfy the following formulas (3) and (4): It is preferable to adjust the component composition.
  • [] represents the content (% by mass) of each component.
  • [CaO] / [SiO 2 ] 0.25 to 1.20
  • [Al 2 O 3 ] / [SiO 2 ] 0.2 to 0.7 (4)
  • the amount of carbon contained in the agglomerate is less than 122% with respect to the amount of carbon required for reducing iron oxide in the agglomerate, the agglomerate
  • the total carbon content of the component composition of the derived powder and the hearth-forming material remains below 122% with respect to the amount of carbon required to reduce the iron oxide in the agglomerate
  • the amount of CaO, SiO 2 , Al 2 O 3 , and MgO is at least one of the following formulas (5) to (9): It is preferable to adjust the component composition of the hearth forming material so as to satisfy.
  • [] represents the content (% by mass) of each component.
  • the total amount of CaO, SiO 2 , and Al 2 O 3 is more than 7.0% for the component composition of the powder derived from the agglomerate and the hearth forming material. It is preferable to adjust the component composition of the hearth forming material so that
  • the ratio of the hearth forming material having a particle diameter of 0.5 to 2 mm to the total amount of the hearth forming material charged in the furnace is preferably 50% by mass or more.
  • the hearth forming material since the hearth forming material is charged together with the agglomerate on the hearth of the moving hearth heating furnace, the iron oxide contained in the powder derived from the agglomerate is reduced by heating and generated. It is possible to prevent metallic iron and wustite that adhere to the hearth. For this reason, it is possible to prevent solid objects such as iron plates that cannot be discharged from the furnace from being formed on the hearth, and to raise the hearth surface, making it possible to efficiently use metallic iron without making major design changes. Can be manufactured well.
  • FIG. 1 is a graph showing the relationship between temperature and deformation rate when pellets are reduced by changing [MgO] / [SiO 2 ].
  • FIG. 2 is a drawing-substituting photograph in which a cross section of the reduced pellet is photographed.
  • FIG. 3 is a graph showing the results of measuring 40% shrinkage temperature by changing [MgO] / [SiO 2 ].
  • FIG. 4 is a graph showing the result of measuring 40% shrinkage temperature by changing [CaO] / [SiO 2 ].
  • FIG. 5 shows a SiO 2 —MgO—FeO ternary equilibrium diagram.
  • FIG. 6 shows a CaO—SiO 2 —MgO ternary equilibrium diagram.
  • Figure 7 shows a CaO-SiO 2 -Al 2 O 3 based ternary equilibrium diagram.
  • Patent Documents 1 to 3 require a significant design change of equipment and require a large capital investment. Therefore, the present inventors minimize the capital investment and prevent the iron oxide contained in the agglomerate-derived powder from being reduced by heating in the furnace to prevent the metallic iron and wustite from sticking to the hearth.
  • the present inventors minimize the capital investment and prevent the iron oxide contained in the agglomerate-derived powder from being reduced by heating in the furnace to prevent the metallic iron and wustite from sticking to the hearth.
  • solid objects such as iron plates that cannot be discharged from the furnace from being formed on the hearth and to raise the surface of the hearth. Has been repeated. As a result, it has been found that when the agglomerate is charged into the furnace, the hearth forming material may be charged into the furnace.
  • the agglomerate-derived The present invention has been completed by finding that the component composition of the hearth forming material may be appropriately adjusted and charged into the furnace so that the combined composition of the powder and the hearth forming material satisfies a predetermined condition. did.
  • the method for producing metallic iron according to the present invention includes a hearth forming material for preventing iron oxide and / or wustite formed by heat reduction of iron oxide contained in agglomerate-derived powder from being fixed on the hearth. Is characterized in that it is charged into the furnace together with the agglomerates.
  • the powder derived from the agglomerate that accumulates on the hearth is a powder that is charged into the furnace along with the agglomerate, and a powder that breaks down when the agglomerate is rapidly heated in the furnace.
  • the hearth-forming material and the powder derived from the agglomerate are placed on the hearth by charging the hearth-forming material together in the furnace.
  • iron oxide contained in the powder derived from the agglomerate is formed by heat reduction by appropriately adjusting the component composition of the hearth forming material in consideration of the component composition of the powder derived from the agglomerate. It is possible to prevent metallic iron and wustite from sticking to the hearth. Therefore, formation of fixed objects such as an iron plate and the occurrence of the rise of the hearth surface can be suppressed, and the production efficiency of metallic iron can be increased.
  • the time when the hearth forming material is added is before charging the agglomerate into the furnace, and preferably the time when the hearth forming material is added to the agglomerated material.
  • the hearth former before charging the agglomerate, for example, add the hearth former to the agglomerate on a conveyor that inserts the agglomerate into the hopper, and the agglomerates and hearths What is necessary is just to put these together on a hearth in the state which mixed the forming material.
  • the powder generated from the agglomerate and the fine hearth forming material accumulate in the lower part of the agglomerate, and are mixed and moved when the agglomerate is leveled by the leveler. .
  • the hearth forming material As the hearth forming material, a material that acts so as not to fix metal iron or wustite formed by heat reduction of iron oxide contained in the powder derived from the agglomerate on the hearth may be inserted. Specifically, paying attention to the amount of carbon contained in the agglomerate, this carbon amount is (a) 122% or more with respect to the amount of carbon necessary for reducing iron oxide in the agglomerate. Whether or not it is (b) less than 122%, the case may be divided and the component composition of the hearth forming material may be adjusted and charged into the furnace.
  • the amount of carbon contained in the agglomerate is 100% with respect to the amount of carbon required to reduce the iron oxide in the agglomerate, which means that the iron oxide in the agglomerate is excessive or insufficient. Not all (100%). Further, the fact that the amount of carbon is 122% of the amount of carbon necessary for reducing iron oxide in the agglomerate means that the amount of carbon is 22% excess, and this 22% The amount of carbon corresponds to about 5% of the amount of carbon remaining in the agglomerate after reduction.
  • the amount of carbon contained in the agglomerate and the amount of carbon necessary for reducing the iron oxide in the agglomerate can be calculated based on the component composition of the raw material mixture constituting the agglomerate.
  • the amount of carbon contained in the agglomerate after heat reduction of iron oxide in the agglomerate is, for example, 1300 ° C. in an inert atmosphere (for example, N 2 atmosphere) by placing the agglomerate in an electric furnace.
  • the amount of carbon remaining in the agglomerated material heated at (representative temperature) and having undergone the reduction reaction can be analyzed by infrared analysis. If the sum of this analytical value and the amount of carbon necessary for reducing the iron oxide in the agglomerate is calculated, the amount of carbon contained in the agglomerate before heating can be calculated backward.
  • the amount of carbon contained in the agglomerate is more than the required amount of carbon, and when carbon remains after heat reduction, the iron oxide contained in the agglomerate is almost completely reduced, Metallic iron produced by reduction becomes fine particles and exists in a state of being separated from each other. Moreover, since the carburization of metallic iron is accelerated
  • the present invention focuses on the slag produced as a by-product during the production of metallic iron and lowers the melting point of this slag to promote the aggregation of metallic iron and granulate.
  • the amounts of CaO, SiO 2 and Al 2 O 3 satisfy the above formulas (1) and (2).
  • the amount of carbon contained in the agglomerate is 122% or more with respect to the required amount of carbon, CaO, SiO 2 , and Al 2 for the component composition of the agglomerate-derived powder and the hearth-forming material It is preferable to adjust the component composition of the hearth forming material so that the total amount of O 3 is 3.0 to 7.0%.
  • the total amount of the above components is preferably 3.0% or more.
  • the total amount is more preferably 4.5% or more, still more preferably 5.0% or more.
  • the total amount is preferably 7.0% or less, and more preferably 6.5% or less.
  • the hearth forming material so that the total carbon content of the component composition of the agglomerate-derived powder and the hearth forming material is 122% or more with respect to the required carbon amount.
  • the amounts of CaO, SiO 2 , and Al 2 O 3 are the following formulas (3) and ( It is important to adjust the component composition of the hearth forming material so as to satisfy 4).
  • [] represents the content (% by mass) of each component.
  • [CaO] / [SiO 2 ] 0.25 to 1.20
  • [Al 2 O 3 ] / [SiO 2 ] 0.2 to 0.7 (4)
  • the amount of carbon contained in the agglomerate is less than 122% of the required amount of carbon, the amount of carbon tends to be insufficient, so a part of the iron oxide contained in the agglomerate-derived powder is reduced. For example, it may remain as wustite. Further, since the amount of carbon that contributes to carburizing of metallic iron is reduced, the granulation of metallic iron is not promoted, and plate-shaped metallic iron is easily generated.
  • a carbonaceous reducing agent is blended as a hearth forming material, and the amount of carbon contained in the agglomerate
  • the component composition of the hearth forming material is adjusted so that the total carbon content of the component composition of the powder derived from the agglomerate and the hearth forming material is 122% or more with respect to the required carbon amount. adjust.
  • the amount of CaO, SiO 2 , Al 2 O 3 satisfies the relationship of the above formulas (3) and (4) for the component composition of the agglomerate-derived powder and the hearth forming material. Need to be.
  • the above formulas (3) and (4) are the same formulas as the above formulas (1) and (2), and are defined based on the same knowledge. That is, the metal iron can be easily discharged out of the furnace by further reducing the granularity of the metal iron by lowering the melting point of the slag.
  • the total carbon content of the component composition of the agglomerate-derived powder and the hearth-forming material is kept below 122% with respect to the required carbon content
  • the amount of CaO, SiO 2 , Al 2 O 3 , and MgO is at least one of the following formulas (5) to (9): It is important to adjust the component composition of the hearth forming material so as to satisfy.
  • [] represents the content (% by mass) of each component.
  • No carbonaceous reducing agent is added as the hearth-forming material, and the total carbon content of the component composition of the agglomerate-derived powder and the hearth-forming material is kept below 122% of the required carbon content.
  • it is effective to appropriately control the composition of the gangue component.
  • solid gangue can be interposed between metallic iron and wustite particles, so the interval between metallic iron and wustite particles can be increased.
  • These aggregations can be suppressed.
  • metallic iron produced by reduction of iron oxide contained in the powder derived from the agglomerate is very fine and therefore has a very low mutual bonding force.
  • the melting point of the generated slag is lowered, and when molten slag is formed during the heating reduction, metallic iron existing in the vicinity thereof is formed.
  • the Fe atoms on the surface easily move, and the bonding between the metal irons is promoted to form a network-like metal iron bonding layer.
  • pressure is applied to the metallic iron bonding layer, a dense metallic iron plate (fixed matter) is formed, making it difficult to discharge out of the furnace.
  • the total carbon content of the combined composition of the powder derived from the agglomerate and the hearth forming material is 122% with respect to the required amount of carbon without adding a carbonaceous reducing agent as the hearth forming material.
  • the ratio is kept below, it is important to increase the melting point of by-product slag and suppress the formation of molten slag.
  • MgO has the effect
  • the MgO amount may be adjusted in consideration of the balance with the SiO 2 amount. .
  • [MgO] / [SiO 2 ] is preferably more than 0.4, thereby suppressing generation of molten slag and increasing solid slag.
  • [MgO] / [SiO 2 ] is more preferably 0.45 or more, and further preferably 0.5 or more.
  • the upper limit of [MgO] / [SiO 2 ] is, for example, 0.9.
  • the above formulas (5) to (9) need only satisfy at least one formula, and if at least one formula is satisfied, the melting point of by-product slag increases.
  • the amount of carbon contained in the agglomerate is less than 122% of the required carbon amount, and the total carbon amount of the component composition combining the powder derived from the agglomerate and the hearth forming material is required carbon.
  • the total amount of CaO, SiO 2 , and Al 2 O 3 is 7.0 with respect to the component composition of the powder derived from the agglomerate and the hearth forming material. It is preferable to adjust the component composition of the hearth forming material so as to exceed%.
  • the amount of gangue can be increased, so the amount of solid slag is increased, and it is possible to prevent metal iron and wustite from agglomerating and becoming coarse, and sticking to the hearth Can be prevented from being formed.
  • the total amount is more preferably 7.5% or more, and further preferably 8% or more.
  • the upper limit of the total amount is, for example, 10%.
  • CaO source SiO 2 source, Al 2 O 3 source
  • CaO source e.g., burnt lime (CaO) or limestone (main component CaCO 3) or the like can be used.
  • SiO 2 source for example, a mixture with other components such as silica sand or serpentine can be used.
  • Al 2 O 3 source for example, bauxite or a mixture with other components such as alumina-containing iron ore can be used.
  • MgO source for example, an Mg-containing material extracted from MgO-containing slag, seawater, or the like, or magnesium carbonate (MgCO 3 ), dolomite, or the like can be used.
  • the mass of the powder derived from the agglomerate is measured. There is a need.
  • powder II As a powder derived from agglomerates, after agglomerates are formed using a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent as a raw material, a part of the agglomerates collapses or collapses due to impact or wear.
  • Generated powder hereinafter sometimes referred to as powder I
  • powder II powder produced by collapsing while the agglomerate is charged into the furnace and heated and reduced
  • the mass of the powder I is, for example, measuring the total mass of the agglomerate charged into the furnace, classifying the charge, and dividing the agglomerate into agglomerate-derived powder. What is necessary is just to measure the mass of the powder derived from a thing directly.
  • a powder having a particle diameter of 3 mm or less is defined as a powder.
  • the mass of the powder II is obtained by measuring the mass of a powder having a particle diameter of 3 mm or less that is generated when the agglomerate is heated in an electric furnace and rapidly heated (for example, a heating rate of 10 ° C./min or more).
  • the mass of the powder derived from the agglomerate may be predicted.
  • the component composition of the powder derived from the agglomerate and the hearth forming material can be expressed by the following formulas (21) to (24). It can.
  • L CaO , L SiO2 , L Al2O3 and L MgO are the proportions (mass%) of CaO, SiO 2 , Al 2 O 3 and MgO contained in the agglomerate, respectively.
  • W L represents the mass (kg) of the powder derived from the agglomerate charged into the furnace per unit time (hr).
  • C CaO , C SiO2 , C Al2O3 , and C MgO respectively indicate the ratio (mass%) of CaO, SiO 2 , Al 2 O 3 , and MgO contained in the CaO source contained in the hearth forming material.
  • L represents the mass (kg) of the CaO source contained in the hearth forming material charged into the furnace per unit time (hr).
  • S CaO , S SiO2 , S Al2O3 , and S MgO represent the ratio (mass%) of CaO, SiO 2 , Al 2 O 3 , and MgO contained in the SiO 2 source contained in the hearth forming material
  • SW L indicates the mass (kg) of the SiO 2 source contained in the hearth forming material charged into the furnace per unit time (hr).
  • a CaO , A SiO2 , A Al2O3 , and A MgO indicate the ratio (mass%) of SiO 2 , CaO, Al 2 O 3 , and MgO contained in the Al 2 O 3 source contained in the hearth forming material, respectively.
  • AW L represents the mass (kg) of the Al 2 O 3 source contained in the hearth forming material charged into the furnace per unit time (hr).
  • the target component composition is the following formulas (25) to (28), then based on the above formulas (21) to (24) Are represented by the following formulas (29) to (32).
  • a provisional numerical value is set for the SiO 2 source to be added, and the amount of other additives that achieve the target component ratio is determined. If the result does not reach the target value, the solution may be obtained by changing the amount of the SiO 2 source to be added.
  • the ratio of the hearth forming material having a particle diameter of 0.5 to 2 mm is preferably 50% by mass or more with respect to the total amount of the hearth forming material charged into the furnace.
  • the hearth forming material is easier to mix with the powder derived from the agglomerates when the particle diameter is smaller, but when the particle diameter is too small, when charging into the furnace or heating in the furnace, It will be blown by the wind pressure, and the desired effect will not be exhibited.
  • the ratio of the particle diameter of the hearth forming material to 0.5 mm or more is preferably 50% by mass or more.
  • the ratio of the particle diameter of the hearth forming material to 2 mm or less is preferably 50% by mass or more.
  • the agglomerates are formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent.
  • an iron oxide-containing substance iron ore, iron sand, non-ferrous smelting residue, etc. may be used.
  • a carbonaceous reducing agent a carbon-containing material may be used. For example, coal or coke may be used.
  • a binder In the raw material mixture, a binder, an MgO source, or a CaO source may be blended as other components.
  • a binder polysaccharides (for example, starches, such as wheat flour) etc. can be used, for example.
  • MgO source or said CaO source what was illustrated as a MgO source or CaO source mix
  • the shape of the agglomerate is not particularly limited, and may be, for example, a pellet shape or a briquette shape.
  • the size of the agglomerate is not particularly limited, but the particle size (maximum diameter) may be 50 mm or less. The lower limit is about 5 mm. In addition, what is necessary is just to let a sphere equivalent diameter be a particle size when an agglomerate is briquette-like.
  • the above agglomerate may be heated in the furnace so that the temperature of the agglomerate is 1200 to 1400 ° C. to reduce iron oxide in the raw material mixture.
  • the type of furnace may be a moving hearth furnace, for example, a rotary hearth furnace.
  • the temperature of the agglomerate is particularly preferably 1250 ° C. or higher. If it is 1250 degreeC or more, the melting time of metallic iron and slag can be shortened. However, if the temperature of the agglomerate becomes too high, the metallic iron melts and bites into the hearth, causing a rise in the hearth.
  • a preferred upper limit for the temperature of the agglomerate is 1350 ° C.
  • the temperature of the agglomerate can be adjusted by using a burner and controlling the combustion conditions of the burner.
  • Experimental Example 1 an agglomerate made of a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is charged into a heating furnace and heated, and iron oxide in the raw material mixture is reduced to produce metallic iron.
  • the component composition and strength of metallic iron were examined, and the relationship between the adhesion to the hearth and the component composition was evaluated.
  • Experimental Example 2 the influence of CaO, SiO 2 , and MgO on the deformation rate of the agglomerate was examined, and the relationship between the component composition and the generation behavior of molten slag was evaluated.
  • Experimental Example 3 the relationship between the melting temperature of the slag component of Al 2 O 3 and the component was examined using a ternary phase diagram.
  • Example 1 The agglomerates having the component compositions shown in Table 1 below were produced as agglomerates using as a raw material a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent.
  • the shape of the agglomerate is No. in Table 1 below.
  • Nos. 1, 6, and 7 are pillow briquettes (ball equivalent diameter (maximum diameter) is about 22 to 26 mm), 2 to 5 were spherical pellets (particle diameter (maximum diameter) was about 12 to 20 mm).
  • TFe is the total iron content
  • TC is the carbon content (in Table 1, the total carbon content contained in the agglomerate)
  • FC is the carbon content that is not gasified at 970 ° C.
  • Table 1 shows [CaO] / [SiO 2 ], [Al 2 O 3 ] / [SiO 2 ], [MgO] / [SiO 2 ], [CaO] + based on the agglomerate composition.
  • the values of [Al 2 O 3 ] + [SiO 2 ] are calculated and shown.
  • the obtained agglomerate was charged into a heating furnace and heated to 1300 ° C. to reduce iron oxide contained in the agglomerate to produce metallic iron.
  • the heating time in the furnace is shown in Table 2 below.
  • MFe is the amount of metallic iron
  • TC is the amount of carbon (in Table 2, the total amount of carbon remaining after heating)
  • TC / TFe ⁇ 100 is the ratio of the total amount of carbon to the total amount of iron
  • the strength of the massive metallic iron (agglomerated material) obtained after heating was measured by a rotational strength test.
  • ⁇ Rotational strength test ⁇ The residue was put in a rotating container and rotated at a total rotational speed of 500 rotations, and sieved in three stages: a particle diameter of 1 mm or less, a particle diameter of 1 mm to 2 mm or less, and a particle diameter of 2 mm or more.
  • the shape of the rotating container is a cylindrical shape having a diameter of 113 mm and a length of 205 mm, and two barrels are provided in the rotating container and are rotated at a rotation speed of 30 rpm.
  • the ratio of the powder having a particle diameter of 1 mm or less to the mass of the sieved powder is calculated and shown.
  • An increase in the proportion of powder having a particle diameter of 1 mm or less means that the residue is easily pulverized, indicating that the residue is not fixed on the hearth and the removability is good. ing.
  • the case where the ratio of the powder having a particle diameter of 1 mm or less is 29% or more is evaluated as being excellent in removability (invention example), and the case where it is less than 29% is evaluated as being inferior in removability (comparative example). .
  • no. 1, 2, 3, and 5 have a carbon content in the residue of 5% or more (that is, RCs / RedC ⁇ 100 value is 22% or more). This is an example of 122% or more with respect to the amount of carbon necessary for reducing iron oxide contained in the agglomerate.
  • No. 1, 2, and 3 have a [CaO] / [SiO 2 ] value of 0.25 to 1.20 and a [Al 2 O 3 ] / [SiO 2 ] value of 0 in the agglomerate composition. .2 to 0.7, which satisfies the above formulas (1) and (2). Therefore, the adherence to the hearth is reduced.
  • No. 5 has a value of [CaO] / [SiO 2 ] of 0.23 out of the component composition of the agglomerate, and does not satisfy the above formula (1).
  • the carbon content in the residue is less than 5% (that is, the value of RCs / RedC ⁇ 100 is less than 22%).
  • the amount is less than 122% with respect to the amount of carbon necessary for reducing the iron oxide contained in the composition.
  • No. 6 has a value of [CaO] / [SiO 2 ] of 0.14 out of the component composition of the agglomerate, which satisfies the above formula (5). Accordingly, the melting point of the slag is increased, the bonding force of the residue is lowered and the separation is facilitated, and the removability of the residue is improved.
  • Pellet (agglomerate) is prepared by blending iron ore containing SiO 2 as a gangue component with magnesite as the MgO source and limestone as the CaO source, and this is made in an electric furnace at 1300 ° C. for 10 minutes in the air. When heated and fired, and then gas-reduced, the deformation rate of the pellets during reduction was measured, and the results of examining the effects of CaO, SiO 2 and MgO on the deformation of the pellets were found as “High Temperature Reduction and Softening Properties of Pellets with Magnesite ”(Transactions of the Iron and Steel Institute of Japan, published by the Japan Iron and Steel Institute, vol. 23 (1983), No. 2, p153).
  • the temperature is raised to 1500 ° C.
  • the amount of SiO 2 in the pellet was set to 0.3%, and [MgO] / [SiO 2 ] was changed in the range of 0.01 to 1.32. It is shown in the literature. The result is shown in FIG.
  • FIG. 3 shows the results when the amount of SiO 2 is 4.4% ( ⁇ ) or 8.3% ( ⁇ ), CaO is not included, and [MgO] / [SiO 2 ] is changed. Yes.
  • FIG. 5 shows a SiO 2 —MgO—FeO ternary equilibrium diagram.
  • FIG. 6 shows a CaO—SiO 2 —MgO ternary equilibrium diagram.
  • Figure 7 shows a CaO-SiO 2 -Al 2 O 3 based ternary equilibrium diagram.
  • [Al 2 O 3 ] / [SiO 2 ] 0.2
  • [Al 2 O 3 ] / [SiO 2 ] 0.7
  • [CaO] / [SiO 2 ] 0.25
  • the region surrounded by the straight line is a region where a part of the low melting point slag having a melting point of about 1250 ° C. is generated. Therefore, it is considered that the amount of molten slag produced can be reduced if it is outside this region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Disclosed is a technique for preventing the fixation of metal iron and/or wustite (which is a material produced by the thermal reduction of iron oxide contained in a powder derived from an aggregated mass that comprises, as a raw material, a mixture containing a iron-oxide-containing substance and a carbonaceous reducing agent) on a heath of a movable furnace heath type heating furnace without largely changing the design of a facility for the production, in the production of metal iron by placing the aggregated mass on the heath and heating the aggregated mass in the heating furnace to reduce iron oxide contained in the aggregated mass. A heath-forming material for preventing the fixation of metal iron and/or wustite (which is a material produced by the thermal reduction of iron oxide contained in the powder derived from the aggregated mass) on the heath is introduced into the furnace together with the aggregated mass.

Description

金属鉄の製造方法Manufacturing method of metallic iron
 本発明は、鉄鉱石や酸化鉄等の酸化鉄源と炭素含有還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して塊状の金属鉄を製造する方法に関するものである。 In the present invention, an agglomerate made of a mixture containing an iron oxide source such as iron ore or iron oxide and a carbon-containing reducing agent is charged on the hearth of a moving hearth-type heating furnace and heated. The present invention relates to a method for producing massive metallic iron by reducing iron oxide in a composition.
 鉄鉱石や酸化鉄等の酸化鉄源(以下、酸化鉄含有物質ということがある。)と炭素を含む還元剤(以下、炭素質還元剤ということがある。)を含む原料混合物から、金属鉄を得る直接還元製鉄法が開発されている。この製鉄法では、上記原料混合物を成形した塊成物を移動炉床式加熱炉の炉床上に装入し、炉内で加熱バーナーによるガス伝熱や輻射熱で加熱することによって塊成物中の酸化鉄を炭素質還元剤で還元し、塊状の金属鉄を得ている。しかし、上記製鉄法では、塊成物の転動、衝突、或いは落下衝撃等によって塊成物の一部が粉化する。この塊成物由来の粉末は、炉床上に塊成物を装入する際に併せて装入され、炉床上に堆積して蓄積層を形成する。この蓄積層は、上記塊成物と同様に炉内で加熱還元され、金属鉄やウスタイト(FeO)を生成する。生成した金属鉄やウスタイトを炉内に放置するとそれらは順次炉床上に堆積し、炉床表面が隆起して操業を困難にする。そのため通常は、上記蓄積層をディスチャージャー(排出機)で排出する。ところが炉床上に堆積した蓄積層は薄いため、塊成物中の酸化鉄を加熱還元して形成される塊状の金属鉄を炉内から排出する際に併せて排出されず、炉床上に滞留し、ディスチャージャーで圧縮され、最終的に炉内から排出できないほど大きな固形物を形成することがある。また、生成した金属鉄やウスタイトが凝集して塊を形成すると、この塊を炉内から排出したときに炉床に凹凸が形成されるため、操業が困難になることがある。こうした問題を解決する技術が特許文献1~3に提案されている。 From a raw material mixture containing an iron oxide source such as iron ore or iron oxide (hereinafter sometimes referred to as an iron oxide-containing substance) and a reducing agent containing carbon (hereinafter sometimes referred to as a carbonaceous reducing agent), metallic iron A direct reduction iron manufacturing method has been developed. In this iron making method, the agglomerate formed from the raw material mixture is placed on the hearth of a moving hearth-type heating furnace, and heated in the furnace by gas heat transfer or radiant heat by a heating burner. Iron oxide is reduced with a carbonaceous reducing agent to obtain massive metallic iron. However, in the iron making method, a part of the agglomerate is pulverized due to rolling, collision, drop impact or the like of the agglomerate. The powder derived from the agglomerate is also charged when the agglomerate is charged on the hearth, and is deposited on the hearth to form a storage layer. This accumulation layer is heated and reduced in the furnace in the same manner as the above agglomerates to produce metallic iron and wustite (FeO). When the produced metallic iron and wustite are left in the furnace, they are deposited on the hearth sequentially, raising the surface of the hearth and making it difficult to operate. Therefore, usually, the accumulation layer is discharged by a discharger (discharger). However, since the accumulation layer deposited on the hearth is thin, it is not discharged when the massive metallic iron formed by heating and reducing the iron oxide in the agglomerate is discharged from the furnace, and it stays on the hearth. Compressed with a discharger, may form solids that are so large that they cannot be finally discharged from the furnace. Moreover, when the produced metallic iron and wustite aggregate to form a lump, when the lump is discharged from the furnace, irregularities are formed on the hearth, which may make operation difficult. Technologies for solving these problems are proposed in Patent Documents 1 to 3.
 これらのうち特許文献1には、炉床上に鉄板が形成されるのを防止する方法として、炭材内装酸化鉄塊成物を還元して得られた還元鉄を移動炉床型還元炉外へ排出するためのディスチャージャー(排出機)を設けると共に、移動床の表面との間の隙間を維持するディスチャージャー位置を調整する操業方法が提案されている。この技術では、隙間を設けることによって、塊成物に随伴して炉内に混入する塊成物由来の粉末が炉床表面に押し込まれるのを防止でき、強固な鉄板の形成を防止できると記載されている。 Among these, in Patent Document 1, as a method for preventing the formation of an iron plate on the hearth, reduced iron obtained by reducing the carbonaceous material-containing iron oxide agglomerate is moved out of the moving hearth type reduction furnace. An operation method has been proposed in which a discharger (discharger) for discharging is provided and the position of the discharger that maintains a gap with the surface of the moving floor is adjusted. According to this technology, it is described that by providing a gap, it is possible to prevent the agglomerate-derived powder mixed into the furnace accompanying the agglomerate from being pushed into the hearth surface and to prevent the formation of a strong iron plate. Has been.
 特許文献2には、炉床上に固着した固着物を炉床表面から除去する方法として、回転炉床式還元炉の炉床表面を急冷して炉床上に固着した固着物に亀裂を発生させた後に、固着物を炉床上から除去することが提案されている。 In Patent Document 2, as a method for removing the fixed matter fixed on the hearth from the hearth surface, a crack was generated in the fixed matter fixed on the hearth by quenching the hearth surface of the rotary hearth type reduction furnace. Later, it has been proposed to remove the adherent from the hearth.
 特許文献3には、炉床上に滞留する金属鉄粉や炉床レンガへの付着物を除去し、あるいは炉床上での金属鉄粉の残留を防止して、炉床表面を常に清浄に保つことができる回転床炉の維持方法が提案されている。この維持方法では、炉床上に残留する還元鉄粉を、還元鉄の排出部から原料装入部までの間で、噴射ガス流により吹き飛ばすことによって、炉床上から除去している。 Patent Document 3 discloses that metal iron powder staying on the hearth and deposits on the hearth brick are removed, or metal iron powder remaining on the hearth is prevented and the surface of the hearth is always kept clean. A method of maintaining a rotating bed furnace that can be used has been proposed. In this maintenance method, the reduced iron powder remaining on the hearth is removed from the hearth by blowing off with a jet gas flow between the reduced iron discharge part and the raw material charging part.
特許第3075721号公報Japanese Patent No. 3075721 特開2002-12906号公報Japanese Patent Laid-Open No. 2002-12906 特開平11-50120号公報Japanese Patent Laid-Open No. 11-50120
 上記特許文献1~3に開示されている技術では、還元鉄を移動炉床型還元炉外へ排出するための排出装置を設計変更したり、炉床表面を急冷する装置を新たに設けたり、還元鉄粉を吹き飛ばす装置を新たに設ける必要があり、多大な設備投資が必要となる。 In the technologies disclosed in Patent Documents 1 to 3, the design of the discharge device for discharging reduced iron to the outside of the moving hearth type reduction furnace, the provision of a new device for rapidly cooling the hearth surface, It is necessary to newly provide a device for blowing off the reduced iron powder, which requires a large capital investment.
 本発明は上記の様な事情に着目してなされたものであって、その目的は、酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して金属鉄を製造するにあたり、設備を大幅に設計変更することなく塊成物由来の粉末に含まれる酸化鉄が加熱還元されて生成する金属鉄やウスタイトが炉床上に固着するのを防止する技術を提供することにある。 The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to use an agglomerate made of a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent as a raw material, and a moving hearth type heating furnace. The iron oxide contained in the powder derived from the agglomerate without drastically changing the design of the equipment when reducing the iron oxide in the agglomerate and producing the metallic iron It is intended to provide a technique for preventing metallic iron and wustite produced by heat reduction of iron from adhering to the hearth.
 上記課題を解決することのできた本発明に係る金属鉄の製造方法は、酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物(粒径は、例えば、5~50mm)を、移動炉床式加熱炉の炉床上に装入して加熱(例えば、1200~1400℃)し、該塊成物中の酸化鉄を還元して金属鉄を製造するにあたり、塊成物由来の粉末に含まれる酸化鉄が加熱還元されて形成される金属鉄および/またはウスタイトを炉床上に固着させないための炉床形成材を、前記塊成物と共に炉内に装入するところに要旨を有している。 The method for producing metallic iron according to the present invention, which has solved the above problems, is an agglomerate (particle size is, for example, 5 to 50 mm) made from a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent. In the production of metallic iron by charging iron oxide in the agglomerated material and heating it (eg, 1200-1400 ° C.) on the hearth of the moving hearth type heating furnace, The main point is that a hearth forming material for preventing metallic iron and / or wustite formed by heat reduction of iron oxide contained in the powder from being fixed to the hearth together with the agglomerates is introduced into the furnace. is doing.
 (a)前記塊成物に含まれる炭素量が、該塊成物中の酸化鉄を還元するために必要な炭素量に対して122%(質量%の意味。以下同じ。)以上の場合には、前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、Al23の量が、下記式(1)および式(2)を満足するように前記炉床形成材の成分組成を調整することが好ましい。下記式(1)、式(2)中、[ ]は、各成分の含有量(質量%)を表す。
[CaO]/[SiO2]=0.25~1.20  ・・・(1)
[Al23]/[SiO2]=0.2~0.7  ・・・(2)
(A) When the amount of carbon contained in the agglomerate is 122% (meaning mass%; the same shall apply hereinafter) or more with respect to the amount of carbon necessary for reducing iron oxide in the agglomerate. As for the component composition combining the powder derived from the agglomerate and the hearth forming material, the amounts of CaO, SiO 2 and Al 2 O 3 satisfy the following formulas (1) and (2): It is preferable to adjust the component composition of the hearth forming material. In the following formulas (1) and (2), [] represents the content (% by mass) of each component.
[CaO] / [SiO 2 ] = 0.25 to 1.20 (1)
[Al 2 O 3 ] / [SiO 2 ] = 0.2 to 0.7 (2)
上記(a)の場合は、上記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、およびAl23の合計量が3.0~7.0%となるように前記炉床形成材の成分組成を調整することが好ましい。 In the case of (a), the total amount of CaO, SiO 2 , and Al 2 O 3 is 3.0 to 7.0 with respect to the component composition of the powder derived from the agglomerate and the hearth forming material. It is preferable to adjust the component composition of the hearth forming material so as to be%.
 (b-1)上記塊成物に含まれる炭素量が、該塊成物中の酸化鉄を還元するために必要な炭素量に対して122%未満の場合には、前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成の合計炭素量が、前記塊成物中の酸化鉄を還元するために必要な炭素量に対して122%以上となり、且つ前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、Al23の量が、下記式(3)および式(4)を満足するように前記炉床形成材の成分組成を調整することが好ましい。下記式(3)、式(4)中、[ ]は、各成分の含有量(質量%)を表す。
[CaO]/[SiO2]=0.25~1.20  ・・・(3)
[Al23]/[SiO2]=0.2~0.7  ・・・(4)
(B-1) When the amount of carbon contained in the agglomerate is less than 122% with respect to the amount of carbon required to reduce iron oxide in the agglomerate, The total carbon content of the component composition of the powder and the hearth forming material is 122% or more based on the amount of carbon necessary for reducing iron oxide in the agglomerate, and is derived from the agglomerate The composition of the hearth forming material so that the amounts of CaO, SiO 2 and Al 2 O 3 satisfy the following formulas (3) and (4): It is preferable to adjust the component composition. In the following formulas (3) and (4), [] represents the content (% by mass) of each component.
[CaO] / [SiO 2 ] = 0.25 to 1.20 (3)
[Al 2 O 3 ] / [SiO 2 ] = 0.2 to 0.7 (4)
(b-2)また、上記塊成物に含まれる炭素量が、該塊成物中の酸化鉄を還元するために必要な炭素量に対して122%未満の場合には、前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成の合計炭素量が、前記塊成物中の酸化鉄を還元するために必要な炭素量に対して122%未満のままとし、且つ前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、Al23、MgOの量が、下記式(5)~式(9)の少なくとも一つを満足するように前記炉床形成材の成分組成を調整することが好ましい。下記式(5)~式(9)中、[ ]は、各成分の含有量(質量%)を表す。
[CaO]/[SiO2]<0.25  ・・・(5)
[CaO]/[SiO2]>1.20  ・・・(6)
[Al23]/[SiO2]<0.2  ・・・(7)
[Al23]/[SiO2]>0.7  ・・・(8)
[MgO]/[SiO2]>0.4  ・・・(9)
(B-2) When the amount of carbon contained in the agglomerate is less than 122% with respect to the amount of carbon required for reducing iron oxide in the agglomerate, the agglomerate The total carbon content of the component composition of the derived powder and the hearth-forming material remains below 122% with respect to the amount of carbon required to reduce the iron oxide in the agglomerate, and Regarding the component composition of the powder derived from the agglomerate and the hearth forming material, the amount of CaO, SiO 2 , Al 2 O 3 , and MgO is at least one of the following formulas (5) to (9): It is preferable to adjust the component composition of the hearth forming material so as to satisfy. In the following formulas (5) to (9), [] represents the content (% by mass) of each component.
[CaO] / [SiO 2 ] <0.25 (5)
[CaO] / [SiO 2 ]> 1.20 (6)
[Al 2 O 3 ] / [SiO 2 ] <0.2 (7)
[Al 2 O 3 ] / [SiO 2 ]> 0.7 (8)
[MgO] / [SiO 2 ]> 0.4 (9)
上記(b-2)の場合は、前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、およびAl23の合計量が7.0%超となるように前記炉床形成材の成分組成を調整することが好ましい。 In the case of (b-2) above, the total amount of CaO, SiO 2 , and Al 2 O 3 is more than 7.0% for the component composition of the powder derived from the agglomerate and the hearth forming material. It is preferable to adjust the component composition of the hearth forming material so that
 前記炉内に装入する炉床形成材の全量に対して、粒子直径が0.5~2mmの炉床形成材の割合は50質量%以上とすることが好ましい。 The ratio of the hearth forming material having a particle diameter of 0.5 to 2 mm to the total amount of the hearth forming material charged in the furnace is preferably 50% by mass or more.
 本発明によれば、移動炉床式加熱炉の炉床上に塊成物と共に、炉床形成材を装入しているため、塊成物由来の粉末に含まれる酸化鉄が加熱還元されて生成する金属鉄やウスタイトが炉床上に固着することを防止できる。そのため、炉内から排出できないほどの大きな鉄板等の固着物が炉床上に形成されることや、炉床表面が隆起することを防止でき、設備を大幅に設計変更することなく、金属鉄を効率良く製造できる。 According to the present invention, since the hearth forming material is charged together with the agglomerate on the hearth of the moving hearth heating furnace, the iron oxide contained in the powder derived from the agglomerate is reduced by heating and generated. It is possible to prevent metallic iron and wustite that adhere to the hearth. For this reason, it is possible to prevent solid objects such as iron plates that cannot be discharged from the furnace from being formed on the hearth, and to raise the hearth surface, making it possible to efficiently use metallic iron without making major design changes. Can be manufactured well.
図1は、[MgO]/[SiO2]を変化させてペレットを還元させたときの温度と変形率との関係を示すグラフである。FIG. 1 is a graph showing the relationship between temperature and deformation rate when pellets are reduced by changing [MgO] / [SiO 2 ]. 図2は、還元したペレットの断面を撮影した図面代用写真である。FIG. 2 is a drawing-substituting photograph in which a cross section of the reduced pellet is photographed. 図3は、[MgO]/[SiO2]を変化させて40%収縮温度を測定した結果を示すグラフである。FIG. 3 is a graph showing the results of measuring 40% shrinkage temperature by changing [MgO] / [SiO 2 ]. 図4は、[CaO]/[SiO2]を変化させて40%収縮温度を測定した結果を示すグラフである。FIG. 4 is a graph showing the result of measuring 40% shrinkage temperature by changing [CaO] / [SiO 2 ]. 図5は、SiO2-MgO-FeO系3元平衡状態図を示している。FIG. 5 shows a SiO 2 —MgO—FeO ternary equilibrium diagram. 図6は、CaO-SiO2-MgO系3元平衡状態図を示している。FIG. 6 shows a CaO—SiO 2 —MgO ternary equilibrium diagram. 図7は、CaO-SiO2-Al23系3元平衡状態図を示している。Figure 7 shows a CaO-SiO 2 -Al 2 O 3 based ternary equilibrium diagram.
 上記特許文献1~3に提案されている技術では、設備の大幅な設計変更が必要となり、多大な設備投資が必要となる。そこで本発明者らは、設備投資を最小限に留め、塊成物由来の粉末に含まれる酸化鉄が炉内で加熱還元されて生成する金属鉄やウスタイトが炉床上に固着することを防ぐことによって、炉内から排出できないほど大きな鉄板等の固着物が炉床上に形成されることや、炉床表面が隆起することを防止し、金属鉄を効率良く製造する方法を提供するために鋭意検討を重ねてきた。その結果、塊成物を炉内に装入する際に、炉床形成材を炉内に装入すればよいことを見出した。具体的には、炉内に装入する塊成物に含まれる炭素量と、該塊成物中の酸化鉄を還元するために必要な炭素量とを考慮したうえで、塊成物由来の粉末と炉床形成材とを合わせた成分組成が所定の条件を満足するように炉床形成材の成分組成を適切に調整して炉内に装入すればよいことを見出し、本発明を完成した。 The technologies proposed in the above Patent Documents 1 to 3 require a significant design change of equipment and require a large capital investment. Therefore, the present inventors minimize the capital investment and prevent the iron oxide contained in the agglomerate-derived powder from being reduced by heating in the furnace to prevent the metallic iron and wustite from sticking to the hearth. In order to provide a method for efficiently producing metallic iron, it is possible to prevent solid objects such as iron plates that cannot be discharged from the furnace from being formed on the hearth and to raise the surface of the hearth. Has been repeated. As a result, it has been found that when the agglomerate is charged into the furnace, the hearth forming material may be charged into the furnace. Specifically, in consideration of the amount of carbon contained in the agglomerate charged into the furnace and the amount of carbon necessary to reduce iron oxide in the agglomerate, the agglomerate-derived The present invention has been completed by finding that the component composition of the hearth forming material may be appropriately adjusted and charged into the furnace so that the combined composition of the powder and the hearth forming material satisfies a predetermined condition. did.
 即ち、本発明に係る金属鉄の製造方法は、塊成物由来の粉末に含まれる酸化鉄が加熱還元されて形成される金属鉄および/またはウスタイトを炉床上に固着させないための炉床形成材を、塊成物と共に、炉内に装入するところに特徴がある。炉床上に堆積する塊成物由来の粉末は、塊成物に随伴して炉内に装入される粉末と、塊成物が炉内で急激に加熱されることにより崩壊して発生する粉末に基づくものであり、塊成物を炉内に装入する際に、炉床形成材を炉内に併せて装入することによって、炉床形成材と塊成物由来の粉末とを炉床上で混合できる。このとき、塊成物由来の粉末の成分組成を考慮して炉床形成材の成分組成を適切に調整することによって、塊成物由来の粉末に含まれる酸化鉄が加熱還元されて形成される金属鉄やウスタイトが炉床上に固着することを防止できる。そのため、鉄板等の固着物の形成や炉床表面の隆起発生を抑制でき、金属鉄の生産効率を高めることができる。 That is, the method for producing metallic iron according to the present invention includes a hearth forming material for preventing iron oxide and / or wustite formed by heat reduction of iron oxide contained in agglomerate-derived powder from being fixed on the hearth. Is characterized in that it is charged into the furnace together with the agglomerates. The powder derived from the agglomerate that accumulates on the hearth is a powder that is charged into the furnace along with the agglomerate, and a powder that breaks down when the agglomerate is rapidly heated in the furnace. When the agglomerate is charged into the furnace, the hearth-forming material and the powder derived from the agglomerate are placed on the hearth by charging the hearth-forming material together in the furnace. Can be mixed. At this time, iron oxide contained in the powder derived from the agglomerate is formed by heat reduction by appropriately adjusting the component composition of the hearth forming material in consideration of the component composition of the powder derived from the agglomerate. It is possible to prevent metallic iron and wustite from sticking to the hearth. Therefore, formation of fixed objects such as an iron plate and the occurrence of the rise of the hearth surface can be suppressed, and the production efficiency of metallic iron can be increased.
 上記炉床形成材を添加する時期は、塊成物を炉内へ装入する前とし、好ましくは塊成物に炉床形成材を添加配合する時期である。 The time when the hearth forming material is added is before charging the agglomerate into the furnace, and preferably the time when the hearth forming material is added to the agglomerated material.
 塊成物を装入する前に炉床形成材を添加するには、例えば、ホッパーに塊成物を挿入するコンベヤー上で塊成物に炉床形成材を添加し、塊成物と炉床形成材を混合した状態でこれらをまとめて炉床上に装入すればよい。装入された混合物のうち、塊成物から生成した粉と細粒の炉床形成材は塊成物の下部へ蓄積し、塊成物がレベラーによって平準化される際に混合されて移動する。 To add the hearth former before charging the agglomerate, for example, add the hearth former to the agglomerate on a conveyor that inserts the agglomerate into the hopper, and the agglomerates and hearths What is necessary is just to put these together on a hearth in the state which mixed the forming material. Of the charged mixture, the powder generated from the agglomerate and the fine hearth forming material accumulate in the lower part of the agglomerate, and are mixed and moved when the agglomerate is leveled by the leveler. .
 上記炉床形成材としては、塊成物由来の粉末に含まれる酸化鉄が加熱還元されて形成される金属鉄やウスタイトを炉床上に固着させないように作用する材料を装入すればよい。具体的には、塊成物に含まれる炭素量に着目し、この炭素量が、該塊成物中の酸化鉄を還元するために必要な炭素量に対して、(a)122%以上であるか、(b)122%未満であるかで場合分けを行い、炉床形成材の成分組成を調整して炉内に装入すればよい。ここで、塊成物に含まれる炭素量が、塊成物中の酸化鉄を還元するために必要な炭素量に対して100%であるということは、塊成物中の酸化鉄が過不足なく全て(100%)還元されることを意味する。また、塊成物中の酸化鉄を還元するために必要な炭素量に対して炭素量が122%であるということは、炭素量が22%過剰になっているということであり、この22%の炭素量は、還元後の塊成物中に残る炭素量の約5%に相当する。 As the hearth forming material, a material that acts so as not to fix metal iron or wustite formed by heat reduction of iron oxide contained in the powder derived from the agglomerate on the hearth may be inserted. Specifically, paying attention to the amount of carbon contained in the agglomerate, this carbon amount is (a) 122% or more with respect to the amount of carbon necessary for reducing iron oxide in the agglomerate. Whether or not it is (b) less than 122%, the case may be divided and the component composition of the hearth forming material may be adjusted and charged into the furnace. Here, the amount of carbon contained in the agglomerate is 100% with respect to the amount of carbon required to reduce the iron oxide in the agglomerate, which means that the iron oxide in the agglomerate is excessive or insufficient. Not all (100%). Further, the fact that the amount of carbon is 122% of the amount of carbon necessary for reducing iron oxide in the agglomerate means that the amount of carbon is 22% excess, and this 22% The amount of carbon corresponds to about 5% of the amount of carbon remaining in the agglomerate after reduction.
 上記塊成物に含まれる炭素量および塊成物中の酸化鉄を還元するために必要な炭素量は、塊成物を構成する原料混合物の成分組成に基づいて算出できる。また、塊成物中の酸化鉄を加熱還元した後の塊成物に含まれる炭素量は、例えば、塊成物を電気炉に入れ、不活性雰囲気(例えば、N2雰囲気)で、1300℃(代表温度)で加熱し、還元反応が終了した塊成物に残っている炭素量を赤外線分析法によって分析できる。この分析値と上記塊成物中の酸化鉄を還元するために必要な炭素量との合計を算出すれば、加熱前の塊成物に含まれる炭素量を逆算することができる。 The amount of carbon contained in the agglomerate and the amount of carbon necessary for reducing the iron oxide in the agglomerate can be calculated based on the component composition of the raw material mixture constituting the agglomerate. The amount of carbon contained in the agglomerate after heat reduction of iron oxide in the agglomerate is, for example, 1300 ° C. in an inert atmosphere (for example, N 2 atmosphere) by placing the agglomerate in an electric furnace. The amount of carbon remaining in the agglomerated material heated at (representative temperature) and having undergone the reduction reaction can be analyzed by infrared analysis. If the sum of this analytical value and the amount of carbon necessary for reducing the iron oxide in the agglomerate is calculated, the amount of carbon contained in the agglomerate before heating can be calculated backward.
 [(a)122%以上の場合]
 塊成物に含まれる炭素量が、該塊成物中の酸化鉄を還元するために必要な炭素量(以下、必要炭素量ということがある。)に対して122%以上の場合は、塊成物由来の粉末と炉床形成材とを合わせた成分組成について、CaO、SiO2、Al23の量が、下記式(1)および式(2)を満足するように炉床形成材の成分組成を調整すればよい。下記式(1)、式(2)中、[ ]は、各成分の含有量(質量%)を表す。
[CaO]/[SiO2]=0.25~1.20  ・・・(1)
[Al23]/[SiO2]=0.2~0.7  ・・・(2)
[(A) 122% or more]
When the amount of carbon contained in the agglomerate is 122% or more with respect to the amount of carbon necessary for reducing iron oxide in the agglomerate (hereinafter sometimes referred to as necessary carbon amount), Regarding the component composition of the powder derived from the composition and the hearth forming material, the hearth forming material so that the amounts of CaO, SiO 2 , and Al 2 O 3 satisfy the following formulas (1) and (2). What is necessary is just to adjust the component composition. In the following formulas (1) and (2), [] represents the content (% by mass) of each component.
[CaO] / [SiO 2 ] = 0.25 to 1.20 (1)
[Al 2 O 3 ] / [SiO 2 ] = 0.2 to 0.7 (2)
即ち、塊成物に含まれる炭素量が、必要炭素量よりも過剰で、加熱還元後に炭素が残留している場合は、塊成物に含まれる酸化鉄はほぼ完全に還元されているため、還元して生成する金属鉄は微細な粒状となり、互いに分離した状態で存在する。また、塊成物に含まれる炭素量が過剰であると、加熱還元によって金属鉄の浸炭が促進されるため、金属鉄同士は結合せず、硬く、脆いスラグ相が介在する。従って炉床上に鉄板等の固着物が形成されたとしても、この固着物は容易に破砕でき、炉内から簡単に排出できる。 That is, the amount of carbon contained in the agglomerate is more than the required amount of carbon, and when carbon remains after heat reduction, the iron oxide contained in the agglomerate is almost completely reduced, Metallic iron produced by reduction becomes fine particles and exists in a state of being separated from each other. Moreover, since the carburization of metallic iron is accelerated | stimulated by heat reduction when the carbon amount contained in an agglomerate is excessive, metallic iron does not couple | bond together but a hard and brittle slag phase intervenes. Therefore, even if a fixed object such as an iron plate is formed on the hearth, the fixed object can be easily crushed and easily discharged from the furnace.
 そこで、塊成物に含まれる炭素量が、必要炭素量に対して122%以上の場合は、金属鉄の粒状化を一層促進することが、金属鉄の炉外への排出を促すうえで有効となる。金属鉄の粒状化を促進するために、本発明では、金属鉄生成時に副生するスラグに着目し、このスラグの融点を低下させることによって、金属鉄同士の凝集を促進して粒状化する。具体的には、塊成物由来の粉末と炉床形成材とを合わせた成分組成について、CaO、SiO2、Al23の量が、上記式(1)および式(2)を満足するように炉床形成材の成分組成を調整する。 Therefore, if the amount of carbon contained in the agglomerate is 122% or more of the required amount of carbon, further promoting the granulation of metallic iron is effective in promoting the discharge of metallic iron out of the furnace. It becomes. In order to promote the granulation of metallic iron, the present invention focuses on the slag produced as a by-product during the production of metallic iron and lowers the melting point of this slag to promote the aggregation of metallic iron and granulate. Specifically, for the component composition of the powder derived from the agglomerate and the hearth forming material, the amounts of CaO, SiO 2 and Al 2 O 3 satisfy the above formulas (1) and (2). Thus, the component composition of the hearth forming material is adjusted.
 《式(1)について》
 [CaO]/[SiO2]を好ましくは0.25~1.20とすることによってスラグの融点を低下させることができ、金属鉄の粒状化を促進できる。[CaO]/[SiO2]のより好ましい下限は0.3であり、より好ましい上限は1.1である。
<< About Formula (1) >>
By setting [CaO] / [SiO 2 ] to preferably 0.25 to 1.20, the melting point of slag can be lowered, and the granulation of metallic iron can be promoted. A more preferred lower limit of [CaO] / [SiO 2 ] is 0.3, and a more preferred upper limit is 1.1.
 《式(2)について》
 [Al23]/[SiO2]を好ましくは0.2~0.7とすることによってスラグの融点を低下させることができ、金属鉄の粒状化を促進できる。[Al23]/[SiO2]の上限は、より好ましくは0.6、更に好ましくは0.4とする。
<< About Formula (2) >>
By setting [Al 2 O 3 ] / [SiO 2 ] to preferably 0.2 to 0.7, the melting point of the slag can be lowered and the granulation of metallic iron can be promoted. The upper limit of [Al 2 O 3 ] / [SiO 2 ] is more preferably 0.6, and still more preferably 0.4.
 塊成物に含まれる炭素量が、必要炭素量に対して122%以上の場合は、塊成物由来の粉末と炉床形成材とを合わせた成分組成について、CaO、SiO2、およびAl23の合計量が3.0~7.0%となるように炉床形成材の成分組成を調整することが好ましい。溶融スラグ量が増えるほど、加熱還元後の金属鉄への浸炭が促進されるため、上記成分の合計量を好ましくは3.0%以上とすることによって金属鉄の粒状化を促進できる。合計量は、より好ましくは4.5%以上、更に好ましくは5.0%以上とする。しかし合計量が7.0%を超えると溶融スラグ量が多くなり過ぎて流下し、炉床を侵食することがある。従って合計量は7.0%以下とすることが好ましく、より好ましくは6.5%以下とする。 When the amount of carbon contained in the agglomerate is 122% or more with respect to the required amount of carbon, CaO, SiO 2 , and Al 2 for the component composition of the agglomerate-derived powder and the hearth-forming material It is preferable to adjust the component composition of the hearth forming material so that the total amount of O 3 is 3.0 to 7.0%. As the amount of molten slag increases, carburization of metallic iron after heat reduction is promoted, so that the granulation of metallic iron can be promoted by setting the total amount of the above components to preferably 3.0% or more. The total amount is more preferably 4.5% or more, still more preferably 5.0% or more. However, when the total amount exceeds 7.0%, the amount of molten slag increases so much that it may flow down and erode the hearth. Therefore, the total amount is preferably 7.0% or less, and more preferably 6.5% or less.
 [(b)122%未満の場合]
 塊成物に含まれる炭素量が、必要炭素量に対して122%未満の場合は、
(b-1)塊成物由来の粉末と炉床形成材とを合わせた成分組成の合計炭素量が、必要炭素量に対して122%以上となるように炉床形成材の成分組成を調整するか、
[(B) If less than 122%]
When the amount of carbon contained in the agglomerate is less than 122% of the required amount of carbon,
(B-1) The component composition of the hearth forming material is adjusted so that the total carbon content of the component composition of the agglomerate-derived powder and the hearth forming material is 122% or more of the required carbon amount. Or,
(b-2)塊成物由来の粉末と炉床形成材とを合わせた成分組成の合計炭素量を、必要炭素量に対して122%未満のまま炉床形成材の成分組成を調整する方法がある。 (B-2) Method of adjusting the component composition of the hearth forming material while keeping the total carbon content of the component composition of the agglomerate-derived powder and the hearth forming material less than 122% of the required carbon amount There is.
 上記(b-1)の場合は、塊成物由来の粉末と炉床形成材とを合わせた成分組成の合計炭素量が、必要炭素量に対して122%以上となるように炉床形成材の成分組成を調整すると共に、前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、Al23の量が、下記式(3)および式(4)を満足するように炉床形成材の成分組成を調整することが重要となる。下記式(3)、式(4)中、[ ]は、各成分の含有量(質量%)を表す。
[CaO]/[SiO2]=0.25~1.20  ・・・(3)
[Al23]/[SiO2]=0.2~0.7  ・・・(4)
In the case of the above (b-1), the hearth forming material so that the total carbon content of the component composition of the agglomerate-derived powder and the hearth forming material is 122% or more with respect to the required carbon amount. As for the component composition that combines the agglomerate-derived powder and the hearth-forming material, the amounts of CaO, SiO 2 , and Al 2 O 3 are the following formulas (3) and ( It is important to adjust the component composition of the hearth forming material so as to satisfy 4). In the following formulas (3) and (4), [] represents the content (% by mass) of each component.
[CaO] / [SiO 2 ] = 0.25 to 1.20 (3)
[Al 2 O 3 ] / [SiO 2 ] = 0.2 to 0.7 (4)
 即ち、塊成物に含まれる炭素量が、必要炭素量に対して122%未満の場合は、炭素量が不足気味になるため、塊成物由来の粉末に含まれる酸化鉄の一部は還元されず、例えば、ウスタイトのまま残ることがある。また、金属鉄の浸炭に寄与する炭素量が少なくなるため、金属鉄の粒状化が促進されず、板状の金属鉄が生成し易くなる。そこで、塊成物由来の粉末に含まれる酸化鉄を全て還元し、充分に浸炭させて粒状にするために、炭素質還元剤を炉床形成材として配合し、塊成物に含まれる炭素量の不足分を補い、塊成物由来の粉末と炉床形成材とを合わせた成分組成の合計炭素量が、必要炭素量に対して122%以上となるように炉床形成材の成分組成を調整する。 That is, when the amount of carbon contained in the agglomerate is less than 122% of the required amount of carbon, the amount of carbon tends to be insufficient, so a part of the iron oxide contained in the agglomerate-derived powder is reduced. For example, it may remain as wustite. Further, since the amount of carbon that contributes to carburizing of metallic iron is reduced, the granulation of metallic iron is not promoted, and plate-shaped metallic iron is easily generated. Therefore, in order to reduce all the iron oxide contained in the powder derived from the agglomerate and to sufficiently carburize and granulate, a carbonaceous reducing agent is blended as a hearth forming material, and the amount of carbon contained in the agglomerate The component composition of the hearth forming material is adjusted so that the total carbon content of the component composition of the powder derived from the agglomerate and the hearth forming material is 122% or more with respect to the required carbon amount. adjust.
 このとき、塊成物由来の粉末と炉床形成材とを合わせた成分組成について、CaO、SiO2、Al23の量が、上記式(3)および式(4)の関係を満足している必要がある。上記式(3)、式(4)は、上記式(1)、式(2)と同じ式であり、同一の知見に基づいて規定したものである。即ち、スラグの融点を低下させて金属鉄の粒状化を一層促進することによって、金属鉄の炉外への排出を容易にできる。 At this time, the amount of CaO, SiO 2 , Al 2 O 3 satisfies the relationship of the above formulas (3) and (4) for the component composition of the agglomerate-derived powder and the hearth forming material. Need to be. The above formulas (3) and (4) are the same formulas as the above formulas (1) and (2), and are defined based on the same knowledge. That is, the metal iron can be easily discharged out of the furnace by further reducing the granularity of the metal iron by lowering the melting point of the slag.
 上記(b-2)の場合は、塊成物由来の粉末と炉床形成材とを合わせた成分組成の合計炭素量を、必要炭素量に対して122%未満のままとしたうえで、前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、Al23、MgOの量が、下記式(5)~式(9)の少なくとも一つを満足するように炉床形成材の成分組成を調整することが重要である。下記式(5)~式(9)中、[ ]は、各成分の含有量(質量%)を表す。
[CaO]/[SiO2]<0.25  ・・・(5)
[CaO]/[SiO2]>1.20  ・・・(6)
[Al23]/[SiO2]<0.2  ・・・(7)
[Al23]/[SiO2]>0.7  ・・・(8)
[MgO]/[SiO2]>0.4  ・・・(9)
In the case of (b-2) above, the total carbon content of the component composition of the agglomerate-derived powder and the hearth-forming material is kept below 122% with respect to the required carbon content, Regarding the component composition of the powder derived from the agglomerate and the hearth forming material, the amount of CaO, SiO 2 , Al 2 O 3 , and MgO is at least one of the following formulas (5) to (9): It is important to adjust the component composition of the hearth forming material so as to satisfy. In the following formulas (5) to (9), [] represents the content (% by mass) of each component.
[CaO] / [SiO 2 ] <0.25 (5)
[CaO] / [SiO 2 ]> 1.20 (6)
[Al 2 O 3 ] / [SiO 2 ] <0.2 (7)
[Al 2 O 3 ] / [SiO 2 ]> 0.7 (8)
[MgO] / [SiO 2 ]> 0.4 (9)
炉床形成材として炭素質還元剤を配合せず、塊成物由来の粉末と炉床形成材とを合わせた成分組成の合計炭素量を、必要炭素量に対して122%未満のままとする場合は、脈石成分の組成を適切に制御することが有効となる。具体的には、脈石成分の融点を高くすることによって、金属鉄やウスタイト粒子の間に固体状の脈石を介在させることができるため、金属鉄やウスタイト粒子の間隔を大きくすることができ、これらの凝集を抑えることができる。その結果、金属鉄やウスタイト粒子が炉床上に固着することや、固着して塊となり、炉床表面に隆起が形成されることを防止できる。 No carbonaceous reducing agent is added as the hearth-forming material, and the total carbon content of the component composition of the agglomerate-derived powder and the hearth-forming material is kept below 122% of the required carbon content. In such a case, it is effective to appropriately control the composition of the gangue component. Specifically, by increasing the melting point of the gangue component, solid gangue can be interposed between metallic iron and wustite particles, so the interval between metallic iron and wustite particles can be increased. These aggregations can be suppressed. As a result, it is possible to prevent metallic iron and wustite particles from adhering to the hearth or from adhering to a lump and forming bumps on the hearth surface.
 即ち、塊成物由来の粉末に含まれる酸化鉄が還元されて生成する金属鉄は、微細であるため、相互の結合力は非常に小さい。ところが、CaO、SiO2、およびAl23などの脈石成分の組成によっては、生成するスラグの融点が低くなり、加熱還元中に溶融スラグが形成されると、その近傍に存在する金属鉄表面のFe原子は移動し易くなり、金属鉄同士の結合が促進されて網目状の金属鉄結合層を形成する。この金属鉄結合層に圧力が加わると緻密な金属鉄板(固着物)が形成され、炉外への排出が困難となる。 That is, metallic iron produced by reduction of iron oxide contained in the powder derived from the agglomerate is very fine and therefore has a very low mutual bonding force. However, depending on the composition of the gangue components such as CaO, SiO 2 , and Al 2 O 3 , the melting point of the generated slag is lowered, and when molten slag is formed during the heating reduction, metallic iron existing in the vicinity thereof is formed. The Fe atoms on the surface easily move, and the bonding between the metal irons is promoted to form a network-like metal iron bonding layer. When pressure is applied to the metallic iron bonding layer, a dense metallic iron plate (fixed matter) is formed, making it difficult to discharge out of the furnace.
 また、酸化鉄が充分に還元されない場合は、ウスタイト(FeO)が生成するが、この場合であっても、上記溶融スラグが存在すると、ウスタイト表面のFe原子が移動し易くなり、ウスタイト同士の結合が促進されて粗大なウスタイト粒子となる。粗大なウスタイト粒子は更に溶融スラグを介して大きなブロックになり、炉外への排出が困難となる。 In addition, when iron oxide is not sufficiently reduced, wustite (FeO) is generated. Even in this case, if the molten slag exists, Fe atoms on the surface of wustite easily move and bonds between wustites. Is promoted to become coarse wustite particles. Coarse wustite particles further become large blocks via the molten slag, making it difficult to discharge out of the furnace.
 そこで、金属鉄同士またはウスタイト同士、或いは金属鉄とウスタイトが結合することを防止できれば、金属鉄やウスタイトを炉床上から容易に排出できると考えられる。こうした知見に基づき、炉床形成材として炭素質還元剤を配合せず、塊成物由来の粉末と炉床形成材とを合わせた成分組成の合計炭素量を、必要炭素量に対して122%未満のままとする場合は、副生するスラグの融点を高め、溶融スラグの生成を抑制することが重要となる。 Therefore, if it is possible to prevent metal irons or wustites or metal iron and wustite from being combined, it is considered that metal iron and wustite can be easily discharged from the hearth. Based on these findings, the total carbon content of the combined composition of the powder derived from the agglomerate and the hearth forming material is 122% with respect to the required amount of carbon without adding a carbonaceous reducing agent as the hearth forming material. When the ratio is kept below, it is important to increase the melting point of by-product slag and suppress the formation of molten slag.
 《式(5)、式(6)について》
 [CaO]/[SiO2]を好ましくは0.25未満、または好ましくは1.20超とすることによって副生するスラグの融点を高めることができ、金属鉄やウスタイト粒子の粗大化を防止できる。[CaO]/[SiO2]は、より好ましくは0.20以下であり、より好ましくは1.25以上である。
<< About Formula (5) and Formula (6) >>
By making [CaO] / [SiO 2 ] preferably less than 0.25 or preferably more than 1.20, the melting point of by-product slag can be increased, and coarsening of metallic iron and wustite particles can be prevented. . [CaO] / [SiO 2 ] is more preferably 0.20 or less, and more preferably 1.25 or more.
 《式(7)、式(8)について》
 [Al23]/[SiO2]を好ましくは0.2未満、または好ましくは0.7超とすることによって副生するスラグの融点を高めることができ、金属鉄やウスタイト粒子の粗大化を防止できる。[Al23]/[SiO2]は、より好ましくは0.18以下、更に好ましくは0.16以下であり、より好ましくは0.8以上である。
<< About Formula (7) and Formula (8) >>
By making [Al 2 O 3 ] / [SiO 2 ] preferably less than 0.2 or preferably more than 0.7, the melting point of by-product slag can be increased, and the coarsening of metallic iron and wustite particles Can be prevented. [Al 2 O 3 ] / [SiO 2 ] is more preferably 0.18 or less, further preferably 0.16 or less, and more preferably 0.8 or more.
 《式(9)について》
 MgOは、溶融スラグの生成を抑制する作用を有しており、金属鉄やウスタイト粒子の粗大化を防止できる。即ち、脈石成分は、温度上昇する過程で低融点組成の部分から溶融し、そこへ融点を上昇させる成分が溶解することにより固化することを繰り返して脈石の融液を生成するため、脈石の平均組成が高融点であっても、部分的には結合物を生成させる可能性がある。ところが、MgOは、固体状態のFeOへ拡散しやすいため、その含有量が増量するに従ってスラグの融点を上昇させるため、溶融スラグの生成を抑制する作用を有している。
<< About Formula (9) >>
MgO has the effect | action which suppresses the production | generation of molten slag and can prevent the coarsening of metallic iron and a wustite particle | grain. That is, the gangue component melts from the low melting point composition in the process of increasing the temperature, and the component that raises the melting point is dissolved therein to solidify by dissolution, thereby generating a gangue melt. Even if the average composition of the stone has a high melting point, there is a possibility that a bond is partially formed. However, since MgO is easy to diffuse into solid state FeO, the melting point of slag is increased as its content increases, so that it has an action of suppressing the generation of molten slag.
 後述する図5から明らかなように、[MgO]/[SiO2]の変化によって溶融スラグの融点が大きく変化するため、上記MgO量は、SiO2量とのバランスを考慮して調整すればよい。具体的には、[MgO]/[SiO2]は、好ましくは0.4超とすることによって溶融スラグの生成を抑制し、固形スラグを増量できる。[MgO]/[SiO2]は、より好ましくは0.45以上、更に好ましくは0.5以上とする。[MgO]/[SiO2]の上限は、例えば、0.9である。 As will be apparent from FIG. 5 to be described later, since the melting point of the molten slag changes greatly due to the change of [MgO] / [SiO 2 ], the MgO amount may be adjusted in consideration of the balance with the SiO 2 amount. . Specifically, [MgO] / [SiO 2 ] is preferably more than 0.4, thereby suppressing generation of molten slag and increasing solid slag. [MgO] / [SiO 2 ] is more preferably 0.45 or more, and further preferably 0.5 or more. The upper limit of [MgO] / [SiO 2 ] is, for example, 0.9.
 上記式(5)~式(9)は、少なくとも一つの式を満足していればよく、一つでも満足すれば、副生するスラグの融点が高くなる。 The above formulas (5) to (9) need only satisfy at least one formula, and if at least one formula is satisfied, the melting point of by-product slag increases.
 塊成物に含まれる炭素量が、必要炭素量に対して122%未満の場合であって、塊成物由来の粉末と炉床形成材とを合わせた成分組成の合計炭素量が、必要炭素量に対して122%未満のままとするときは、塊成物由来の粉末と炉床形成材とを合わせた成分組成について、CaO、SiO2、およびAl23の合計量が7.0%超となるように炉床形成材の成分組成を調整することが好ましい。上記合計量を7.0%超とすることによって脈石量を多くできるため、固形スラグが多くなり、金属鉄やウスタイトが凝集して粗大化することを防止でき、炉床上に固着して隆起が形成されることを抑制できる。合計量は、より好ましくは7.5%以上、更に好ましくは8%以上とする。合計量の上限は、例えば、10%である。 The amount of carbon contained in the agglomerate is less than 122% of the required carbon amount, and the total carbon amount of the component composition combining the powder derived from the agglomerate and the hearth forming material is required carbon. When it is less than 122% with respect to the amount, the total amount of CaO, SiO 2 , and Al 2 O 3 is 7.0 with respect to the component composition of the powder derived from the agglomerate and the hearth forming material. It is preferable to adjust the component composition of the hearth forming material so as to exceed%. By making the total amount above 7.0%, the amount of gangue can be increased, so the amount of solid slag is increased, and it is possible to prevent metal iron and wustite from agglomerating and becoming coarse, and sticking to the hearth Can be prevented from being formed. The total amount is more preferably 7.5% or more, and further preferably 8% or more. The upper limit of the total amount is, for example, 10%.
 上記炉床形成材としては、CaO源、SiO2源、Al23源、MgO源となる材料を配合すればよい。上記CaO源としては、例えば、生石灰(CaO)や石灰石(主成分はCaCO3)などを用いることができる。上記SiO2源としては、例えば、珪砂、或いは蛇紋岩等の他成分との混合物を用いることができる。上記Al23源としては、例えば、ボーキサイト、或いはアルミナ含有鉄鉱石等の他成分との混合物を用いることができる。上記MgO源としては、例えば、MgO含有スラグや海水などから抽出されるMg含有物質、或いは炭酸マグネシウム(MgCO3)、ドロマイトなどを用いることができる。 As the hearth forming material, CaO source, SiO 2 source, Al 2 O 3 source, may be blended material as the MgO source. As the CaO source, e.g., burnt lime (CaO) or limestone (main component CaCO 3) or the like can be used. As the SiO 2 source, for example, a mixture with other components such as silica sand or serpentine can be used. As the Al 2 O 3 source, for example, bauxite or a mixture with other components such as alumina-containing iron ore can be used. As the MgO source, for example, an Mg-containing material extracted from MgO-containing slag, seawater, or the like, or magnesium carbonate (MgCO 3 ), dolomite, or the like can be used.
 塊成物由来の粉末と炉床形成材とを合わせた成分組成が、上記要件を満足するように炉床形成材の成分組成を調整するには、塊成物由来の粉末の質量を測定する必要がある。 To adjust the component composition of the hearth forming material so that the composition of the powder derived from the agglomerate and the hearth forming material satisfies the above requirements, the mass of the powder derived from the agglomerate is measured. There is a need.
 塊成物由来の粉末としては、酸化鉄含有物質と炭素質還元剤を含む混合物を原料として塊成物を形成した後、この塊成物の一部が崩壊したり、衝撃や磨耗によって崩壊して生成する粉末(以下、粉末Iということがある。)と、塊成物を炉内に装入して加熱還元している間に崩壊して生成する粉末(以下、粉末IIということがある。)の2種類が考えられる。 As a powder derived from agglomerates, after agglomerates are formed using a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent as a raw material, a part of the agglomerates collapses or collapses due to impact or wear. Generated powder (hereinafter sometimes referred to as powder I) and powder produced by collapsing while the agglomerate is charged into the furnace and heated and reduced (hereinafter sometimes referred to as powder II). )) Are considered.
 上記粉末Iの質量は、例えば、炉内に装入する塊成物の全質量を測定すると共に、装入物の分級を行い、塊成物と塊成物由来の粉末とに分けて塊成物由来の粉末の質量を直接測定すればよい。本発明では、粒子直径が3mm以下のものを粉末として定義する。 The mass of the powder I is, for example, measuring the total mass of the agglomerate charged into the furnace, classifying the charge, and dividing the agglomerate into agglomerate-derived powder. What is necessary is just to measure the mass of the powder derived from a thing directly. In the present invention, a powder having a particle diameter of 3 mm or less is defined as a powder.
 但し、塊成物由来の粉末の質量を直接測定する方法では、炉内に連続して塊成物を装入する場合に、塊成物の性状が途中で変化すると対応できなくなる。そこで、後述する実施例で示すように、成形して得られた塊成物を炉内へ装入するまでの移動工程をシミレーションした回転強度試験を行い、このとき生成した粒子直径が3mm以下の粉末の質量を測定して塊成物由来の粉末の質量を予測すればよい。 However, in the method of directly measuring the mass of the powder derived from the agglomerate, when the agglomerate is continuously charged in the furnace, it cannot be handled if the properties of the agglomerate change in the middle. Therefore, as shown in the examples described later, a rotational strength test was performed to simulate the movement process until the agglomerate obtained by molding was charged into the furnace, and the particle diameter generated at this time was 3 mm or less. The mass of the powder may be estimated by measuring the mass of the powder.
 一方、上記粉末IIの質量は、塊成物を電気炉で加熱し、急速加熱(例えば、昇温速度10℃/分以上)したときに発生する粒子直径が3mm以下の粉末の質量を測定して塊成物由来の粉末の質量を予測すればよい。 On the other hand, the mass of the powder II is obtained by measuring the mass of a powder having a particle diameter of 3 mm or less that is generated when the agglomerate is heated in an electric furnace and rapidly heated (for example, a heating rate of 10 ° C./min or more). The mass of the powder derived from the agglomerate may be predicted.
 このように塊成物由来の粉末の質量を予測したうえで、塊成物由来の粉末と炉床形成材とを合わせた成分組成は、下記式(21)~式(24)で表すことができる。
CaO(kg/hr):
CaO=(LCaO×WL+CCaO×CWL+SCaO×SWL+ACaO×AWL+MCaO×MWL)/100  ・・・(21)
SiO2(kg/hr):
SiO2=(LSiO2×WL+CSiO2×CWL+SSiO2×SWL+ASiO2×AWL+MSiO2×MWL)/100  ・・・(22)
Al23(kg/hr):
Al2O3=(LAl2O3×WL+CAl2O3×CWL+SAl2O3×SWL+AAl2O3×AWL+MAl2O3×MWL)/100  ・・・(23)
MgO(kg/hr):
MgO=(LMgO×WL+CMgO×CWL+SMgO×SWL+AMgO×AWL+MMgO×MWL)/100  ・・・(24)
Thus, after predicting the mass of the powder derived from the agglomerate, the component composition of the powder derived from the agglomerate and the hearth forming material can be expressed by the following formulas (21) to (24). it can.
CaO (kg / hr):
H CaO = (L CaO × W L + C CaO × CW L + S CaO × SW L + A CaO × AW L + M CaO × MW L ) / 100 (21)
SiO 2 (kg / hr):
H SiO2 = (L SiO2 × W L + C SiO2 × CW L + S SiO2 × SW L + A SiO2 × AW L + M SiO2 × MW L ) / 100 (22)
Al 2 O 3 (kg / hr):
H Al2O3 = (L Al2O3 * W L + C Al2O3 * CW L + S Al2O3 * SW L + A Al2O3 * AW L + M Al2O3 * MW L ) / 100 (23)
MgO (kg / hr):
H MgO = (L MgO × W L + C MgO × CW L + S MgO × SW L + A MgO × AW L + M MgO × MW L ) / 100 (24)
 上記式(21)~式(24)において、LCaO、LSiO2、LAl2O3、LMgOは、夫々、塊成物に含まれるCaO、SiO2、Al23、MgOの割合(質量%)を示しており、WLは、単位時間(hr)あたりに炉内に装入される塊成物由来の粉末の質量(kg)を示している。 In the above formulas (21) to (24), L CaO , L SiO2 , L Al2O3 and L MgO are the proportions (mass%) of CaO, SiO 2 , Al 2 O 3 and MgO contained in the agglomerate, respectively. W L represents the mass (kg) of the powder derived from the agglomerate charged into the furnace per unit time (hr).
 CCaO、CSiO2、CAl2O3、CMgOは、夫々、炉床形成材に含まれるCaO源に含まれるCaO、SiO2、Al23、MgOの割合(質量%)を示しており、CWLは、単位時間(hr)あたりに炉内に装入される炉床形成材に含まれるCaO源の質量(kg)を示している。 C CaO , C SiO2 , C Al2O3 , and C MgO respectively indicate the ratio (mass%) of CaO, SiO 2 , Al 2 O 3 , and MgO contained in the CaO source contained in the hearth forming material. L represents the mass (kg) of the CaO source contained in the hearth forming material charged into the furnace per unit time (hr).
 SCaO、SSiO2、SAl2O3、SMgOは、夫々、炉床形成材に含まれるSiO2源に含まれるCaO、SiO2、Al23、MgOの割合(質量%)を示しており、SWLは、単位時間(hr)あたりに炉内に装入される炉床形成材に含まれるSiO2源の質量(kg)を示している。 S CaO , S SiO2 , S Al2O3 , and S MgO represent the ratio (mass%) of CaO, SiO 2 , Al 2 O 3 , and MgO contained in the SiO 2 source contained in the hearth forming material, SW L indicates the mass (kg) of the SiO 2 source contained in the hearth forming material charged into the furnace per unit time (hr).
 ACaO、ASiO2、AAl2O3、AMgOは、夫々、炉床形成材に含まれるAl23源に含まれるSiO2、CaO、Al23、MgOの割合(質量%)を示しており、AWLは、単位時間(hr)あたりに炉内に装入される炉床形成材に含まれるAl23源の質量(kg)を示している。 A CaO , A SiO2 , A Al2O3 , and A MgO indicate the ratio (mass%) of SiO 2 , CaO, Al 2 O 3 , and MgO contained in the Al 2 O 3 source contained in the hearth forming material, respectively. AW L represents the mass (kg) of the Al 2 O 3 source contained in the hearth forming material charged into the furnace per unit time (hr).
 MCaO、MSiO2、MAl2O3、MMgOは、夫々、炉床形成材に含まれるMgO源に含まれるCaO、SiO2、Al23、MgOの割合(質量%)を示しており、MWLは、単位時間(hr)あたりに炉内に装入される炉床形成材に含まれるMgO源の質量(kg)を示している。 M CaO, M SiO2, M Al2O3 , M MgO , respectively, CaO contained in the MgO source contained in the hearth forming material shows the SiO 2, Al 2 O 3, MgO ratio (mass%), MW L represents the mass (kg) of the MgO source contained in the hearth forming material charged into the furnace per unit time (hr).
 塊成物由来の粉末と炉床形成材とを合わせた成分組成について、目標の成分組成を下記式(25)~式(28)とすると、上記式(21)~式(24)に基づいて、下記式(29)~式(32)で表される。
[CaO]/[SiO2]=1.3  ・・・(25)
[Al23]/[SiO2]=0.3  ・・・(26)
[MgO]/[SiO2]=0.5  ・・・(27)
CaO+Al23+SiO2=7  ・・・(28)
CaO/HSiO2=1.3  ・・・(29)
Al2O3/HSiO2=0.3  ・・・(30)
MgO/HSiO2=0.5  ・・・(31)
(HCaO+HAl2O3+HSiO2)/(WL+CWL+SWL+AWL+MWL)×100=7  ・・・(32)
With regard to the component composition of the powder derived from the agglomerate and the hearth forming material, if the target component composition is the following formulas (25) to (28), then based on the above formulas (21) to (24) Are represented by the following formulas (29) to (32).
[CaO] / [SiO 2 ] = 1.3 (25)
[Al 2 O 3 ] / [SiO 2 ] = 0.3 (26)
[MgO] / [SiO 2 ] = 0.5 (27)
CaO + Al 2 O 3 + SiO 2 = 7 (28)
H CaO / H SiO2 = 1.3 (29)
H Al2O3 / H SiO2 = 0.3 (30)
H MgO / H SiO2 = 0.5 (31)
(H CaO + H Al2 O3 + H SiO2 ) / (W L + CW L + SW L + AW L + MW L ) × 100 = 7 (32)
 なお、通常は、炉床形成材としてSiO2源を添加しないため、SWL=0として計算すればよい。SiO2源を添加する場合は、添加するSiO2源に仮の数値をおき、目標とする成分比になる他の添加物量を決定する。その結果が目標値にならない場合は、添加するSiO2源の量を変化させていき、解を得ればよい。 In general, since no SiO 2 source is added as the hearth forming material, the calculation may be performed with SW L = 0. When the SiO 2 source is added, a provisional numerical value is set for the SiO 2 source to be added, and the amount of other additives that achieve the target component ratio is determined. If the result does not reach the target value, the solution may be obtained by changing the amount of the SiO 2 source to be added.
 上記炉床形成材としては、炉内に装入する炉床形成材の全量に対して、粒子直径が0.5~2mmの炉床形成材の割合を50質量%以上とすることが好ましい。炉床形成材は、粒子直径が小さい方が、塊成物由来の粉末と混合し易くなるが、粒子直径が小さ過ぎると、炉内に装入する際や、炉内で加熱する際に、風圧で飛ばされてしまい、所期の効果が発揮されなくなる。従って炉床形成材は、粒子直径が0.5mm以上の割合を50質量%以上とすることが好ましい。しかし粒子直径が大きくなり過ぎると、塊成物由来の粉末と混合され難くなり、所期の効果が発揮されなくなる。また、脈石が溶融し始めたときに、融液にCaOやMgOを素早く溶け込ませ、スラグを固形化させるための反応を促進させるには、炉床形成材の表面積を大きくすることが推奨される。従って炉床形成材は、粒子直径が2mm以下の割合を50質量%以上とすることが好ましい。 As the hearth forming material, the ratio of the hearth forming material having a particle diameter of 0.5 to 2 mm is preferably 50% by mass or more with respect to the total amount of the hearth forming material charged into the furnace. The hearth forming material is easier to mix with the powder derived from the agglomerates when the particle diameter is smaller, but when the particle diameter is too small, when charging into the furnace or heating in the furnace, It will be blown by the wind pressure, and the desired effect will not be exhibited. Accordingly, the ratio of the particle diameter of the hearth forming material to 0.5 mm or more is preferably 50% by mass or more. However, if the particle diameter becomes too large, it becomes difficult to mix with the powder derived from the agglomerate, and the desired effect is not exhibited. Also, when the gangue begins to melt, it is recommended to increase the surface area of the hearth forming material in order to quickly dissolve CaO and MgO into the melt and promote the reaction to solidify the slag. The Accordingly, the ratio of the particle diameter of the hearth forming material to 2 mm or less is preferably 50% by mass or more.
 上記塊成物は、酸化鉄含有物質と炭素質還元剤を含む原料混合物を成形したものである。上記酸化鉄含有物質としては、鉄鉱石や砂鉄、非鉄製錬残渣などを用いればよい。上記炭素質還元剤としては、炭素含有物質を用いればよく、例えば、石炭やコークスなどを用いればよい。 The agglomerates are formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent. As the iron oxide-containing substance, iron ore, iron sand, non-ferrous smelting residue, etc. may be used. As the carbonaceous reducing agent, a carbon-containing material may be used. For example, coal or coke may be used.
 上記原料混合物には、その他の成分として、バインダー、MgO源、またはCaO源などを配合してもよい。上記バインダーとしては、例えば、多糖類(例えば、小麦粉等の澱粉など)などを用いることができる。上記MgO源または上記CaO源としては、炉床形成材に配合するMgO源またはCaO源として例示したものを用いることができる。 In the raw material mixture, a binder, an MgO source, or a CaO source may be blended as other components. As said binder, polysaccharides (for example, starches, such as wheat flour) etc. can be used, for example. As said MgO source or said CaO source, what was illustrated as a MgO source or CaO source mix | blended with a hearth forming material can be used.
 塊成物の形状は特に限定されず、例えば、ペレット状やブリケット状などであればよい。塊成物の大きさも特に限定されないが、粒径(最大径)が50mm以下であればよい。下限値は5mm程度である。なお、塊成物がブリケット状の場合は、球相当直径を粒径とすればよい。 The shape of the agglomerate is not particularly limited, and may be, for example, a pellet shape or a briquette shape. The size of the agglomerate is not particularly limited, but the particle size (maximum diameter) may be 50 mm or less. The lower limit is about 5 mm. In addition, what is necessary is just to let a sphere equivalent diameter be a particle size when an agglomerate is briquette-like.
 上記塊成物は、炉内で、塊成物の温度が1200~1400℃となるように加熱し、原料混合物中の酸化鉄を還元すればよい。 The above agglomerate may be heated in the furnace so that the temperature of the agglomerate is 1200 to 1400 ° C. to reduce iron oxide in the raw material mixture.
 炉の種類は、移動炉床炉であればよく、例えば、回転炉床炉を用いることができる。 The type of furnace may be a moving hearth furnace, for example, a rotary hearth furnace.
 塊成物の温度は、特に1250℃以上とすることが好ましい。1250℃以上とすれば、金属鉄とスラグの溶融時間を短縮できる。しかし塊成物の温度が高くなり過ぎると、金属鉄が溶融して炉床に食い込み、炉床に隆起を発生させる原因となる。塊成物の温度の好ましい上限は1350℃である。 The temperature of the agglomerate is particularly preferably 1250 ° C. or higher. If it is 1250 degreeC or more, the melting time of metallic iron and slag can be shortened. However, if the temperature of the agglomerate becomes too high, the metallic iron melts and bites into the hearth, causing a rise in the hearth. A preferred upper limit for the temperature of the agglomerate is 1350 ° C.
 塊成物の加熱には、バーナーを用い、該バーナーの燃焼条件を制御すれば、塊成物の温度を調整できる。 For heating the agglomerate, the temperature of the agglomerate can be adjusted by using a burner and controlling the combustion conditions of the burner.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
 実験例1では、酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、加熱炉に装入して加熱し、原料混合物中の酸化鉄を還元して金属鉄を製造したときの金属鉄の成分組成および強度を調べ、炉床への固着性と成分組成の関係を評価した。実験例2では、CaO、SiO2、およびMgOが塊成物の変形率に及ぼす影響を調べ、成分組成と溶融スラグの生成挙動の関係を評価した。実験例3では、三元状態図を使ってAl23のスラグ成分の溶融温度と成分の関係を調べた。 In Experimental Example 1, an agglomerate made of a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is charged into a heating furnace and heated, and iron oxide in the raw material mixture is reduced to produce metallic iron. The component composition and strength of metallic iron were examined, and the relationship between the adhesion to the hearth and the component composition was evaluated. In Experimental Example 2, the influence of CaO, SiO 2 , and MgO on the deformation rate of the agglomerate was examined, and the relationship between the component composition and the generation behavior of molten slag was evaluated. In Experimental Example 3, the relationship between the melting temperature of the slag component of Al 2 O 3 and the component was examined using a ternary phase diagram.
 [実験例1]
 酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物として、下記表1に示す成分組成の塊成物を製造した。塊成物の形状は、下記表1のNo.1、6、7は枕状のブリケット[球相当直径(最大径)は約22~26mm]、No.2~5は球状ペレット[粒径(最大径)は約12~20mm]とした。下記表1において、TFeは全鉄量、TCは炭素量(表1では塊成物に含まれる全炭素量)、FCは970℃でガス化しない炭素量を示している。下記表1には、塊成物の成分組成に基づいて、[CaO]/[SiO2]、[Al23]/[SiO2]、[MgO]/[SiO2]、[CaO]+[Al23]+[SiO2]の値を夫々算出して示す。
[Experimental Example 1]
The agglomerates having the component compositions shown in Table 1 below were produced as agglomerates using as a raw material a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent. The shape of the agglomerate is No. in Table 1 below. Nos. 1, 6, and 7 are pillow briquettes (ball equivalent diameter (maximum diameter) is about 22 to 26 mm), 2 to 5 were spherical pellets (particle diameter (maximum diameter) was about 12 to 20 mm). In Table 1 below, TFe is the total iron content, TC is the carbon content (in Table 1, the total carbon content contained in the agglomerate), and FC is the carbon content that is not gasified at 970 ° C. Table 1 below shows [CaO] / [SiO 2 ], [Al 2 O 3 ] / [SiO 2 ], [MgO] / [SiO 2 ], [CaO] + based on the agglomerate composition. The values of [Al 2 O 3 ] + [SiO 2 ] are calculated and shown.
 得られた塊成物を、加熱炉に装入し、1300℃に加熱して塊成物に含まれる酸化鉄を還元して金属鉄を製造した。炉内での加熱時間を下記表2に示す。 The obtained agglomerate was charged into a heating furnace and heated to 1300 ° C. to reduce iron oxide contained in the agglomerate to produce metallic iron. The heating time in the furnace is shown in Table 2 below.
 加熱後の塊成物の成分組成を測定し、結果を下記表2に示す。下記表2において、MFeは金属鉄量、TCは炭素量(表2では加熱後に残留している全炭素量)、TC/TFe×100は全鉄量に対する全炭素量の割合、MetalFeは金属化率[=金属鉄量(%)/全鉄量(%)×100]を示す。 The component composition of the agglomerate after heating was measured, and the results are shown in Table 2 below. In Table 2 below, MFe is the amount of metallic iron, TC is the amount of carbon (in Table 2, the total amount of carbon remaining after heating), TC / TFe × 100 is the ratio of the total amount of carbon to the total amount of iron, MetalFe is the metallization The rate [= metal iron amount (%) / total iron amount (%) × 100].
 加熱後の残留物(塊成物)中の炭素量を、加熱前の塊成物に含まれる炭素量に換算すると下記表2に示すRCsとなり、加熱前の塊成物のTCからRCsを差し引いた値が還元に使用された炭素量(RedC)となる。還元に必要な炭素に対する加熱後の残留炭素の割合(RCs/RedC×100)を求め、下記表2に示す。表2から明らかなように、還元に必要な炭素量を基準とした加熱後の残留炭素が約5%になる炭素量は22%程度になる。 When the amount of carbon in the residue (agglomerated) after heating is converted to the amount of carbon contained in the agglomerated material before heating, RCs shown in Table 2 below are obtained, and RCs is subtracted from the TC of the agglomerated material before heating. The value obtained is the amount of carbon used for reduction (RedC). The ratio of residual carbon after heating to the carbon necessary for reduction (RCs / RedC × 100) was determined and shown in Table 2 below. As is apparent from Table 2, the amount of carbon at which the residual carbon after heating is about 5% based on the amount of carbon necessary for reduction is about 22%.
 また、加熱後に得られる塊状の金属鉄(塊成物)の強度を回転強度試験により測定した。 Also, the strength of the massive metallic iron (agglomerated material) obtained after heating was measured by a rotational strength test.
 《回転強度試験》
 残留物を回転容器に入れ、全回転数を500回転として回転させ、粒子直径1mm以下、粒子直径1mm超2mm以下、粒子直径2mm超の3段階に篩分けを行った。回転容器の形状は、直径113mm、長さ205mmの円柱状で、回転容器内にはバレルが2枚設けられており、回転速度30rpmで回転させている。
《Rotational strength test》
The residue was put in a rotating container and rotated at a total rotational speed of 500 rotations, and sieved in three stages: a particle diameter of 1 mm or less, a particle diameter of 1 mm to 2 mm or less, and a particle diameter of 2 mm or more. The shape of the rotating container is a cylindrical shape having a diameter of 113 mm and a length of 205 mm, and two barrels are provided in the rotating container and are rotated at a rotation speed of 30 rpm.
 下記表2に、篩分けた粉末の質量に対して粒子直径が1mm以下の粉末の割合を算出して示す。粒子直径が1mm以下の粉末の割合が増加するということは、残留物が容易に粉砕されることを意味しており、残留物が炉床上に固着されず、除去性が良好であることを示している。本発明では、粒子直径が1mm以下の粉末の割合が29%以上の場合を除去性に優れる(本発明例)と評価し、29%未満の場合を除去性に劣る(比較例)と評価する。 In Table 2 below, the ratio of the powder having a particle diameter of 1 mm or less to the mass of the sieved powder is calculated and shown. An increase in the proportion of powder having a particle diameter of 1 mm or less means that the residue is easily pulverized, indicating that the residue is not fixed on the hearth and the removability is good. ing. In the present invention, the case where the ratio of the powder having a particle diameter of 1 mm or less is 29% or more is evaluated as being excellent in removability (invention example), and the case where it is less than 29% is evaluated as being inferior in removability (comparative example). .
 下記表2から次のように考察できる。まず、No.1、2、3、5は、残留物に含まれる炭素量が5%以上(即ち、RCs/RedC×100の値が22%以上)になっているため、塊成物に含まれる炭素量が、塊成物に含まれる酸化鉄を還元するために必要な炭素量に対して122%以上になっている例である。これらのうちNo.1、2、3は、塊成物の成分組成のうち、[CaO]/[SiO2]の値が0.25~1.20、[Al23]/[SiO2]の値が0.2~0.7に制御されており、上記式(1)および式(2)を満足している。従って、炉床への固着性が低下している。一方、No.5は、塊成物の成分組成のうち、[CaO]/[SiO2]の値が0.23で、上記式(1)を満足していない。また、No.5は、CaO、Al23、およびSiO2量の合計量が3.0%を下回っているため、金属鉄が焼結し易くなっている。従って、残留物の除去性を改善できていない。 It can be considered as follows from Table 2 below. First, no. 1, 2, 3, and 5 have a carbon content in the residue of 5% or more (that is, RCs / RedC × 100 value is 22% or more). This is an example of 122% or more with respect to the amount of carbon necessary for reducing iron oxide contained in the agglomerate. Of these, No. 1, 2, and 3 have a [CaO] / [SiO 2 ] value of 0.25 to 1.20 and a [Al 2 O 3 ] / [SiO 2 ] value of 0 in the agglomerate composition. .2 to 0.7, which satisfies the above formulas (1) and (2). Therefore, the adherence to the hearth is reduced. On the other hand, no. No. 5 has a value of [CaO] / [SiO 2 ] of 0.23 out of the component composition of the agglomerate, and does not satisfy the above formula (1). No. In No. 5, since the total amount of CaO, Al 2 O 3 , and SiO 2 is less than 3.0%, metallic iron is easily sintered. Therefore, the removability of the residue cannot be improved.
 次に、No.4、6、7は、残留物に含まれる炭素量が5%未満(即ち、RCs/RedC×100の値が22%未満)になっているため、塊成物に含まれる炭素量が、塊成物に含まれる酸化鉄を還元するために必要な炭素量に対して122%未満になっている例である。これらのうちNo.6は、塊成物の成分組成のうち、[CaO]/[SiO2]の値が0.14で、上記式(5)を満足している。従って、スラグの融点が高くなり、残留物の結合力が低下して分離し易くなり、残留物の除去性が良好になっている。一方、No.4、7は、塊成物の成分組成のうち、[CaO]/[SiO2]の値が0.25~1.20の範囲、[Al23]/[SiO2]の値が0.2~0.7の範囲を満足し、[MgO]/[SiO2]の値が0.4以下になっており、上記式(5)~式(9)のいずれも満足していない。従って、炉床への固着性が増大している。 Next, no. 4, 6, and 7, the carbon content in the residue is less than 5% (that is, the value of RCs / RedC × 100 is less than 22%). In this example, the amount is less than 122% with respect to the amount of carbon necessary for reducing the iron oxide contained in the composition. Of these, No. 6 has a value of [CaO] / [SiO 2 ] of 0.14 out of the component composition of the agglomerate, which satisfies the above formula (5). Accordingly, the melting point of the slag is increased, the bonding force of the residue is lowered and the separation is facilitated, and the removability of the residue is improved. On the other hand, no. Nos. 4 and 7 indicate that in the component composition of the agglomerate, the value of [CaO] / [SiO 2 ] is in the range of 0.25 to 1.20, and the value of [Al 2 O 3 ] / [SiO 2 ] is 0. The range of 2 to 0.7 is satisfied, and the value of [MgO] / [SiO 2 ] is 0.4 or less, and none of the above formulas (5) to (9) is satisfied. Therefore, the adhesion to the hearth is increasing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実験例2]
 CaO、SiO2、MgOが共存する状況で酸化鉄が還元される過程において、溶融スラグの生成挙動を正確に観察することは困難である。即ち、固体と液体の間に固液共存状態が存在すること、および各酸化物が均一に存在していないため、溶融スラグのどの状態が金属鉄の焼結と、ウスタイトの粗大結合の促進に寄与しているか明らかにならない。
[Experiment 2]
In the process in which iron oxide is reduced in the presence of CaO, SiO 2 and MgO, it is difficult to accurately observe the generation behavior of molten slag. That is, since there exists a solid-liquid coexistence state between the solid and the liquid, and each oxide does not exist uniformly, which state of the molten slag promotes the sintering of metallic iron and the coarse bond of wustite. It is not clear whether it contributes.
 SiO2を脈石成分とする鉄鉱石に、MgO源としてマグネサイト、CaO源として石灰石を配合してペレット(塊成物)を作製し、これを空気中で、1300℃の電気炉で10分間加熱して焼成し、次いでガス還元したときに、還元時のペレットの変形率を測定し、CaO、SiO2、MgOがペレットの変形に及ぼす影響を調べた結果が「High Temperature Reduction and Softening Properties of Pellets with Magnesite」(Transactions of the Iron and Steel Institute of Japan、社団法人 日本鉄鋼協会発行、 vol.23(1983)、No.2、p153)に記載されている。 Pellet (agglomerate) is prepared by blending iron ore containing SiO 2 as a gangue component with magnesite as the MgO source and limestone as the CaO source, and this is made in an electric furnace at 1300 ° C. for 10 minutes in the air. When heated and fired, and then gas-reduced, the deformation rate of the pellets during reduction was measured, and the results of examining the effects of CaO, SiO 2 and MgO on the deformation of the pellets were found as “High Temperature Reduction and Softening Properties of Pellets with Magnesite ”(Transactions of the Iron and Steel Institute of Japan, published by the Japan Iron and Steel Institute, vol. 23 (1983), No. 2, p153).
 ここで、焼成ペレットのガス還元は、ペレット1個に0.5kgの荷重を加えた状態で、還元ガス(COガス:N2ガス=30体積%:70体積%)を流しながら10℃/分で1500℃まで昇温して行われている。このときペレット中のSiO2量を0.3%とし、[MgO]/[SiO2]を0.01~1.32の範囲で変化させて還元前後におけるペレットの変形率を測定した結果が上記文献に示されている。この結果を図1に示す。 Here, the gas reduction of the calcined pellets is performed at 10 ° C./min while flowing a reducing gas (CO gas: N 2 gas = 30 vol%: 70 vol%) with a load of 0.5 kg applied to one pellet. The temperature is raised to 1500 ° C. At this time, the amount of SiO 2 in the pellet was set to 0.3%, and [MgO] / [SiO 2 ] was changed in the range of 0.01 to 1.32. It is shown in the literature. The result is shown in FIG.
 ペレットの変形は、酸化鉄が金属鉄に還元されることによる収縮変形と溶融スラグの生成による変形に基づくが、1100℃以上の変形は殆ど後者による変形と考えてよい。このことは、上記文献に示されているペレット断面の組織写真を観察すれば明らかとなる。この文献に示されている組織写真を図2に示す。図2は、SiO2が4.5%で、[MgO]/[SiO2]=0.59の焼成ペレットを1300℃に加熱して還元したペレットの断面を撮影した図面代用写真であり、図2の(1)はペレットの外周部、図2の(2)はペレットの内部の状態を示している。(1)では白色で示される金属鉄が多く生成しているが、(2)では灰色で示されるウスタイトと黒色で示される溶融スラグが存在していることが分かる。また、ウスタイト粒子が粗大化し、その表面が溶融して丸みのある形状になっていることから、1100℃以上の変形は溶融スラグの生成に起因することが明らかである。 The deformation of the pellet is based on shrinkage deformation due to reduction of iron oxide to metallic iron and deformation due to generation of molten slag, but deformation above 1100 ° C. may be considered as deformation due to the latter. This becomes clear by observing the structure photograph of the pellet cross section shown in the above document. The structure photograph shown in this document is shown in FIG. FIG. 2 is a drawing-substituting photograph in which a cross section of a pellet obtained by heating and reducing a fired pellet of [MgO] / [SiO 2 ] = 0.59 at 1300 ° C. with a SiO 2 content of 4.5% is shown in FIG. 2 (1) shows the outer periphery of the pellet, and FIG. 2 (2) shows the internal state of the pellet. In (1), a large amount of metallic iron shown in white is produced, but in (2), it can be seen that wustite shown in gray and molten slag shown in black exist. Further, since the wustite particles are coarsened and the surface thereof is melted to have a rounded shape, it is clear that the deformation at 1100 ° C. or more is caused by the generation of molten slag.
 また、上記文献では、ペレットの成分組成がペレットの変形に及ぼす影響を、ペレットが40%収縮するときの温度(以下、40%収縮温度ということがある。)を測定することによって評価している。この結果を図3、図4に示す。 Further, in the above document, the influence of the component composition of the pellet on the deformation of the pellet is evaluated by measuring the temperature at which the pellet shrinks by 40% (hereinafter sometimes referred to as 40% shrinkage temperature). . The results are shown in FIGS.
 図3は、SiO2量を4.4%(○印)または8.3%(×印)とし、CaOを含まず、[MgO]/[SiO2]を変化させたときの結果を示している。図4は、[MgO]/[SiO2]=0.72とし、[CaO]/[SiO2]を変化させたときの結果を示している。 FIG. 3 shows the results when the amount of SiO 2 is 4.4% (◯) or 8.3% (×), CaO is not included, and [MgO] / [SiO 2 ] is changed. Yes. FIG. 4 shows the results when [MgO] / [SiO 2 ] = 0.72 and [CaO] / [SiO 2 ] is changed.
 図3から明らかなように、CaOが共存しない場合は、[MgO]/[SiO2]が大きくなるに伴って40%収縮温度が単調に上昇するが、CaOが共存する場合は、[CaO]/[SiO2]=0.45で40%収縮温度は極小値となることが分かる。40%収縮温度が1350℃を示すときの成分組成は、CaOが共存しない場合は、図3から[MgO]/[SiO2]が0.4超、CaOが共存する場合は、図4から[CaO]/[SiO2]が0.18未満または1.05超と判断される。この結果は、CaOとMgOが共存する場合の上記範囲と異なるが、上記実施例1の結果を重要視して、[CaO]/[SiO2]の範囲を0.25未満または1.20超と規定した。 As apparent from FIG. 3, when CaO does not coexist, the 40% shrinkage temperature increases monotonically as [MgO] / [SiO 2 ] increases, but when CaO coexists, [CaO] / [SiO 2 ] = 0.45, it can be seen that the 40% shrinkage temperature is minimal. The composition of the composition when the 40% shrinkage temperature is 1350 ° C. is shown in FIG. 3 when CaO does not coexist, and [MgO] / [SiO 2 ] exceeds 0.4 and when CaO coexists from FIG. It is judged that CaO] / [SiO 2 ] is less than 0.18 or more than 1.05. Although this result is different from the above range when CaO and MgO coexist, the range of [CaO] / [SiO 2 ] is less than 0.25 or more than 1.20 with an emphasis on the result of Example 1 above. Stipulated.
 このような考え方は、3元平衡状態図からも妥当であることが定性的に明らかになる。 Qualitatively, it is clarified that such a concept is also valid from the ternary equilibrium diagram.
 図5は、SiO2-MgO-FeO系3元平衡状態図を示している。この図5に、[MgO]/[SiO2]=0.4の一定値を記入すると直線となり、このときの融点は、FeO量が変化しても、1450℃を示しており、[MgO]/[SiO2]の低下によって融点が単調に低下することがわかる。 FIG. 5 shows a SiO 2 —MgO—FeO ternary equilibrium diagram. In FIG. 5, when a constant value of [MgO] / [SiO 2 ] = 0.4 is entered, it becomes a straight line, and the melting point at this time shows 1450 ° C. even if the amount of FeO changes, and [MgO] It can be seen that the melting point decreases monotonously with a decrease in / [SiO 2 ].
 なお、融点が1450℃であったとしても、例えば、1350℃で脈石成分の全てが固体であるとは限らない。約1200℃以上であれば脈石成分の一部が溶融するため、融点が高いということは、溶融量が少ない状態を意味しているだけである。 Even if the melting point is 1450 ° C., for example, all gangue components are not always solid at 1350 ° C. Since a part of the gangue component melts at about 1200 ° C. or higher, a high melting point only means a state where the amount of melting is small.
 図6は、CaO-SiO2-MgO系3元平衡状態図を示している。この図6に、[MgO]/[SiO2]=0.4、[MgO]/[SiO2]=0.72、[CaO]/[SiO2]=0.25、[CaO]/[SiO2]=0.45、[CaO]/[SiO2]=1.20の一定値を記入すると直線となり、[MgO]/[SiO2]が一定であっても、[CaO]/[SiO2]が変化すると、[CaO]/[SiO2]が0.45で融点が約1400℃の化合物CaO・MgO・2SiO2に近づく。即ち、低融点化合物の組成に近いほど融液が多く生成することを意味している。図6の点線で示すように、スラグの融点を約1450℃以上にするには、[CaO]/[SiO2]を0.25未満または1.20超にすればよいことが分かる。 FIG. 6 shows a CaO—SiO 2 —MgO ternary equilibrium diagram. In FIG. 6, [MgO] / [SiO 2 ] = 0.4, [MgO] / [SiO 2 ] = 0.72, [CaO] / [SiO 2 ] = 0.25, [CaO] / [SiO 2 ] = 0.45 and a constant value of [CaO] / [SiO 2 ] = 1.20 is a straight line, and even if [MgO] / [SiO 2 ] is constant, [CaO] / [SiO 2 ] ] Changes to a compound CaO.MgO.2SiO 2 having a [CaO] / [SiO 2 ] of 0.45 and a melting point of about 1400 ° C. That is, the closer the composition of the low melting point compound is, the more melt is generated. As shown by the dotted line in FIG. 6, it can be seen that [CaO] / [SiO 2 ] should be less than 0.25 or more than 1.20 in order to make the melting point of slag about 1450 ° C. or higher.
 [実験例3]
 上記実験例2において、Al23がペレットの変形に及ぼす影響を調べた。
[Experiment 3]
In Experimental Example 2, the influence of Al 2 O 3 on the deformation of the pellet was examined.
 図7は、CaO-SiO2-Al23系3元平衡状態図を示している。この図7に、[Al23]/[SiO2]=0.2、[Al23]/[SiO2]=0.7、[CaO]/[SiO2]=0.25、[CaO]/[SiO2]=1.20の一定値を記入すると直線となる。この直線で囲まれた領域は、融点が1250℃程度の低融点スラグが一部生成する領域となり、この領域から外れると、高融点領域となる。従ってこの領域を外れると、溶融スラグの生成量を低減できると考えられる。 Figure 7 shows a CaO-SiO 2 -Al 2 O 3 based ternary equilibrium diagram. In FIG. 7, [Al 2 O 3 ] / [SiO 2 ] = 0.2, [Al 2 O 3 ] / [SiO 2 ] = 0.7, [CaO] / [SiO 2 ] = 0.25, When a constant value of [CaO] / [SiO 2 ] = 1.20 is entered, a straight line is obtained. The region surrounded by the straight line is a region where a part of the low melting point slag having a melting point of about 1250 ° C. is generated. Therefore, it is considered that the amount of molten slag produced can be reduced if it is outside this region.
 本発明によれば、炉内から排出できないほどの大きな鉄板等の固着物が炉床上に形成されることや、炉床表面が隆起することを防止できるため、設備を大幅に設計変更することなく、金属鉄を効率良く製造できる。 According to the present invention, it is possible to prevent a solid material such as an iron plate that cannot be discharged from the inside of the furnace from being formed on the hearth or to raise the hearth surface, so that the design of the equipment is not significantly changed. Metallic iron can be produced efficiently.

Claims (9)

  1. 酸化鉄含有物質と炭素質還元剤を含む混合物を原料とした塊成物を、移動炉床式加熱炉の炉床上に装入して加熱し、該塊成物中の酸化鉄を還元して金属鉄を製造するにあたり、
    塊成物由来の粉末に含まれる酸化鉄が加熱還元されて形成される金属鉄および/またはウスタイトを炉床上に固着させないための炉床形成材を、前記塊成物と共に炉内に装入することを特徴とする金属鉄の製造方法。
    An agglomerate made of a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is charged on the hearth of a moving hearth heating furnace and heated to reduce the iron oxide in the agglomerate. In producing metallic iron,
    A hearth forming material for preventing metallic iron and / or wustite formed by heat reduction of iron oxide contained in the powder derived from the agglomerate on the hearth is charged into the furnace together with the agglomerate. The manufacturing method of metallic iron characterized by the above-mentioned.
  2. 前記塊成物に含まれる炭素量が、該塊成物中の酸化鉄を還元するために必要な炭素量に対して122%(質量%の意味。以下同じ。)以上の場合には、
    前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、Al23の量が、下記式(1)および式(2)を満足するように前記炉床形成材の成分組成を調整する請求項1に記載の製造方法。
    [CaO]/[SiO2]=0.25~1.20  ・・・(1)
    [Al23]/[SiO2]=0.2~0.7  ・・・(2)
    [式(1)、式(2)中、[ ]は、各成分の含有量(質量%)を表す。]
    When the amount of carbon contained in the agglomerate is 122% (meaning mass%; the same shall apply hereinafter) or more with respect to the amount of carbon necessary to reduce iron oxide in the agglomerate,
    For component composition combined with the hearth forming material powder from the agglomerates, CaO, the amount of SiO 2, Al 2 O 3 is the so as to satisfy the following formula (1) and (2) The manufacturing method of Claim 1 which adjusts the component composition of a hearth forming material.
    [CaO] / [SiO 2 ] = 0.25 to 1.20 (1)
    [Al 2 O 3 ] / [SiO 2 ] = 0.2 to 0.7 (2)
    [In Formula (1) and Formula (2), [] represents the content (% by mass) of each component. ]
  3. 前記塊成物に含まれる炭素量が、該塊成物中の酸化鉄を還元するために必要な炭素量に対して122%未満の場合には、
    前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成の合計炭素量が、前記塊成物中の酸化鉄を還元するために必要な炭素量に対して122%以上となり、且つ
    前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、Al23の量が、下記式(3)および式(4)を満足するように前記炉床形成材の成分組成を調整する請求項1または2に記載の製造方法。
    [CaO]/[SiO2]=0.25~1.20  ・・・(3)
    [Al23]/[SiO2]=0.2~0.7  ・・・(4)
    [式(3)、式(4)中、[ ]は、各成分の含有量(質量%)を表す。]
    When the amount of carbon contained in the agglomerate is less than 122% with respect to the amount of carbon required to reduce iron oxide in the agglomerate,
    The total carbon content of the component composition combining the powder derived from the agglomerate and the hearth forming material is 122% or more with respect to the carbon amount required to reduce iron oxide in the agglomerate, for and the hearth-forming material as the composition of the combined powder from the agglomerates, CaO, so that the amount of SiO 2, Al 2 O 3 is, it satisfies the following formula (3) and (4) The manufacturing method of Claim 1 or 2 which adjusts the component composition of the said hearth forming material.
    [CaO] / [SiO 2 ] = 0.25 to 1.20 (3)
    [Al 2 O 3 ] / [SiO 2 ] = 0.2 to 0.7 (4)
    [In Formula (3) and Formula (4), [] represents the content (% by mass) of each component. ]
  4. 前記塊成物に含まれる炭素量が、該塊成物中の酸化鉄を還元するために必要な炭素量に対して122%未満の場合には、
    前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成の合計炭素量が、前記塊成物中の酸化鉄を還元するために必要な炭素量に対して122%未満のままであり、且つ
    前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、Al23、MgOの量が、下記式(5)~式(9)の少なくとも一つを満足するように前記炉床形成材の成分組成を調整する請求項1または2に記載の製造方法。
    [CaO]/[SiO2]<0.25  ・・・(5)
    [CaO]/[SiO2]>1.20  ・・・(6)
    [Al23]/[SiO2]<0.2  ・・・(7)
    [Al23]/[SiO2]>0.7  ・・・(8)
    [MgO]/[SiO2]>0.4  ・・・(9)
    [式(5)~式(9)中、[ ]は、各成分の含有量(質量%)を表す。]
    When the amount of carbon contained in the agglomerate is less than 122% with respect to the amount of carbon required to reduce iron oxide in the agglomerate,
    The total carbon amount of the component composition of the powder derived from the agglomerate and the hearth forming material remains below 122% with respect to the amount of carbon required to reduce iron oxide in the agglomerate. And the amounts of CaO, SiO 2 , Al 2 O 3 , and MgO are the following formulas (5) to (9) for the component composition of the agglomerate-derived powder and the hearth forming material: The manufacturing method of Claim 1 or 2 which adjusts the component composition of the said hearth forming material so that at least one of these may be satisfied.
    [CaO] / [SiO 2 ] <0.25 (5)
    [CaO] / [SiO 2 ]> 1.20 (6)
    [Al 2 O 3 ] / [SiO 2 ] <0.2 (7)
    [Al 2 O 3 ] / [SiO 2 ]> 0.7 (8)
    [MgO] / [SiO 2 ]> 0.4 (9)
    [In the formulas (5) to (9), [] represents the content (% by mass) of each component. ]
  5. 前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、およびAl23の合計量が3.0~7.0%となるように前記炉床形成材の成分組成を調整する請求項2に記載の製造方法。 Regarding the component composition of the powder derived from the agglomerate and the hearth-forming material, the hearth so that the total amount of CaO, SiO 2 and Al 2 O 3 is 3.0 to 7.0%. The manufacturing method of Claim 2 which adjusts the component composition of a forming material.
  6. 前記塊成物由来の粉末と前記炉床形成材とを合わせた成分組成について、CaO、SiO2、およびAl23の合計量が7.0%超となるように前記炉床形成材の成分組成を調整する請求項4に記載の製造方法。 For component composition combined with the hearth forming material powder from the agglomerates, CaO, SiO 2, and Al 2 O 3 the total amount the furnace floor forming member such that 7.0 percent The manufacturing method of Claim 4 which adjusts a component composition.
  7. 前記炉内に装入する炉床形成材の全量に対して、粒子直径が0.5~2mmの炉床形成材の割合を50質量%以上とする請求項1に記載の製造方法。 The production method according to claim 1, wherein the ratio of the hearth forming material having a particle diameter of 0.5 to 2 mm to 50 mass% or more with respect to the total amount of the hearth forming material charged in the furnace.
  8. 前記塊成物として、粒径が5~50mmのものを用いる請求項1に記載の製造方法。 The production method according to claim 1, wherein the agglomerate has a particle size of 5 to 50 mm.
  9. 前記塊成物を前記移動炉床炉式加熱炉内で1200~1400℃で加熱する請求項1に記載の製造方法。 The production method according to claim 1, wherein the agglomerate is heated at 1200 to 1400 ° C in the moving hearth furnace.
PCT/JP2011/060558 2010-05-06 2011-05-02 Process for production of metal iron WO2011138954A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/696,412 US20130055853A1 (en) 2010-05-06 2011-05-02 Method for producing metallic iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-106659 2010-05-06
JP2010106659 2010-05-06

Publications (1)

Publication Number Publication Date
WO2011138954A1 true WO2011138954A1 (en) 2011-11-10

Family

ID=44903805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060558 WO2011138954A1 (en) 2010-05-06 2011-05-02 Process for production of metal iron

Country Status (3)

Country Link
US (1) US20130055853A1 (en)
JP (1) JP2011252226A (en)
WO (1) WO2011138954A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227605A (en) * 2012-04-24 2013-11-07 Kobe Steel Ltd Metallic iron-containing sintered body
JP2014062321A (en) * 2012-08-28 2014-04-10 Kobe Steel Ltd Method of manufacturing reduced iron agglomerated product
JP2014159622A (en) * 2013-02-20 2014-09-04 Kobe Steel Ltd Method of producing reduced iron
JP7255272B2 (en) * 2019-03-25 2023-04-11 住友金属鉱山株式会社 Nickel oxide ore smelting method, reduction furnace
JP7234768B2 (en) * 2019-04-16 2023-03-08 日本製鉄株式会社 Preheating method of immersion nozzle
CN113684335B (en) * 2021-09-07 2023-06-09 西安交通大学 Metal iron and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161215A (en) * 1997-08-19 1999-03-05 Sumitomo Metal Ind Ltd Device for forming and charging raw material for producing reduced iron and method therefor
JP2001279313A (en) * 2000-03-30 2001-10-10 Midrex Internatl Bv Method for producing molten metallic iron

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0105934B8 (en) * 2000-03-30 2013-09-17 Method for producing granular metal iron.
JP4757982B2 (en) * 2000-06-28 2011-08-24 株式会社神戸製鋼所 Method for improving the yield of granular metallic iron
JP4669189B2 (en) * 2001-06-18 2011-04-13 株式会社神戸製鋼所 Production of granular metallic iron
JP4266284B2 (en) * 2001-07-12 2009-05-20 株式会社神戸製鋼所 Metal iron manufacturing method
JP4116874B2 (en) * 2002-12-05 2008-07-09 株式会社神戸製鋼所 Liquid iron manufacturing method
TW200613566A (en) * 2004-10-29 2006-05-01 Kobe Steel Ltd Process for producing molten iron and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161215A (en) * 1997-08-19 1999-03-05 Sumitomo Metal Ind Ltd Device for forming and charging raw material for producing reduced iron and method therefor
JP2001279313A (en) * 2000-03-30 2001-10-10 Midrex Internatl Bv Method for producing molten metallic iron

Also Published As

Publication number Publication date
US20130055853A1 (en) 2013-03-07
JP2011252226A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP4669189B2 (en) Production of granular metallic iron
JP5503420B2 (en) Method for producing granular metal
WO2011138954A1 (en) Process for production of metal iron
CA2720896C (en) Titanium oxide-containing agglomerate for producing granular metallic iron
WO2012002338A1 (en) Process for producing molten steel using particulate metallic iron
JP2010229525A (en) Method for producing ferronickel and ferrovanadium
JP2010111941A (en) Method for producing ferrovanadium
JP5762403B2 (en) Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material
WO2011118738A1 (en) Carbon-material-containing iron oxide briquette composition, method for producing same, and method for producing reduced iron using same
JP5334240B2 (en) Method for producing reduced iron agglomerates for steelmaking
JP2013209748A (en) Method of manufacturing reduced iron agglomerate
WO2009145348A1 (en) Method for manufacturing pig iron
JP5420935B2 (en) Manufacturing method of granular metallic iron
JP2004183070A (en) Method for producing molten iron
JP2010090431A (en) Method for producing ferro-alloy containing nickel and vanadium
JP5498919B2 (en) Method for producing reduced iron
JP5210555B2 (en) Manufacturing method of granular metallic iron
JP2003239008A (en) Method for operating movable type hearth furnace and solid reducing material for protecting furnace hearth refractory
JP2009041107A (en) Method for manufacturing granular metal
JP2010196148A (en) Iron raw material and manufacturing method therefor
JP5042203B2 (en) Production of granular metallic iron
JP5671426B2 (en) Manufacturing method of granular metallic iron
JP5608144B2 (en) Method for producing reduced iron
JP2011179090A (en) Method for producing granulated iron
JP5503364B2 (en) Carbonaceous material agglomerated material, method for producing the same, and method for producing reduced iron using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11777473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13696412

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11777473

Country of ref document: EP

Kind code of ref document: A1