WO2009131242A1 - Process for production of direct-reduced iron - Google Patents

Process for production of direct-reduced iron Download PDF

Info

Publication number
WO2009131242A1
WO2009131242A1 PCT/JP2009/058431 JP2009058431W WO2009131242A1 WO 2009131242 A1 WO2009131242 A1 WO 2009131242A1 JP 2009058431 W JP2009058431 W JP 2009058431W WO 2009131242 A1 WO2009131242 A1 WO 2009131242A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
dust
raw material
mixed raw
iron
Prior art date
Application number
PCT/JP2009/058431
Other languages
French (fr)
Japanese (ja)
Inventor
石渡夏生
広羽弘行
主代晃一
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020107022162A priority Critical patent/KR101234388B1/en
Priority to CN2009801146351A priority patent/CN102016080A/en
Priority to US12/936,566 priority patent/US20110036204A1/en
Publication of WO2009131242A1 publication Critical patent/WO2009131242A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/006Starting from ores containing non ferrous metallic oxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/143Injection of partially reduced ore into a molten bath
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/34Obtaining zinc oxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2200/00Recycling of non-gaseous waste material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2100/00Exhaust gas
    • C21C2100/02Treatment of the exhaust gas
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2200/00Recycling of waste material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/38Removal of waste gases or dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/216Sintering; Agglomerating in rotary furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a method for reducing iron-containing materials using a mobile hearth furnace, and more particularly to a method for producing reduced iron from iron ore containing zinc at a high concentration.
  • Crude steel production methods are broadly divided into the blast furnace single converter method, which produces pig iron from iron ore, and the electric furnace method, in which scrap is melted and refined.
  • the blast furnace single converter method which produces pig iron from iron ore
  • the electric furnace method in which scrap is melted and refined.
  • the mobile hearth furnace method is one of the processes for producing reduced metals represented by reduced iron.
  • iron ore and solid reductant are loaded on a horizontally moving hearth and heated by radiant heat from above to reduce the iron ore, and this reduction product on the hearth. It melts and separates slag and metal to produce reduced iron (see, for example, Japanese Patent Laid-Open Nos. 11-3 3 5 7 1 2 and 1- 1 7 2 3 1 2 .)
  • the zinc content is a component that causes troubles in blast furnace operation, but is also a valuable metal.
  • Zinc is an indispensable metal, for example, as a raw material for batteries, as well as a material for improving the corrosion resistance of the steel sheet surface.
  • it is common to oxidize and bake sulfide ore to make zinc oxide and to make zinc metal by wet or dry method, but in recent years, iron making dust etc.
  • a method has also been proposed in which crude zinc oxide is obtained and used as a raw material for making zinc.
  • crude zinc oxide with a zinc concentration exceeding 1 O mass% it is possible to obtain a high-concentration crude zinc oxide by processing such as the Wertz method, which can be used as a raw material for making zinc.
  • crude zinc oxide having a zinc concentration exceeding 50 m s s% it can be used directly as crude zinc oxide used for zinc purification, such as the ISP method.
  • An object of this invention is to provide the manufacturing method of reduced iron which enables the effective utilization of a high zinc content iron ore.
  • the present invention provides a method for producing reduced iron having the following aspects.
  • the manufacturing method of reduced iron which has these.
  • the mixed raw material loaded on the movable hearth by supplying heat from the upper part of the hearth is reduced, and the mixed raw material is not melted or only partially melted to obtain reduced iron.
  • the step of preparing the raw materials includes iron ore (X) containing high zinc-containing iron ore (A) containing zinc in an amount of 0.0 lma ss% or more and iron in an amount of 50 mass% or more, and a zinc-containing dust,
  • the method for producing reduced iron according to [1] comprising preparing a mixed raw material containing a carbon-based solid reducing material. [9].
  • the zinc-containing dust is at least one dust selected from the group consisting of dust generated from a blast furnace, dust generated from a converter, and dust generated from an electric furnace [8] Method for producing reduced iron.
  • the step of preparing the raw materials includes iron ore (X) containing high-zinc-containing iron ore (A) containing 0.0 lma ss% or more of zinc and 50 m ass or more of iron, and the recovered dust.
  • the method for producing reduced iron according to [1], comprising: supplying heat from an upper part of the hearth to obtain crude zinc oxide from dust generated in the mobile hearth furnace.
  • the mixed raw material contains iron ore (X) containing zinc-containing iron ore (A) containing zinc in an amount of at least 0.01 mass% and iron in an amount of at least 50 mass%, a carbon-based solid reducing material,
  • the step of preparing the raw material includes iron ore (X) containing high zinc-containing iron ore (A) containing zinc in an amount of 0.0 lma ss% or more and iron in an amount of 50 ma ss% or more, and a zinc-containing dust.
  • the method for producing reduced iron according to [1] comprising preparing a mixed raw material comprising a carbon-based solid reducing material and a slagging material.
  • the zinc-containing dust is at least one dust selected from the group consisting of dust generated from a blast furnace, dust generated from a converter, and dust generated from an electric furnace [18] Method for producing reduced iron.
  • the step of preparing the raw material includes iron ore (X) containing high-zinc-containing iron ore (A) containing zinc in an amount of 0.0 lma ss% or more and iron in an amount of 50 ma ss% or more, and the recovered dust.
  • the method for producing reduced iron according to [1], comprising preparing a mixed raw material comprising a carbon-based solid reducing material and a slagging material.
  • the method for producing reduced iron according to [1], comprising: supplying heat from an upper part of the hearth to obtain crude zinc oxide from dust generated in the mobile hearth furnace.
  • the carbon material loading step Prior to the mixed raw material loading step, the carbon material loading step of loading the carbonaceous material on the mobile hearth in order to stack the mixed raw material on the mobile hearth after loading the carbonaceous material on the mobile hearth.
  • FIG. 1 is a schematic view showing an embodiment of a rotary hearth furnace used in the first embodiment.
  • FIG. 2 is a schematic diagram showing one embodiment of the equipment flow used in the first embodiment.
  • FIG. 3 is a schematic diagram (utilization of recovered dust) showing an embodiment of the equipment flow used in the first embodiment.
  • FIG. 4 is a schematic diagram (utilization of recovered dust) showing an embodiment of the equipment flow used in the first embodiment.
  • FIG. 5 is a graph showing the change in zinc concentration with respect to the blending ratio of the high zinc content ore of the mixed raw material in Example 1.
  • FIG. 6 is a schematic diagram showing an embodiment of a rotary hearth furnace used in the second embodiment.
  • FIG. 7 is a schematic diagram showing one embodiment of the facility entrance used in the second embodiment.
  • FIG. 8 is a schematic diagram (utilization of collected dust) showing one embodiment of the equipment flow used in the second embodiment.
  • FIG. 9 is a schematic diagram (using recovered dust) showing one embodiment of the equipment flow used in the second embodiment.
  • FIG. 10 is a graph showing the change in zinc concentration with respect to the blending ratio of the high zinc-containing ore of the mixed raw material in Example 2. Explanation of symbols
  • Rotary hearth furnace 2 furnace bodies, 2a pre-tropical, 2b
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the method for producing reduced iron according to Embodiment 1 includes a step of preparing a mixed raw material, a mixed raw material loading step, a reduction step, and a melting step.
  • the step of preparing the mixed raw material includes: an iron ore containing a high zinc-containing iron ore containing 0.0 lmass% or more of zinc and 50 mass% or more of iron; a carbon-based solid reducing material; Preparing mixed raw materials.
  • the mixed raw material loading step comprises loading the mixed raw material on a movable hearth.
  • the reduction step consists of reducing the mixed raw material loaded on the movable hearth by supplying heat from the top of the hearth.
  • the melting step comprises melting the reduction product.
  • the present inventors considered using a mobile hearth furnace to use iron ore containing high zinc and to effectively use the contained iron and zinc contents.
  • the method of producing granular iron using a mobile hearth furnace is one of the processes for producing reduced iron. Iron ore and solid reducing material are loaded on the hearth that moves in the horizontal direction, and radiation is applied from above. Heated by heat transfer, iron ore is reduced, the reduction product is melted on the hearth, and slag and metal are separated to produce reduced iron, which is reduced iron.
  • This mobile hearth furnace is a furnace that heats the hearth of the heating furnace while it moves horizontally.
  • a horizontal moving hearth typically has the form of rotational movement as shown in Fig. 1.
  • a mobile hearth furnace having the form of rotational movement is particularly called a rotary hearth furnace.
  • granular iron as reduced iron is produced by reducing and melting high-zinc-containing iron ore using such a mobile hearth furnace, particularly a rotary hearth furnace.
  • Embodiment 1 will be described for the case where a rotary hearth furnace is used as a mobile hearth furnace.
  • the high zinc content iron ore used in Embodiment 1 has a higher zinc content than iron ore used as a normal blast furnace raw material, and generally contains 0.0 lmass% or more of zinc and 5% of iron. Iron ore containing 0 mass% or more.
  • the upper limit of the zinc content of the high zinc content iron ore used in Embodiment 1 is not limited, but it is naturally determined from the fact that it is an iron ore.
  • zinc is about 0.5 mass%.
  • iron for example, it is about 7 O mass% or less.
  • the content of the alkali component such as N a 2 0, K 2 0 of the high zinc-containing iron ore, in terms of oxide is usually 0. 0 8 mass% or more.
  • the content of alkali components is preferably lmass% or less, which is one of the rotary hearth furnace exhaust gas systems. It is effective in preventing marijuana.
  • Embodiment 1 is a technique for producing granular iron using such high-zinc-containing iron ore.
  • ordinary iron ore When reducing high-zinc-containing iron ore in a rotary hearth furnace, ordinary iron ore is mixed. It can also be used. Even when used in combination with ordinary iron ore, the effect of Embodiment 1 can be suitably obtained when high zinc-containing iron ore is blended in an amount of about 10 m a s s% or more of the whole ore.
  • the rotary hearth furnace 1 has a hearth 3 that rotates and moves in a furnace body 2 partitioned into a pre-tropical zone 2a, a reduction zone 2b, a melting zone 2c, and a cooling zone 2d. It is a cover.
  • a raw material 4 made of iron ore containing high zinc and a solid reducing material is loaded.
  • this raw material 4 a mixed raw material in which a high zinc-containing iron ore, a carbon-based solid reducing material, and a slagging material are mixed is used.
  • the mixed raw material can also be agglomerated as described below.
  • the furnace body 2 covering the rotary hearth 3 is refractory. Furthermore, in order to protect the hearth refractory, there is a case where a carbon material is loaded on the hearth 3 and the raw material 4 is laminated thereon.
  • a burner 5 is installed at the top of the furnace body 2, and the iron ore in the mixed raw material 4 on the rotary hearth 3 is reduced using the heat of fuel combustion in the burner 5 as a heat source.
  • 6 is a charging device for charging the raw material onto the rotary hearth 3
  • 7 is a discharging device for discharging the reduced product
  • 8 is a cooling device.
  • the atmospheric temperature in the furnace body 2 is set to around 1300 ° C, but in the melting zone, it is usually controlled to a high temperature around 1450 ° C. '
  • High zinc-containing iron ore contains a gangue component, although the amount varies depending on the place of production.
  • carbon-based solid reducing materials coal, coal chain, and coatas contain ash. Therefore, the moving hearth furnace method, which performs only the reduction operation, is unavoidable that gangue is mixed in the reduced iron, which is a product, unlike the blast furnace single converter method. There is a possibility of adhering and mixing.
  • the metal produced by the reduction and the residual slag can be separated quickly, and high-density granular iron can be obtained. .
  • the granular iron obtained in the first embodiment is reduced and melted as described above to separate the slag component, and is discharged from the rotary hearth furnace before being compressed.
  • the apparent density can be set to 5 0 00 kg Zni 3 or more.
  • the product granular iron undergoes a sieving process, and the particle size becomes 3 mm or more and 10 O mm or less.
  • Carbon-based solid reducing materials include coal, coatas, graphite, and slagging materials include lime powder, dolomite, serpentine, and other basic components such as C a 0 and N a 2 0. .
  • the high-zinc-containing iron ore is a massive ore, it can be ground and reduced to, for example, an ore powder with a particle size of 1 O mm or less, then mixed with a carbon-based solid reducing material, etc., and loaded on a rotary hearth for reduction.
  • the high-zinc-containing iron ore When the high-zinc-containing iron ore is finely divided ore (particle size of 3 mm or less), it can be agglomerated together with a carbon-based solid reducing material and slagging material, and used as a carbonaceous material interior pellet.
  • the agglomerated raw material is less scattered during heating and can improve the zinc concentration of dust.
  • it can be compression molded and used as a pricket.
  • an inorganic binder such as bentonite and an organic binder such as molasses and corn starch can be mixed to increase the strength.
  • These pellets and prickets can be used after the water has evaporated.
  • it is also effective to use iron ore containing zinc oxide in powder form.
  • the heating temperature when reducing or melting high zinc-containing iron ore in a rotary hearth furnace is preferably 140 ° C. or higher. More preferably, it is 1450 ° C or higher.
  • the maximum temperature in the rotary hearth furnace is 1450 ° C or higher.
  • the raw material that is reduced and melted in the furnace and the furnace becomes high temperature.
  • the melted raw material is at 1450 ° C. or higher, sufficient fluidity can be ensured, and the gangue component in the metal iron can be easily removed, and fine iron with good properties can be obtained. It can be manufactured.
  • FIG. 2 shows a schematic diagram of the general equipment flow of a rotary hearth furnace that collects such dust.
  • the iron ore, coal, and slag material discharged from the ore hopper 1 1, coal hopper 1 2, and slagging material hopper 1 3 are mixed in a mixer 1 4 (using a pelletizer, etc. if necessary).
  • the mixed raw material is mixed, heated in a rotary hearth furnace 15 and reduced / melted to become reduced iron, which is discharged from the reduced iron outlet 16.
  • the exhaust gas generated in the rotary hearth furnace 15 is sucked by the suction fan 19 and discharged from the chimney 20.
  • the dust is collected by the bag filter 17 for the exhaust gas duct. Collected dust is carried out using a lorry for powder conveyance.
  • the zinc concentration in the recovered dust can be set to 1 m s s% or higher.
  • first recovered dust Dust recovered from the exhaust gas generated in the rotary hearth furnace as described above (hereinafter referred to as “first recovered dust”) is again processed by supplying heat from the top of the hearth in the rotary hearth furnace, By collecting the dust generated in the rotary hearth furnace, crude zinc oxide can be obtained.
  • the recovered dust collected when the first collected dust is treated again in the rotary hearth furnace is referred to as “second recovered dust”.
  • second recovered dust When the first recovered dust is processed in the rotary hearth furnace, only the first collected dust needs to be processed, but from the viewpoint of promoting the reduction reaction, a small amount (2 HI for the first recovered dust). Ass% or less) can also be mixed with carbon-based solid reducing material or slagging material.
  • the dumbbells in the first recovered dust can be concentrated as described below. If the zinc concentration in the first recovered dust is greater than or equal to a predetermined amount, the first recovered dust can be mixed with a carbon-based solid reducing material, ironmaking material, and iron ore to increase the production of granular iron. If the target zinc concentration in the second recovered dust is the same when the iron ore is mixed with the first recovered dust, the amount of iron ore added can be increased by using high zinc-containing iron ore. It is preferable because a larger amount of granular iron can be produced while concentrating zinc in the dust.
  • the concentration of zinc in the dust can be achieved by transporting the first collected dust from the dust yard 2 3 using a powder transport lorry 1 8 etc. to the rotary hearth furnace 1 5. This can be done by sucking the generated exhaust gas and collecting the dust with the bag filter 17 for the exhaust gas duct.
  • it can be implemented by providing a first recovered dust storage hopper 2 2 in parallel with the mixed material hopper 1 1-1 3. wear.
  • This equipment is the same as the equipment shown in Fig. 2, except that a recovered dust transport conveyor 21 and a first collected dust storage hopper 22 are added.
  • the recovered dust transport conveyor 1 2 1 is branched into 2 1 a and 2 1 b.
  • the first recovered dust transport conveyor 1 2 1 a transports the first recovered dust to the first recovered dust storage hopper 2 2, It can be heated and reused in the rotary hearth furnace 15 and the second recovered dust can be extracted as a product by the second recovered dust transfer conveyor 21 b.
  • the second recovered dust that is extracted is a fine powder, and is transported using, for example, a powder transport lorry 18.
  • the first recovered dust is stored in the first recovered dust storage hopper 22 and rotated by combining a small amount of carbon-based solid reducing material, ironmaking material, and iron ore. Used as raw material for hearth furnace, recovered as second recovered dust when reduced and melted in rotary hearth furnace 15.
  • the second recovered dust containing crude zinc oxide has different uses depending on the zinc concentration, but the second recovered dust produced by the above method has a zinc concentration exceeding 1 O mass%. Therefore, a high concentration of crude zinc oxide can be obtained by intermediate treatment such as the Wertz method, and it can be used as a raw material for zinc.
  • the rotary furnace The zinc concentration of the second recovered dust obtained by processing in the floor furnace can be set to 0.5 O mass% or more. If the zinc concentration of the recovered dust obtained is 5 O m s s% or more, intermediate treatment is not necessary and it can be used directly as crude zinc oxide used for zinc scouring.
  • the zinc concentration in the recovered dust (second recovered dust) is improved and the economy is improved.
  • the cost of constructing a separate facility (intermediate processing facility) for dust treatment is eliminated, and the cost of transporting the generated dust to the intermediate processing facility is unnecessary.
  • recovered dust containing crude zinc oxide has different uses depending on the zinc concentration, but recovered dust produced using zinc-containing dust, whether self-generated or externally generated, has a zinc concentration of l O mass Therefore, it can be made into high-concentration crude zinc oxide by an intermediate treatment such as the Wertz method, and can be used as a raw material for making zinc.
  • the zinc-containing dust used in combination with the high-zinc-containing iron ore is not particularly limited.
  • dust generated in the iron and steel industry such as dust generated from a blast furnace, dust generated from a converter, dust generated from an electric furnace, etc. Can be used.
  • the zinc concentration of the recovered dust obtained by processing in the rotary hearth furnace can be set to 50 m s s% or more. If the zinc concentration of the recovered recovered soot is 50 mass% or more, intermediate treatment is not necessary, and it can be used directly as crude zinc oxide used for zinc scouring. As described above, when reducing high zinc-containing iron ore in a rotary hearth furnace, mixing zinc-containing dust increases the concentration of zinc in the recovered dust and improves economic efficiency.
  • an embodiment of the present invention will be described in detail.
  • a mixed raw material containing high zinc content iron ore, carbon-based solid reducing material, and ironmaking material is loaded on the hearth of the rotary hearth furnace, heated up while rotating the hearth and moving in the furnace, Air or oxygen-added air is blown into the furnace, and CO or H 2 generated by the reduction reaction is secondarily burned.
  • the dust contained in the exhaust gas is recovered.
  • the mixed raw material remaining on the hearth is completely melted to form a liquid, which is then cooled and solidified to obtain separated iron particles.
  • Iron oxide in the ore reacts with carbon in the carbon-based solid reductant to form metallic iron.
  • Iron is carburized to form gangue (S i 0 2 , A l 2 0 3 , Mg O, etc.) lime powder, dolomite, mixed with basic components such as C a 0, N a 2 0 such as serpentinite, melting point is lowered, melted,
  • the zinc content in the ore exists as zinc oxide, and is reduced and volatilized by the carbon-based solid reducing material, transported to the exhaust gas, oxidizes and aggregates simultaneously with cooling, separated from the exhaust gas, and recovered as dust.
  • This dust is concentrated in zinc, and can be used as a raw material for zinc slag by direct or re-refining process.
  • the rotary hearth furnace does not have a packed bed, phenomena such as adhesion of coatings and ores and immobilization of the packing due to the zinc content contained in the blast furnace adhering to the furnace wall occur. It will not interfere with operations. '' When the rotary hearth furnace is heated, the zinc component volatilizes and is transported to the exhaust gas. At the same time, a part of the mixed raw material loaded on the hearth is scattered and mixed with the recovered dust. Therefore, the zinc concentration in the recovered dust is determined by the amount of zinc that volatilizes and the amount of mixed raw material that scatters. The higher the zinc concentration in the mixed raw material, the higher the zinc concentration in the recovered dust.
  • the amount of the mixed raw material scattered is almost constant in normal operation, and is about 0.5 mass% of the mixed raw material input amount.
  • the higher the zinc concentration in the dust the higher the value as a zinc raw material. Therefore, by carrying out the present invention, dust with a high zinc concentration is recovered, and it becomes possible to use iron ore with high zinc content more effectively.
  • Example 1 by using dust recovered in all or part of the mixed raw material loaded on the rotary hearth furnace, it is also possible to further concentrate and recover zinc in the dust having a high zinc concentration.
  • Table 2 shows the composition of the ore used.
  • Ore A is a high zinc content iron ore, and ore B is a common ore with low zinc content.
  • the gangue and iron content are almost the same in both cases, but the zinc concentration of ore A is about 50 times that of ore B.
  • coal as a carbon-based solid reducing material, and lime as a slagging material were mixed to make a mixed raw material.
  • Table 3 shows the composition of the coal used and Table 4 shows the composition of the mixed raw materials used in the test.
  • F C is fixed carbon
  • VM is volatile
  • a sh is ash.
  • Table 4 The rotary hearth furnace was operated under the conditions shown in Table 5 using Formulations 1 to 3 shown in Table 4.
  • coal is laid on the hearth as a carbon material with a layer thickness of 50 mm, the mixed raw material is layered with the lower layer carbon material, and the mixed raw material is not agglomerated and loaded with a layer thickness of about 10 mm.
  • When used as "powder” The agglomerated pellets with a particle size of 10 to 15 mm are shown as “lumps” in the raw material column. Table 5
  • Table 6 shows the results of dust zinc concentration and iron recovery rate when granular iron was produced under the conditions shown in Table 5.
  • Table D In Table 6, Operation No. 3 is an example of the present invention using a high zinc content ore. The zinc concentration in the dust has risen to 7.8 ma ss%.
  • Operation No. 4 is an example in which about 1 Om ass% of high zinc content iron ore is blended in general ore. Even in this case, the zinc concentration in the dust has increased to 1. Oma SS % or more. +
  • Operation No. 5 was heat-treated at a high temperature of 1450 ° C or higher, and it can be seen that the treatment time was shortened and the productivity was improved.
  • Operation No. 6 is the case where mixed raw materials are stacked on the hearth in addition to operation No. 5, and the iron recovery rate is increasing.
  • Operation No. 7 is the case where lump raw materials are used in addition to Operation No. 5, and the zinc concentration in the dust is increasing.
  • Table 7 and Fig. 5 show the concentration of ore zinc in the mixed raw material and the dust generated by the first treatment in the rotary hearth furnace, which is the raw material for the second treatment in the rotary hearth furnace. 1Measurement result of zinc concentration of recovered dust and measurement result of zinc concentration of second recovered dust, which is the final product dust.
  • Table 8 shows the composition of the zinc-containing dust used. Here, dust generated from the converter was used as zinc-containing dust.
  • Table 9 shows the blending ratio and zinc concentration of the zinc-containing dust in the mixed raw material, and the measurement results of the zinc concentration in the recovered dust.
  • the zinc concentration in the recovered dust increases with the increase in the blending ratio of the zinc-containing dust in the mixed raw material, and when the zinc concentration in the mixed raw material becomes 0.45 ma ss% or more, It can be seen that the zinc concentration of some recovered dust exceeds 5 Oma ss%, which makes it a raw material that can be used directly for zinc refining such as the ISP method.
  • Embodiment 2 The method for producing reduced iron according to Embodiment 2 includes a step of preparing a mixed raw material, a mixed raw material loading step, and a reduction step.
  • the process of preparing the mixed raw material is 0 ⁇ 0 1 m a s s for zinc. It comprises preparing a mixed raw material in which an iron ore containing a high zinc-containing iron ore containing 50 m a s s% or more of iron and a carbon-based solid reducing material is mixed.
  • the mixed raw material loading step comprises loading the mixed raw material on a movable hearth.
  • the reduction step consists of reducing the mixed raw material supplied from the upper part of the hearth and loaded on the movable hearth, and obtaining the reduced iron by not melting or partially melting the mixed raw material.
  • the present inventors have considered using a high-zinc-containing iron ore and using a mobile hearth furnace in order to effectively use the iron content and further the zinc content.
  • the method of producing reduced iron using a mobile hearth furnace is one of the processes for producing reduced iron. Iron ore and solid reductant are loaded on the horizontal moving hearth, and radiation is transmitted from above. Reduced iron ore is heated by heat to produce reduced iron. .
  • This mobile hearth furnace is a furnace that heats in the process of the horizontal movement of the hearth of the heating furnace.
  • the horizontally moving hearth has a form of rotational movement as shown in FIG.
  • This type of mobile hearth furnace is called a rotary hearth furnace.
  • reduced iron is produced by reducing the high zinc-containing iron ore using such a mobile type furnace, particularly a rotary hearth furnace.
  • Embodiment 2 will be described for the case where a rotary hearth furnace is used as the mobile S hearth furnace.
  • the high zinc content iron ore used in Embodiment 2 has a higher zinc content than iron ore used as a normal blast furnace raw material, and generally contains 0. Iron ore containing 0 mass% or more.
  • iron ore containing 0 mass% or more.
  • the high zinc content iron, the content of N a 2 0, an alkali component such as K2O stone, in terms of oxide is usually 0. 0 8 mass% or more.
  • Embodiment 2 is a technique for producing reduced iron using such high zinc-containing iron ore.
  • ordinary iron ore is mixed. It can also be used. Even when used in combination with ordinary iron ore, the effect of Embodiment 2 can be suitably obtained when high zinc-containing iron ore is blended in an amount of about 1 O mass% or more of the entire ore.
  • the rotary hearth furnace 1 is a furnace body 2 partitioned into a pre-tropical zone 2a, a reduction zone 2b, and a cooling zone 2d. is there.
  • a mixed raw material 4 in which a high zinc-containing iron ore and a carbon-based solid reducing material are mixed is loaded.
  • the mixed raw material 4 can also be agglomerated as described below.
  • the furnace body 2 covering the rotary hearth 3 is refractory.
  • a carbon material is loaded on the hearth 3 and the mixed raw material 4 is laminated thereon.
  • a burner 5 is installed in the furnace body 2, and the iron ore in the mixed raw material 4 on the rotary hearth 3 is reduced using the heat of fuel combustion in the burner 5 as a heat source.
  • 6 is a charging device for charging the mixed raw material onto the rotary hearth 3
  • 7 is a discharging device for discharging the reduced product
  • 8 is a cooling device.
  • the furnace temperature is limited to about 1300 ° C. This is because it is effective in extending the furnace refractory life.
  • the present invention does not actively melt the mixed raw material, a case where a part of the mixed raw material melts during the reduction process is also included in the scope of the second embodiment.
  • High zinc-containing iron ore contains a gangue component, although the amount varies depending on the place of production.
  • carbon-based solid reducing materials coal, coal chain, and coatas contain ash. Therefore, the moving hearth furnace method, which performs only the reduction operation, is unavoidable that gangue is mixed in the reduced iron, which is a product, unlike the blast furnace single converter method. There is a possibility of adhering and mixing. Therefore, the reduced iron obtained in the second embodiment is not sufficiently separated from the gangue component and ash, so the apparent density (however, it was discharged from the rotary hearth furnace before being compressed) state) 5 0 0 0 kg Zm 3 less than Jo on purpose and summer.
  • the iron ore When reducing high zinc-containing iron ore using a rotary hearth furnace, the iron ore is mixed with the carbon-based solid reducing material and loaded on the rotating hearth.
  • the carbon-based solid reducing material include coal, coke, and graphite.
  • the high-zinc iron ore is a lump ore, for example, ore powder with a particle size of 10 mm or less on the flour After that, it can be mixed with carbon-based solid reducing material and loaded on the rotary hearth for reduction.
  • the high-zinc-containing iron ore When the high-zinc-containing iron ore is finely divided ore (particle size of 3 mm or less), it can be agglomerated with a carbon-based solid reducing material and used as a carbonaceous interior pellet.
  • the agglomerated raw material is less scattered during heating and can improve the zinc concentration of dust.
  • it can be compressed before being used as a briquette.
  • an inorganic binder such as bentonite
  • organic binders such as molasses and corn starch
  • the heating temperature for reducing the high zinc-containing iron ore in the rotary hearth furnace is preferably 1250 ° C. or higher.
  • the maximum temperature in the rotary hearth furnace is set to 1250 ° C or higher.
  • the raw material to be reduced in the furnace and in the furnace becomes high temperature.
  • the temperature is set to 1 250 ° C. or higher, the reduction reaction becomes faster and reduced iron can be produced at high speed.
  • the upper limit of the heating temperature is a temperature at which the mixed raw material does not completely melt (less than 1450 ° C), but is controlled to be less than 1400 ° C in normal operation.
  • Dust contained in the exhaust gas generated in the rotary hearth furnace is recovered. This dust is concentrated in zinc compared to high zinc ore, so it can be used as a raw material for crude zinc oxide.
  • Figure 7 shows a schematic diagram of the general equipment flow of a rotary hearth furnace that collects such dust.
  • iron ore and coal discharged from ore hopper 1 1 and coal hopper 1 2 are mixed in a mixer 1 4 (using a pelletizer, etc. if necessary) to make a mixed raw material. It is reduced by heating at 15 to be reduced iron and discharged from the reduced iron discharge port 16. Times The exhaust gas generated in the converter floor furnace 15 is sucked by the suction fan 19 and discharged from the chimney 20. At that time, dust is collected by the pug filter 17 for the exhaust gas duct. Collected dust is carried out using a lorry for powder conveyance. In the case of blending high ore containing iron ore in the mixed raw material, about 1 O mass% or more of the whole ore, the zinc concentration in the recovered dust can be set to 1 mass% or more.
  • first recovered dust Dust recovered from the exhaust gas generated in the rotary hearth furnace as described above (hereinafter referred to as “first recovered dust”) is again processed by supplying heat from the top of the hearth in the rotary hearth furnace, By collecting the dust generated in the rotary hearth furnace, crude zinc oxide can be obtained.
  • the dust collected when the first collected dust is again processed in the rotary hearth furnace is referred to as “second recovered dust” hereinafter.
  • second recovered dust When processing the first recovered dust in the rotary hearth furnace, only the first collected dust needs to be processed, but from the viewpoint of promoting the reduction reaction, a small amount of the first recovered dust (with respect to the first recovered dust). (2 mass% or less) carbon-based solid reducing material can be mixed.
  • the zinc in the first recovered dust can be concentrated as described below.
  • the first recovered dust can be mixed with a carbon-based solid reducing material and iron ore to increase the amount of reduced iron produced.
  • the target zinc concentration in the second recovered dust is the same when the iron ore is mixed with the first recovered dust, the amount of iron ore added can be increased by using high zinc-containing iron ore. It is preferable because a larger amount of reduced iron can be produced while concentrating zinc in the dust.
  • the zinc collected in the dust is conveyed to the rotary hearth furnace 15 by transporting the first collected dust in the dust yard 23 using a lorry 18 for powder transportation. This can be done by sucking the generated exhaust gas and collecting the dust with the bag filter 17 for the exhaust gas duct.
  • the first recovered dust storage hopper 2 2 can be provided in parallel with the mixed material hoppers 1 1 and 1 2. This equipment is the same as the equipment shown in Fig. 7 except that a recovered dust transport conveyor 21 and a first collected dust storage hopper 22 are added.
  • the recovered dust transport conveyor 1 2 1 is branched into 2 1 a and 2 1 b.
  • the first recovered dust transport conveyor 1 2 1 a transports the first recovered dust to the first recovered dust storage hopper 2 2, It can be heated and reused in the rotary hearth furnace 15 and the second recovered dust can be extracted as a product by the second recovered dust transfer conveyor 21 b.
  • the second collected dust that is extracted is a fine powder. For example, it is transported using a powder transport port 1 18 or the like.
  • the first recovered dust is stored in the first recovered dust storage hopper 22 and a small amount of carbon-based solid reducing material and iron ore are blended to form a rotary hearth furnace. Used as a raw material and recovered as second recovered dust when heated and reduced in a rotary hearth furnace 15.
  • the second recovered dust containing crude zinc oxide has different uses depending on the zinc concentration, but the second recovered dust produced by the above method has a zinc concentration exceeding 1 O mass%. Therefore, a high concentration of crude zinc oxide can be obtained by intermediate treatment such as the Wertz method, and it can be used as a raw material for zinc.
  • the rotary furnace The zinc concentration of the second recovered dust obtained by processing in the floor furnace can be 5 O mass% or more. If the zinc concentration of the recovered dust obtained is 5 O m s s% or more, intermediate treatment is not necessary and it can be used directly as crude zinc oxide used for zinc scouring.
  • the zinc concentration in the recovered dust (second recovered dust) is improved and the economy is improved.
  • the cost of constructing a separate facility (intermediate processing facility) for dust treatment is eliminated, and the cost of transporting the generated dust to the intermediate processing facility is unnecessary.
  • dust contained in the exhaust gas generated in the rotary hearth furnace was recovered and used.
  • zinc-containing dust other than the recovered dust was mixed when reducing high zinc-containing iron ore in the rotary hearth furnace.
  • recovered dust containing crude zinc oxide has different uses depending on the zinc concentration, but the recovered dust produced using zinc-containing dust, whether self-generated or externally generated, has a zinc concentration of 1 O mass. Therefore, it can be made into high-concentration crude zinc oxide by an intermediate treatment such as the Wertz method, and can be used as a raw material for making zinc.
  • the zinc-containing dust used in combination with the high zinc-containing iron ore is not particularly limited.
  • dust generated in the iron and steel industry such as dust generated from a blast furnace, dust generated from a converter, and dust generated from an electric furnace can be used.
  • the sub-10 concentration of recovered dust obtained by processing in the rotary hearth furnace can be made 5 O m a s s% or more. If the recovered recovered zinc concentration is 50 m s s% or more, intermediate treatment is unnecessary, and it can be used directly as crude zinc oxide used for zinc scouring.
  • a mixed raw material containing high zinc-containing iron ore and carbon-based solid reducing agent is loaded on the hearth of the rotary hearth furnace, heated up while moving inside the furnace by rotating the hearth, and added with air or oxygen The blown air is blown into the furnace, and CO or H 2 generated by the reduction reaction is secondarily burned.
  • the dust contained in the exhaust gas is recovered.
  • the mixed raw material remaining on the hearth is sufficiently reduced to obtain reduced iron.
  • the zinc content in the ore exists as zinc oxide, and is reduced and volatilized by the carbon-based solid reducing material, transported to the exhaust gas, oxidizes and aggregates simultaneously with cooling, separated from the exhaust gas, and recovered as dust.
  • This dust is concentrated in zinc, and can be used as a raw material for zinc slag by direct or re-refining process.
  • the zinc concentration in the recovered dust is determined by the amount of zinc that volatilizes and the amount of mixed raw material that scatters.
  • the higher the zinc concentration in the mixed raw material the higher the zinc concentration in the recovered dust.
  • the amount of the mixed raw material scattered is almost constant in normal operation, and is about 0.5 mass% of the mixed raw material input amount.
  • the higher the zinc concentration in the dust the higher the value as a zinc raw material. Therefore, the second embodiment is implemented. By applying this, dust with a high zinc concentration is recovered, and iron ores with high zinc content can be used more effectively.
  • Table 11 shows the composition of the ore used.
  • T 1 F e is the total F e.
  • Ore A is a high zinc content iron ore, and ore B is a common ore with low zinc content.
  • the gangue and iron contents are almost the same, but the zinc concentration of ore A is about 50 times that of ore B.
  • Table 12 shows the composition of the coal used
  • Table 13 shows the composition of the mixed raw materials used in the test.
  • FC is fixed carbon
  • VM is volatile
  • Ash is ash.
  • the rotary hearth furnace was operated under the conditions shown in Table 14 using the formulations 1 to 3 shown in Table 13.
  • the mixed raw material is laminated with the lower layer carbon material, and when the mixed raw material is loaded with about 1 O mm and used, it is “powder”.
  • the agglomerated pellets with a particle size of 10 to 15 mm are shown as “lumps” in the raw material column.
  • Table 15 shows the results of dust zinc concentration and iron recovery rate when reduced iron was produced under the conditions shown in Table 14.
  • Operation No. 3 is an example of the present invention using a high zinc content ore.
  • the zinc concentration in the dust has increased to 7.6 ma ss%.
  • Operation No. 4 is an example of a case where about 10 m a s s% of high zinc content iron ore is blended in general ore. Even in this case, the zinc concentration in the dust has risen to more than 1.0 ma s s%.
  • Operation No. 5 was heat-treated at a high temperature of 1 250 ° C or higher, and it can be seen that the treatment time was shortened and the productivity was improved.
  • Operation No. 6 is the case where mixed raw materials are stacked on the hearth in addition to operation No. 5, and the iron recovery rate is increasing.
  • Operation No. 7 is the case where lump raw materials are used in addition to Operation No. 5, and the zinc concentration in the dust is increasing. Next, the collected dust was recycled.
  • Table 16 and Fig. 10 show the ore zinc concentration in the mixed raw material and the dust generated by the treatment in the first rotary hearth furnace.
  • the composition of the zinc-containing dust used is shown in Table 17.
  • dust generated from the converter was used as zinc-containing dust.
  • Table 18 shows the measurement results of the mixing ratio and zinc concentration of zinc-containing dust in the mixed raw material, and the zinc concentration of recovered dust.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A process for the production of direct-reduced iron, which comprises a step of preparing a mixed raw material, a step of charging the mixed raw material, and a reduction step.  The step of preparing a mixed raw material is conducted by preparing a mixed raw material containing both an iron ore (X) which contains a high-zinc iron ore (A) containing 0.01mass% or more of zinc and 50mass% or more of iron and a carbonaceous solid reducing agent.  The step of charging the mixed raw material is conducted by charging the mixed raw material onto a moving hearth.  The reduction step is conducted by providing heat from above the moving hearth and reducing the mixed raw material charged onto the moving hearth to obtain a reduction product.

Description

明細書 還元鉄の製造方法 技術分野  Description Method for producing reduced iron Technical Field
本発明は、 移動型炉床炉を用いて鉄含有物の還元を行う方法に関する、 特に、 亜鉛 を高濃度に含有する鉄鉱石から還元鉄を製造する方法に関する。 背景技術  The present invention relates to a method for reducing iron-containing materials using a mobile hearth furnace, and more particularly to a method for producing reduced iron from iron ore containing zinc at a high concentration. Background art
粗鋼生産法は、 鉄鉱石より銑鉄を生産して鋼とする高炉一転炉法と、 スクラップを 溶解して精鍊する電炉法とに大別される。 中国などの新興国の台頭により、 全世界的 な粗鋼生産量は急激に增加している。 特に、 高炉—転炉法で使用する鉄鉱石の需給は 逼迫し、 価格が高騰すると共に、 良質な鉄鉱石が入手困難となりつつある。  Crude steel production methods are broadly divided into the blast furnace single converter method, which produces pig iron from iron ore, and the electric furnace method, in which scrap is melted and refined. With the rise of emerging countries such as China, global crude steel production is increasing rapidly. In particular, the supply and demand for iron ore used in the blast furnace-converter method is tight, the price is rising, and high-quality iron ore is becoming difficult to obtain.
また上記の他に、 移動型炉床炉を用いた還元鉄の製造方法も知られている。 移動型 炉床炉法は、 還元鉄に代表される還元金属を製造するプロセスのひとつである。 移動 型炉床炉法では、 水平方向に移動する炉床に鉄鉱石と固体還元材等を積載し、 上方か ら輻射伝熱によって加熱して鉄鉱石を還元し、 炉床上でこの還元生成物 溶融し、 ス ラグとメタルを分離して還元鉄を製造するものである (例えば、 特開平 1 1— 3 3 5 7 1 2号公報、 特開平 1 1— 1 7 2 3 1 2号公報参照。)。  In addition to the above, a method for producing reduced iron using a mobile hearth furnace is also known. The mobile hearth furnace method is one of the processes for producing reduced metals represented by reduced iron. In the mobile hearth furnace method, iron ore and solid reductant are loaded on a horizontally moving hearth and heated by radiant heat from above to reduce the iron ore, and this reduction product on the hearth. It melts and separates slag and metal to produce reduced iron (see, for example, Japanese Patent Laid-Open Nos. 11-3 3 5 7 1 2 and 1- 1 7 2 3 1 2 .)
一方で、 鉄鉱石と同様に全世界的に亜鉛の需要は急増しており、 価格の高騰が問題 となっている。 亜鉛精練にはさまざまな方法があるが、 硫化鉱を酸化ばい焼して酸化 亜鉛を作り、 湿式や乾式で製鍊して、 亜鉛金属を得るのが一般的である。 この亜鉛に 関しても、 硫化鉱ゃ酸化亜鉛等、 亜鉛原料の不足が問題となっている。  On the other hand, as with iron ore, the demand for zinc is increasing rapidly all over the world. There are various methods for scouring zinc, but it is common to oxidize and bake sulfide ore to make zinc oxide, and then wet or dry it to obtain zinc metal. The lack of zinc raw materials such as sulfide ore and zinc oxide is also a problem with this zinc.
鉄原料、 亜鉛原料等の資源の不足が問題となっている状況下にあって、 本発明者ら は、 鉄鉱石の中には亜鉛分を通常より多く含む、 高亜鉛含有鉄鉱石に着目した。 この ような高亜鉛含有鉄鉱石も高炉一転炉法で原料として使用することが望ましいが、 亜 鉛含有量が高い原料はほとんど利用されていない。 その主な理由は、 鉱石中に含まれ る亜鉛が炉壁付着物として高炉内に残存するためである。 鉱石中の亜鉛分は焼結過程 を経て、 高炉に持ち込まれる。 高炉に持ち込まれた亜鉛は炉内にて還元され蒸気化す るが、 温度が低くかつ酸化ポテンシャルが高い部分に酸化凝集する。 高炉シャフト内 壁などは特に凝集しやすく、 周囲のコークスゃ鉱石を接着させ、 充填物を不動化させ る。 このような不動部分は 「アンザッッ」 と呼ばれ、 炉内充填物質の降下を不安定に させ、 「棚吊り」、 「スリップ」 などのトラブルを誘発する。 In the situation where the shortage of resources such as iron raw materials and zinc raw materials has become a problem, the present inventors have focused on high zinc-containing iron ores that contain more zinc than usual in iron ores. . It is desirable to use such high zinc-containing iron ore as a raw material in the blast furnace converter method, but raw materials with a high zinc content are rarely used. The main reason is that zinc contained in the ore remains in the blast furnace as furnace wall deposits. The zinc content in the ore is brought into the blast furnace through a sintering process. Zinc brought into the blast furnace is reduced and vaporized in the furnace, but it oxidizes and aggregates at the low temperature and high oxidation potential. Inside the blast furnace shaft Walls and the like are particularly prone to agglomerate, adhering surrounding coke ore and immobilizing the packing. Such a stationary part is called “Anzat”, which makes the falling of the charged material in the furnace unstable and causes troubles such as “shelf hanging” and “slip”.
このように、 亜鉛分は高炉操業にはトラブル要因となる成分であるが、 有価な金属 でもある。 亜鉛は、 たとえば電池原料として、 他にも、 鋼板表面の耐食性を向上させ るめつき材料等として欠くことのできない金属である。 前述のとおり、 硫化鉱を酸化 ばい焼して酸化亜鉛を作り、 湿式や乾式で製鍊して、 亜鉛金属を得るのが一般的であ るが、 近年、 製鉄ダストなどを製鍊して、 粗酸化亜鉛を得て、 亜鉛製鍊原料とする方 法も提案されている。  Thus, the zinc content is a component that causes troubles in blast furnace operation, but is also a valuable metal. Zinc is an indispensable metal, for example, as a raw material for batteries, as well as a material for improving the corrosion resistance of the steel sheet surface. As mentioned above, it is common to oxidize and bake sulfide ore to make zinc oxide and to make zinc metal by wet or dry method, but in recent years, iron making dust etc. A method has also been proposed in which crude zinc oxide is obtained and used as a raw material for making zinc.
たとえば、 亜鉛濃度 1 O m a s s %を超える粗酸化亜鉛の場合、 ゥェルツ法などの 処理を行うことで、 高濃度の粗酸化亜鉛とすることができ、 亜鉛製鍊原料として用い ることが可能である。また、亜鉛濃度が 5 0 m a s s %を超える粗酸化亜鉛の場合は、 たとえば I S P法などの亜鉛精鍊に使用する粗酸化亜鉛として直接使用することがで きる。  For example, in the case of crude zinc oxide with a zinc concentration exceeding 1 O mass%, it is possible to obtain a high-concentration crude zinc oxide by processing such as the Wertz method, which can be used as a raw material for making zinc. . In addition, in the case of crude zinc oxide having a zinc concentration exceeding 50 m s s%, it can be used directly as crude zinc oxide used for zinc purification, such as the ISP method.
このように回収される亜鉛濃度によって、 粗酸化亜鉛の使用用途は大きく異なり、 当然、 亜鉛濃度が高いものほど経済的な価値を有するものの、 還元鉄と高濃度粗酸化 亜鉛の生産を両立する還元鉄の製造方法は提案されていなかった。 Depending on the recovered zinc concentration, the intended use of crude zinc oxide varies greatly. Naturally, the higher the zinc concentration, the more economical value, but the reduction that achieves both the production of reduced iron and high-concentration crude zinc oxide. No iron production method has been proposed.
発明の開示 Disclosure of the invention
本発明は、 高亜鉛含有鉄鉱石の有効利用を可能とする還元鉄の製造方法を提供する ことを目的とする。  An object of this invention is to provide the manufacturing method of reduced iron which enables the effective utilization of a high zinc content iron ore.
上記目的を達成するために、 本発明は以下の観点を有する還元鉄の製造方法を提供 する。  In order to achieve the above object, the present invention provides a method for producing reduced iron having the following aspects.
[ 1 ]. 亜鉛を 0. 0 1 in a s s %以上、 鉄を 50 m a s s %以上含有する高亜鉛含有 鉄鉱石 (A) を含有する鉄鉱石 (X) と、 炭素系固体還元材とを含む混合原料を準備 する工程と、  [1]. Mixing containing iron ore (X) containing high-zinc-containing iron ore (A) containing more than 0.0 1 in ass% zinc and 50 mass% or more of iron, and carbon-based solid reducing material A process of preparing raw materials,
前記混合原料を移動型炉床炉の炉床上に積載させる混合原料積載工程と、 炉床上部から熱供給して移動型炉床上に積載した混合原料を還元し、 還元生成 物を得る還元工程と、 を有する還元鉄の製造方法。  A mixed raw material loading step of loading the mixed raw material on the hearth of the mobile hearth furnace, a reduction step of reducing the mixed raw material loaded on the mobile hearth by supplying heat from the upper part of the hearth, and obtaining a reduction product; The manufacturing method of reduced iron which has these.
[2]. 前記髙亜鉛含有鉄鉱石 ( A) 力 0. 0 1〜 0. 5 ni a s s %の亜鉛と、 50〜70tna s s %の鉄を含有する [1] に記載の還元鉄の製造方法。  [2]. The method for producing reduced iron according to [1], wherein the zinc-containing iron ore (A) has a force of 0.0 1 to 0.5 ni ass% and 50 to 70 tna ss% of iron. .
[3]. 前記高亜鉛含有鉄鉱石 (A) 、 鉄鉱石 (X) に対して 1 0〜1 0 Oma s s %の配合割合を有する [1] に記載の還元鉄の製造方法。  [3]. The method for producing reduced iron according to [1], wherein the high zinc-containing iron ore (A) and iron ore (X) have a blending ratio of 10 to 10 Oma s s%.
[4]. 前記混合原料積載工程が、塊成化された混合原料を移動型炉床上に積載させ ることからなる [1] に記載の還元鉄の製造方法。  [4]. The method for producing reduced iron according to [1], wherein the mixed raw material loading step includes loading the agglomerated mixed raw material on a movable hearth.
[5]. 前記還元工程が、混合原料を 1 200°C以上の加熱温度で還元することから なる [1] に記載の還元鉄の製造方法。  [5]. The method for producing reduced iron according to [1], wherein the reduction step comprises reducing the mixed raw material at a heating temperature of 1 200 ° C or higher.
[6]. 前記加熱温度が、 1 250°C以上且つ 1400°C未満である [5] に記載の 還元鉄の製造方法。 .  [6]. The method for producing reduced iron according to [5], wherein the heating temperature is 1 250 ° C or higher and lower than 1400 ° C. .
[7]. 前記還元工程が、炉床上部から熱供給して移動型炉床上に積載した混合原料 を還元し、 前記混合原料を溶融しないかまたは一部のみ溶融させて、 還元鉄を得るこ とからなる [1] に記載の還元鉄の製造方法。  [7]. In the reduction step, the mixed raw material loaded on the movable hearth by supplying heat from the upper part of the hearth is reduced, and the mixed raw material is not melted or only partially melted to obtain reduced iron. [1] The method for producing reduced iron according to [1].
[8]. 更に、 前記移動型炉床炉で発生するダストから粗酸化亜鉛を回収する回収ェ 程を有し、  [8]. Furthermore, it has a recovery process for recovering crude zinc oxide from dust generated in the mobile hearth furnace,
前記原料を準備する工程が、 亜鉛を 0. 0 lma s s %以上、 鉄を 50 m a s s %以上含有する高亜鉛含有鉄鉱石 (A) を含有する鉄鉱石 (X) と、 亜鉛含有ダス トと、 炭素系固体還元材とを含む混合原料を準備することからなる、 [1] に記載の還 元鉄の製造方法。 [9]. 前記混合原料が 0. 45ma s s %以上の平均亜鉛濃度を有する [8] に記 載の還元鉄の製造方法。 The step of preparing the raw materials includes iron ore (X) containing high zinc-containing iron ore (A) containing zinc in an amount of 0.0 lma ss% or more and iron in an amount of 50 mass% or more, and a zinc-containing dust, The method for producing reduced iron according to [1], comprising preparing a mixed raw material containing a carbon-based solid reducing material. [9]. The method for producing reduced iron according to [8], wherein the mixed raw material has an average zinc concentration of 0.45 mass% or more.
[10]. 前記平均亜鉛濃度が 0. 45〜0. 60ma s s %である [9] に記載の還 元鉄の製造方法。  [10]. The method for producing reduced iron according to [9], wherein the average zinc concentration is 0.45 to 0.60 mass%.
[1 1]. 前記亜鉛含有ダストが、 高炉からの発生ダスト、 転炉からの発生ダストと電 気炉からの発生ダストからなるグループから選択された少なくとも一つのダストであ る [8] に記載の還元鉄の製造方法。  [1 1]. The zinc-containing dust is at least one dust selected from the group consisting of dust generated from a blast furnace, dust generated from a converter, and dust generated from an electric furnace [8] Method for producing reduced iron.
[1 2]· 更に、 移動型炉床.炉で発生したダストを回収し、 回収ダストを得る回収ェ 程を有し、  [1 2] In addition, a mobile hearth, which has a recovery process for recovering dust generated in the furnace and obtaining recovered dust.
前記原料を準備する工程が、 亜鉛を 0. 0 lma s s %以上、 鉄を 50m a s s %以上含有する高亜鉛含有鉄鉱石 (A) を含有する鉄鉱石 (X) と、 前記回収ダス トと、 炭素系固体還元材とを含む混合原料を準備することからなる、 [1] に記載の還 元鉄の製造方法。  The step of preparing the raw materials includes iron ore (X) containing high-zinc-containing iron ore (A) containing 0.0 lma ss% or more of zinc and 50 m ass or more of iron, and the recovered dust. The method for producing reduced iron according to [1], comprising preparing a mixed raw material containing a carbon-based solid reducing material.
[1 3]. 更に、  [1 3].
移動型炉床炉で発生したダストを回収する工程と、  Recovering dust generated in the mobile hearth furnace;
回収されたダストを前記移動型炉床上に積載する工程と、  Loading the collected dust on the movable hearth;
該炉床上部から熱供給して、 前記移動型炉床炉で発生するダストから粗酸化亜 鉛を得る工程と、 を有する [1] に記載の還元鉄の製造方法。  The method for producing reduced iron according to [1], comprising: supplying heat from an upper part of the hearth to obtain crude zinc oxide from dust generated in the mobile hearth furnace.
[14]. 更に、 前記還元生成物を溶融させる溶融工程を有する [1] に記載の還元鉄 の製造方法。  [14]. The method for producing reduced iron according to [1], further comprising a melting step of melting the reduction product.
[15]. 更に、 前記還元生成物を溶融させる溶融工程を有し、  [15]. Furthermore, it has a melting step for melting the reduction product,
前記混合原料が、 亜鉛を 0. 0 1 m a s s %以上、 鉄を 50 m a s s %以上含 有する髙亜鉛含有鉄鉱石 (A) を含有する鉄鉱石 (X) と、 炭素系固体還元材と、 造 滓材とを含む、 [1] に記載の還元鉄の製造方法。  The mixed raw material contains iron ore (X) containing zinc-containing iron ore (A) containing zinc in an amount of at least 0.01 mass% and iron in an amount of at least 50 mass%, a carbon-based solid reducing material, The method for producing reduced iron according to [1], including a material.
[1 6]. 前記溶融工程が、前記還元生成物を 1 400°C以上の加熱温度で溶融させる ことからなる [14] に記載の還元鉄の製造方法。  [16] The method for producing reduced iron according to [14], wherein the melting step comprises melting the reduction product at a heating temperature of 1400 ° C. or higher.
[1 7]. 前記加熱温度が、 1450°C以上且つ 1 500°C以下である [1 6] に記載 の還元鉄の製造方法。  [1 7]. The method for producing reduced iron according to [16], wherein the heating temperature is 1450 ° C or higher and 1500 ° C or lower.
[18]. 更に、 前記還元生成物を溶融させる溶融工程と、 前記移動型炉床炉で発生す るダストから粗酸化亜鉛を回収する回収工程とを有し、 前記原料を準備する工程が、 亜鉛を 0. 0 lma s s %以上、 鉄を 50 ma s s %以上含有する高亜鉛含有鉄鉱石 (A) を含有する鉄鉱石 (X) と、 亜鉛含有ダス トと、 炭素系固体還元材と、 造滓材とを含む混合原料を準備することからなる、 [1] に記載の還元鉄の製造方法。 [18]. Further, a melting step of melting the reduction product, and a recovery step of recovering crude zinc oxide from dust generated in the mobile hearth furnace, The step of preparing the raw material includes iron ore (X) containing high zinc-containing iron ore (A) containing zinc in an amount of 0.0 lma ss% or more and iron in an amount of 50 ma ss% or more, and a zinc-containing dust. The method for producing reduced iron according to [1], comprising preparing a mixed raw material comprising a carbon-based solid reducing material and a slagging material.
[1 9]. 前記混合原料が 0. 45ma s s %以上の平均亜鉛濃度を有する [1 8] に 記載の還元鉄の製造方法。  [19]. The method for producing reduced iron according to [18], wherein the mixed raw material has an average zinc concentration of 0.45 mass% or more.
[20]. 前記平均亜鉛濃度が 0. 45〜 0. 60 m a s s %である [ 1 9 ] に記載の 還元鉄の製造方法。  [20]. The method for producing reduced iron according to [19], wherein the average zinc concentration is 0.45 to 0.60 mass%.
[21]. 前記亜鉛含有ダストが、 高炉からの発生ダスト、 転垆からの発生ダストと電 気炉からの発生ダストからなるグループから選択された少なくとも一つのダストであ る [1 8] に記載の還元鉄の製造方法。  [21]. The zinc-containing dust is at least one dust selected from the group consisting of dust generated from a blast furnace, dust generated from a converter, and dust generated from an electric furnace [18] Method for producing reduced iron.
[22]. 更に、 前記還元生成物を溶融させる溶融工程と、 移動型炉床炉で発生した ダストを回収し、 回収ダストを得る回収工程と、 を有し、  [22]. Further, a melting step of melting the reduction product, and a recovery step of recovering dust generated in the mobile hearth furnace to obtain recovered dust,
前記原料を準備する工程が、 亜鉛を 0. 0 lma s s %以上、 鉄を 50 ma s s %以上含有する高亜鉛含有鉄鉱石 (A) を含有する鉄鉱石 (X) と、 前記回収ダス トと、 炭素系固体還元材と、 造滓材とを含む混合原料を準備することからなる、 [1] に記載の還元鉄の製造方法。  The step of preparing the raw material includes iron ore (X) containing high-zinc-containing iron ore (A) containing zinc in an amount of 0.0 lma ss% or more and iron in an amount of 50 ma ss% or more, and the recovered dust. The method for producing reduced iron according to [1], comprising preparing a mixed raw material comprising a carbon-based solid reducing material and a slagging material.
[23]. 更に、  [23]. In addition,
前記還元生成物を溶融させる溶融工程と、  A melting step for melting the reduction product;
移動型炉床炉で発生したダストを回収する工程と、  Recovering dust generated in the mobile hearth furnace;
'回収されたダストを前記移動型炉床上に積載する工程と、  'Loading the collected dust onto the movable hearth;
該炉床上部から熱供給して、 前記移動型炉床炉で発生するダストから粗酸化亜 鉛を得る工程と、 を有する [1] に記載の還元鉄の製造方法。  The method for producing reduced iron according to [1], comprising: supplying heat from an upper part of the hearth to obtain crude zinc oxide from dust generated in the mobile hearth furnace.
[24]. 前記混合原料積載工程より前に、 更に、 移動型炉床上に炭材を積載した上 に、 混合原料を積層するために、 炭材を移動型炉床上に積載させる炭材積載工程を有 する [1] に記載の還元鉄の製造方法。 図面の簡単な説明 [24]. Prior to the mixed raw material loading step, the carbon material loading step of loading the carbonaceous material on the mobile hearth in order to stack the mixed raw material on the mobile hearth after loading the carbonaceous material on the mobile hearth. The method for producing reduced iron according to [1]. Brief Description of Drawings
図 1は、 実施の形態 1で用いる回転炉床炉の一実施形態を示す概略図である。  FIG. 1 is a schematic view showing an embodiment of a rotary hearth furnace used in the first embodiment.
図 2は、 実施の形態 1で用いる設備フローの一実施形態を示す概略図である。  FIG. 2 is a schematic diagram showing one embodiment of the equipment flow used in the first embodiment.
図 3は、 実施の形態 1で用いる設備フローの一実施形態を示す概略図 (回収ダスト 利用) である。  FIG. 3 is a schematic diagram (utilization of recovered dust) showing an embodiment of the equipment flow used in the first embodiment.
図 4は、 実施の形態 1で用いる設備フローの一実施形態を示す概略図 (回収ダスト 利用) である。  FIG. 4 is a schematic diagram (utilization of recovered dust) showing an embodiment of the equipment flow used in the first embodiment.
図 5は、 実施例 1における、 混合原料の高亜鉛含有鉱石の配合率に対する亜鉛濃度 の変化を示すグラフである。  FIG. 5 is a graph showing the change in zinc concentration with respect to the blending ratio of the high zinc content ore of the mixed raw material in Example 1.
図 6は、 実施の形態 2で用いる回転炉床炉の一実施形態を示す概略図である。  FIG. 6 is a schematic diagram showing an embodiment of a rotary hearth furnace used in the second embodiment.
図 7は、 実施の形態 2で用いる設備フ口一の一実施形態を示す概略図である。  FIG. 7 is a schematic diagram showing one embodiment of the facility entrance used in the second embodiment.
図 8は、 実施の形態 2で用いる設備フローの一実施形態を示す概略図 (回収ダスト 利用) である。  FIG. 8 is a schematic diagram (utilization of collected dust) showing one embodiment of the equipment flow used in the second embodiment.
図 9は、 実施の形態 2で用いる設備フローの一実施形態を示す概略図 (回収ダスト 利用) である。  FIG. 9 is a schematic diagram (using recovered dust) showing one embodiment of the equipment flow used in the second embodiment.
図 1 0は、 実施例 2における、 混合原料の高亜鉛含有鉱石の配合率に対する亜鉛濃 度の変化を示すグラフである。 符号の説明  FIG. 10 is a graph showing the change in zinc concentration with respect to the blending ratio of the high zinc-containing ore of the mixed raw material in Example 2. Explanation of symbols
回転炉床炉、 2 炉体、 2 a 予熱帯、 2 b 兀 、 Rotary hearth furnace, 2 furnace bodies, 2a pre-tropical, 2b
2 c 溶融帯、 2 d 冷却帯、 3 回転炉床、 4 混合原料 5 ノ ーナ一、 6 装入装置、 7 排出装置、 8 冷却装置2 c melting zone, 2 d cooling zone, 3 rotary hearth, 4 mixed raw material 5 nona, 6 charging device, 7 discharging device, 8 cooling device
1 1 鉱石ホッノヽ。一、 2 石炭ホッパー、 1 3 造滓材ホッパー 1 4 混合機、 1 5 回転炉床炉、 1 6 還元鉄排出口 1 1 Ore Hono Pass. 1, 2 Coal hopper, 1 3 Ironmaking hopper 1 4 Mixer, 1 5 Rotary hearth furnace, 1 6 Reduced iron outlet
1 7 排ガスダクト用パグフィルター、 1 8 粉体搬送用ローリー  1 7 Pug filter for exhaust gas duct, 1 8 Lorry for powder transfer
1 9 吸引ファン、 2 0 煙突、 2 1 回収ダス ト搬送コンベア一 2 1 a 第 1回収ダスト搬送コンベア一、 2 1 b 第 2回収ダスト搬送コン ベア一、 2 2 第 1回収ダスト貯蔵ホッパー、 2 3 ダストヤード 発明を実施するための形態 1 9 Suction fan, 2 0 Chimney, 2 1 Collection dust transfer conveyor 1 2 1 a First collection dust transfer conveyor 1 2 1 b Second collection dust transfer conveyor 1 2 2 First collection dust storage hopper 2 3 dust yard BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1 :  Embodiment 1:
実施の形態 1の還元鉄の製造方法は、 混合原料を準備する工程と、 混合原料積載ェ 程と、 還元工程と、 溶融工程とを有する。  The method for producing reduced iron according to Embodiment 1 includes a step of preparing a mixed raw material, a mixed raw material loading step, a reduction step, and a melting step.
前記混合原料を準備する工程は、 亜鉛を 0 . 0 l m a s s %以上、 鉄を 5 0 m a s s %以上含有する高亜鉛含有鉄鉱石を含有する鉄鉱石と、 炭素系固体還元材と、 造滓 材とを混合した混合原料を準備することからなる。 前記混合原料積載工程は、 前記混 合原料を移動型炉床上に積載させることからなる。 前記還元工程は、 炉床上部から熱 供給して移動型炉床上に積載した混合原料を還元することからなる。前記溶融工程は、 還元生成物を溶融させることからなる。  The step of preparing the mixed raw material includes: an iron ore containing a high zinc-containing iron ore containing 0.0 lmass% or more of zinc and 50 mass% or more of iron; a carbon-based solid reducing material; Preparing mixed raw materials. The mixed raw material loading step comprises loading the mixed raw material on a movable hearth. The reduction step consists of reducing the mixed raw material loaded on the movable hearth by supplying heat from the top of the hearth. The melting step comprises melting the reduction product.
本発明者らは高亜鉛含有鉄鉱石を使用し、 含有される鉄分と亜鉛分を 効に利用す るために、 移動型炉床炉を用いることを考えた。 移動型炉床炉を用いた粒鉄の製造方 法は、 還元鉄を製造するプロセスのひとつであり、 水平方向に移動する炉床に、 鉄鉱 石と固体還元材等を積載し、 上方から輻射伝熱によって加熱して鉄鉱石を還元し、 炉 床上でこの還元生成物を溶融し、 スラグとメタルを分離して還元鉄である粒鉄を製造 するものである。  The present inventors considered using a mobile hearth furnace to use iron ore containing high zinc and to effectively use the contained iron and zinc contents. The method of producing granular iron using a mobile hearth furnace is one of the processes for producing reduced iron. Iron ore and solid reducing material are loaded on the hearth that moves in the horizontal direction, and radiation is applied from above. Heated by heat transfer, iron ore is reduced, the reduction product is melted on the hearth, and slag and metal are separated to produce reduced iron, which is reduced iron.
この移動型炉床炉は、 加熱炉の炉床が水平に移動する過程で加熱を施す炉である。 水平に移動する炉床とは、 図 1に示すような回転移動の形態を有するのが代表的であ る。 回転移動の形態を有する移動型炉床炉は、 特に回転炉床炉と呼ばれている。 実施 の形態 1ではこのような移動型炉床炉、 特に回転炉床炉を用いて高亜鉛含有鉄鉱石を 還元,溶融処理して還元鉄である粒鉄を製造するものである。 以下において、 移動型 炉床炉として回転炉床炉を用いる場合について実施の形態 1を説明する。  This mobile hearth furnace is a furnace that heats the hearth of the heating furnace while it moves horizontally. A horizontal moving hearth typically has the form of rotational movement as shown in Fig. 1. A mobile hearth furnace having the form of rotational movement is particularly called a rotary hearth furnace. In Embodiment 1, granular iron as reduced iron is produced by reducing and melting high-zinc-containing iron ore using such a mobile hearth furnace, particularly a rotary hearth furnace. In the following, Embodiment 1 will be described for the case where a rotary hearth furnace is used as a mobile hearth furnace.
なお、 実施の形態 1で用いる高亜鉛含有鉄鉱石とは、 通常の高炉原料として利用さ れる鉄鉱石と比較して亜鉛の含有量が高く、 一般に亜鉛を 0 . 0 l m a s s %以上、 鉄を 5 0 m a s s %以上含有する鉄鉱石である。 実施の形態 1で用いる高亜鉛含有鉄 鉱石の亜鉛含有量おょぴ鉄含有量の上限に制約はないが、 鉄鉱石であることから自ず と決まり、 亜鉛については例えば 0 . 5 m a s s %程度以下、 鉄については例えば 7 O m a s s %程度以下である。 また、高亜鉛含有鉄鉱石の N a 20、 K20等のアルカリ 成分の含有量は、 酸化物換算で通常 0 . 0 8 m a s s %以上である。 アルカリ成分の 含有量は、 l m a s s %以下であることが好ましく、 これは回転炉床炉排ガス系のつ まりを予防するのに効果的である。 Note that the high zinc content iron ore used in Embodiment 1 has a higher zinc content than iron ore used as a normal blast furnace raw material, and generally contains 0.0 lmass% or more of zinc and 5% of iron. Iron ore containing 0 mass% or more. The upper limit of the zinc content of the high zinc content iron ore used in Embodiment 1 is not limited, but it is naturally determined from the fact that it is an iron ore. For example, zinc is about 0.5 mass%. For iron, for example, it is about 7 O mass% or less. The content of the alkali component such as N a 2 0, K 2 0 of the high zinc-containing iron ore, in terms of oxide is usually 0. 0 8 mass% or more. The content of alkali components is preferably lmass% or less, which is one of the rotary hearth furnace exhaust gas systems. It is effective in preventing marijuana.
実施の形態 1はこのような高亜鉛含有鉄鉱石を用いて粒鉄を製造する技術であるが、 高亜鉛含有鉄鉱石を回転炉床炉で還元する際に、 通常の鉄鉱石を混合して用いること も可能である。 通常の鉄鉱石と混合して用いる場合であっても、 高亜鉛含有鉄鉱石を 鉱石全体の約 1 0 m a s s %以上配合する場合は実施の形態 1の効果を好適に得るこ とができる。  Embodiment 1 is a technique for producing granular iron using such high-zinc-containing iron ore. When reducing high-zinc-containing iron ore in a rotary hearth furnace, ordinary iron ore is mixed. It can also be used. Even when used in combination with ordinary iron ore, the effect of Embodiment 1 can be suitably obtained when high zinc-containing iron ore is blended in an amount of about 10 m a s s% or more of the whole ore.
図 1を用いて実施の形態 1に用いる回転炉床炉の一実施形態を説明する。 回転炉床 炉 1は、 図 1に示すように、 予熱帯 2 a、 還元帯 2 b、 溶融帯 2 cおよび冷却帯 2 d に区画された炉体 2にて、 回転移動する炉床 3を覆ってなるものである。 この回転炉 床 3の上に、 例えば高亜鉛含有鉄鉱石と固体還元材からなる原料 4が積載される。 こ の原料 4として、 高亜鉛含有鉄鉱石と、 炭素系固体還元材と、 造滓材とを混合した混 合原料を用いる。 混合原料は以下に述べるように塊成化することもできる。 回転炉床 3を覆う炉体 2は耐火物が張られている。 さらに炉床耐火物の保護のために、 炉床 3 の上に炭材を積載し、 その上に原料 4を積層する場合もある。 また、 炉体 2の上部に はパーナ一 5が設置され、 このバーナー 5での燃料燃焼熱を熱源として、 回転炉床 3 上の混合原料 4中の鉄鉱石を還元する。 なお、 図 1において、 6は原料を回転炉床 3 上に装入する装入装置、 7は還元物を排出する排出装置、 8は冷却装置である。また、 炉体 2内の雰囲気温度は 1 3 0 0 °C前後にされているが、 溶融帯では 1 4 5 0 °C前後 の'高温に制御されるのが通常である。 '  An embodiment of a rotary hearth furnace used in Embodiment 1 will be described with reference to FIG. As shown in Fig. 1, the rotary hearth furnace 1 has a hearth 3 that rotates and moves in a furnace body 2 partitioned into a pre-tropical zone 2a, a reduction zone 2b, a melting zone 2c, and a cooling zone 2d. It is a cover. On this rotary hearth 3, for example, a raw material 4 made of iron ore containing high zinc and a solid reducing material is loaded. As this raw material 4, a mixed raw material in which a high zinc-containing iron ore, a carbon-based solid reducing material, and a slagging material are mixed is used. The mixed raw material can also be agglomerated as described below. The furnace body 2 covering the rotary hearth 3 is refractory. Furthermore, in order to protect the hearth refractory, there is a case where a carbon material is loaded on the hearth 3 and the raw material 4 is laminated thereon. In addition, a burner 5 is installed at the top of the furnace body 2, and the iron ore in the mixed raw material 4 on the rotary hearth 3 is reduced using the heat of fuel combustion in the burner 5 as a heat source. In FIG. 1, 6 is a charging device for charging the raw material onto the rotary hearth 3, 7 is a discharging device for discharging the reduced product, and 8 is a cooling device. In addition, the atmospheric temperature in the furnace body 2 is set to around 1300 ° C, but in the melting zone, it is usually controlled to a high temperature around 1450 ° C. '
高亜鉛含有鉄鉱石は、その産地によって量に差はあるものの脈石成分を含んでいる。 また、 炭素系固体還元材の代表例である石炭、 石炭チヤ一、 コータスには灰分が含ま れている。 そのために、 還元操作のみを行う移動炉床炉法では、 高炉一転炉法とは異 なり、 成品である還元鉄に脈石が混入することは不可避であり、 さらに還元材からの 灰分も成品に付着し混入する可能性がある。 回転炉床炉の炉床上において原料を還 元 ·溶融させた場合、 還元により生成したメタルと残滓であるスラグとを速やかに分 離することができ、 高密度の成品粒鉄を得ることができる。  High zinc-containing iron ore contains a gangue component, although the amount varies depending on the place of production. As typical examples of carbon-based solid reducing materials, coal, coal chain, and coatas contain ash. Therefore, the moving hearth furnace method, which performs only the reduction operation, is unavoidable that gangue is mixed in the reduced iron, which is a product, unlike the blast furnace single converter method. There is a possibility of adhering and mixing. When the raw material is reduced and melted on the hearth of the rotary hearth furnace, the metal produced by the reduction and the residual slag can be separated quickly, and high-density granular iron can be obtained. .
実施の形態 1で得られる粒鉄は、 上記のように還元して溶融されてスラグ成分が分 離されており、 回転炉床炉から排出されたなりの、 圧縮等を行なう前の状態で、 みか け密度を 5 0 0 0 k g Zni3以上とすることができる。 なお、 通常の場合、 成品粒鉄は 篩い分け工程を経て、 粒径が 3 mm以上、 1 0 O mm以下となる。 回転炉床炉を用いて、 高亜鉛含有鉄鉱石を還元処理する際には、 炭素系固体還元材 と造滓材とともに混合して回転移動する炉床上に積载するものとする。 炭素系固体還 元材とは、 石炭、 コータス、 黒鉛などであり、 造滓材とは、 石灰粉、 ドロマイト、 蛇 紋岩など C a 0、 N a 20などの塩基性成分などを含むものである。 The granular iron obtained in the first embodiment is reduced and melted as described above to separate the slag component, and is discharged from the rotary hearth furnace before being compressed. The apparent density can be set to 5 0 00 kg Zni 3 or more. In normal cases, the product granular iron undergoes a sieving process, and the particle size becomes 3 mm or more and 10 O mm or less. When reducing high zinc-containing iron ore using a rotary hearth furnace, the iron ore with high zinc content is mixed with the carbon-based solid reducing material and ironmaking material and loaded on the rotating hearth. Carbon-based solid reducing materials include coal, coatas, graphite, and slagging materials include lime powder, dolomite, serpentine, and other basic components such as C a 0 and N a 2 0. .
高亜鉛含有鉄鉱石が塊鉱石の場合、 粉砕の上でたとえば粒径 1 O mm以下の鉱石粉 としてから、 炭素系固体還元材等と混合して回転炉床に積載し、 還元することができ る。  If the high-zinc-containing iron ore is a massive ore, it can be ground and reduced to, for example, an ore powder with a particle size of 1 O mm or less, then mixed with a carbon-based solid reducing material, etc., and loaded on a rotary hearth for reduction. The
高亜鉛含有鉄鉱石が微粉鉱石の場合 (粒径 3 mm以下) には、 炭素系固体還元材、 造滓材とともに塊成化して、 炭材内装ペレットとして用いることもできる。 塊成化し た原料は加熱時の飛散が少なく、 ダストの亜鉛濃度を向上させることができる。 同様 に圧縮成型して、 プリケットとしてから使用することもできる。 また、 造粒時、 ベン トナイトなどの無機バインダー、 糖蜜、 コーンスターチなどの有機バインダーを混合 して、 より強度を高めることもできる。 これらペレットやプリケットは水分を蒸発さ せてから、 使用することも可能である。 一方で、 髙亜鉛含有鉄鉱石を粉状のままで 使用することも効果的である。 粉原料のまま使用することにより、 塊を製造するため の設備、 電力、 バインダーなどの費用が不要になり、 経済性向上に寄与することがで きる。  When the high-zinc-containing iron ore is finely divided ore (particle size of 3 mm or less), it can be agglomerated together with a carbon-based solid reducing material and slagging material, and used as a carbonaceous material interior pellet. The agglomerated raw material is less scattered during heating and can improve the zinc concentration of dust. Similarly, it can be compression molded and used as a pricket. In addition, during granulation, an inorganic binder such as bentonite and an organic binder such as molasses and corn starch can be mixed to increase the strength. These pellets and prickets can be used after the water has evaporated. On the other hand, it is also effective to use iron ore containing zinc oxide in powder form. By using the raw material as it is, the cost of equipment for producing the lump, electric power, binders, etc. becomes unnecessary, which can contribute to economic improvement.
回転炉床炉で高亜鉛含有鉄鉱石を還元 ·溶融する際の加熱温度は、 1 4 0 0 °C以上 が好ましい。 より好ましくは、 1 4 5 0 °C以上である。 回転炉床炉内の最高温度を 1 4 5 0 °C以上とすることにより、炉内および炉内で還元 ·溶融する原料は高温となる。 特に溶融した原料は 1 4 5 0 °C以上とすることで、 十分な流動性を確保することが可 能となり、 金属鉄中の脈石成分を除去しやすくなり、 良好な性状の粒鉄を製造するこ とが可能となる。  The heating temperature when reducing or melting high zinc-containing iron ore in a rotary hearth furnace is preferably 140 ° C. or higher. More preferably, it is 1450 ° C or higher. By setting the maximum temperature in the rotary hearth furnace to 1450 ° C or higher, the raw material that is reduced and melted in the furnace and the furnace becomes high temperature. In particular, when the melted raw material is at 1450 ° C. or higher, sufficient fluidity can be ensured, and the gangue component in the metal iron can be easily removed, and fine iron with good properties can be obtained. It can be manufactured.
炉床上に炭材を積載し、 該炭材の上に高亜鉛含有鉄鉱石を含む混合原料を積層する ことにより、 溶融したメタルゃスラグが炉床の耐火物を侵食することを防止すること が可能になる。 耐火物侵食の際には鉄分が耐火物に取り込まれるため、 炉床の耐火物 の侵食を防止することで鉄分のロスが少なくなり、 粒鉄の生産性向上に寄与すること ができる。  It is possible to prevent the molten metal slag from attacking the refractory of the hearth by loading the carbonaceous material on the hearth and laminating the mixed raw material containing iron ore containing high zinc on the carbonaceous material. It becomes possible. Since iron is taken into the refractory during refractory erosion, loss of iron content is reduced by preventing erosion of the refractory in the hearth, contributing to improved productivity of granular iron.
回転炉床炉で発生する排ガスに含有されるダストは、 回収される。 このダストは高 亜鉛鉄鉱石と比較して、 亜鉛を濃化しているので、 粗酸化亜鉛の原料として使用する ことが可能である。 図 2に、 このようなダスト回収を行う回転炉床炉の一般的な設備 フローの概略図を示す。 Dust contained in the exhaust gas generated in the rotary hearth furnace is recovered. Compared with high-zinc iron ore, this dust is concentrated in zinc, so it is used as raw material for crude zinc oxide. It is possible. Figure 2 shows a schematic diagram of the general equipment flow of a rotary hearth furnace that collects such dust.
図 2において、 鉱石ホッパー 1 1、 石炭ホッパー 1 2、 造滓材ホッパー 1 3から排 出された鉄鉱石、 石炭、 造滓材は混合機 1 4 (必要に応じてペレタイザ一等を用いる) で混合して混合原料とし、 回転炉床炉 1 5で加熱して還元 ·溶融して還元鉄となり還 元鉄排出口 1 6から排出される。 回転炉床炉 1 5で発生した排ガスは吸引ファン 1 9 により吸引され煙突 2 0から排出されるが、 その際に、 排ガスダクト用バグフィルタ 一 1 7でダスト回収を行う。 回収されたダストは粉体搬送用ローリー 1 8等を用いて 搬出する。 混合原料において、 高亜鉛含有鉄鉱石を鉱石全体の約 1 O m a s s %以上 配合する場合は、 回収されるダスト中の亜鉛濃度を 1 m a s s %以上とすることがで きる。  In Fig. 2, the iron ore, coal, and slag material discharged from the ore hopper 1 1, coal hopper 1 2, and slagging material hopper 1 3 are mixed in a mixer 1 4 (using a pelletizer, etc. if necessary). The mixed raw material is mixed, heated in a rotary hearth furnace 15 and reduced / melted to become reduced iron, which is discharged from the reduced iron outlet 16. The exhaust gas generated in the rotary hearth furnace 15 is sucked by the suction fan 19 and discharged from the chimney 20. At that time, the dust is collected by the bag filter 17 for the exhaust gas duct. Collected dust is carried out using a lorry for powder conveyance. When high-zinc-containing iron ore is added to the mixed raw material in an amount of about 1 O m s s% or more of the entire ore, the zinc concentration in the recovered dust can be set to 1 m s s% or higher.
上記のように回転炉床炉で発生する排ガスから回収されたダスト (以下、 「第 1回収 ダスト」 と記載する。) は、 再度回転炉床炉で炉床上部から熱供給して処理し、 回転炉 床炉で発生するダストを回収することで粗酸化亜鉛を得ることができる。 この第 1回 収ダストを再度回転炉床炉で処理する際に発生したダストを回収したものを、以下「第 2回収ダスト」 と記載する。 第 1回収ダストを回転炉床炉で処理する際には、 第 1回 収ダス トのみを処理すればよいが、 還元反応を促進する観点から、 少量 (第 1回収ダ ストに対して 2 HI a s s %以下) の第 1回収ダストに炭素系固体還元材ゃ造滓材を混 合することもできる。 このようにダストを再度、 回転炉床炉にて製鍊することで、 以 下に述べるように第 1回収ダスト中の亜鈴を濃縮することができる。 第 1回収ダスト 中の亜鉛濃度が所定量以上の場合、 第 1回収ダストに炭素系固体還元材と造滓材と鉄 鉱石とを混合して、 粒鉄の製造量を増やすこともできる。 第 1回収ダストに鉄鉱石を 混合して処理する際に、 第 2回収ダスト中の目標亜鉛濃度が同じであれば、 高亜鉛含 有鉄鉱石を用いると鉄鉱石配合量を増やすことができるので、 ダスト中の亜鉛を濃縮 しながら、 より多量の粒鉄を製造することができるので好ましい。  Dust recovered from the exhaust gas generated in the rotary hearth furnace as described above (hereinafter referred to as “first recovered dust”) is again processed by supplying heat from the top of the hearth in the rotary hearth furnace, By collecting the dust generated in the rotary hearth furnace, crude zinc oxide can be obtained. The recovered dust collected when the first collected dust is treated again in the rotary hearth furnace is referred to as “second recovered dust”. When the first recovered dust is processed in the rotary hearth furnace, only the first collected dust needs to be processed, but from the viewpoint of promoting the reduction reaction, a small amount (2 HI for the first recovered dust). Ass% or less) can also be mixed with carbon-based solid reducing material or slagging material. By making the dust again in the rotary hearth furnace in this way, the dumbbells in the first recovered dust can be concentrated as described below. If the zinc concentration in the first recovered dust is greater than or equal to a predetermined amount, the first recovered dust can be mixed with a carbon-based solid reducing material, ironmaking material, and iron ore to increase the production of granular iron. If the target zinc concentration in the second recovered dust is the same when the iron ore is mixed with the first recovered dust, the amount of iron ore added can be increased by using high zinc-containing iron ore. It is preferable because a larger amount of granular iron can be produced while concentrating zinc in the dust.
ダスト中の亜鉛の濃縮は、 たとえば図 3に示すように、 ダストヤード 2 3の第 1回 収ダストを、 粉体搬送用ローリー 1 8等を用いて搬送して、 回転炉床炉 1 5にて加熱 し、 発生する排ガスを吸引して、 排ガスダクト用バグフィルター 1 7でダスト回収を 行うことで実施することができる。 または、 図 4に示すように混合原料のホッパー 1 1 - 1 3と並列に第 1回収ダスト貯蔵ホッパー 2 2を設けることで実施することがで きる。 この設備は図 2に示す設備に対して、 回収ダスト搬送コンベア一 2 1と第 1回 収ダスト貯蔵ホッパー 2 2が追加されたものになっている。 回収ダスト搬送コンベア 一 2 1は 2 1 aと 2 1 bとに分岐しており、 第 1回収ダスト搬送コンベア一 2 1 aで 第 1回収ダストを第 1回収ダスト貯蔵ホッパー 2 2に搬送し、 回転炉床炉 1 5にて加 熱して再利用し、 第 2回収ダスト搬送コンベア一 2 1 bで第 2回収ダストを製品とし て抜き出すことができる。 抜き出される第 2回収ダストは、 微粉であるため、 たとえ ば粉体搬送用ローリー 1 8などを用いて搬送される。 For example, as shown in Fig. 3, the concentration of zinc in the dust can be achieved by transporting the first collected dust from the dust yard 2 3 using a powder transport lorry 1 8 etc. to the rotary hearth furnace 1 5. This can be done by sucking the generated exhaust gas and collecting the dust with the bag filter 17 for the exhaust gas duct. Alternatively, as shown in Fig. 4, it can be implemented by providing a first recovered dust storage hopper 2 2 in parallel with the mixed material hopper 1 1-1 3. wear. This equipment is the same as the equipment shown in Fig. 2, except that a recovered dust transport conveyor 21 and a first collected dust storage hopper 22 are added. The recovered dust transport conveyor 1 2 1 is branched into 2 1 a and 2 1 b. The first recovered dust transport conveyor 1 2 1 a transports the first recovered dust to the first recovered dust storage hopper 2 2, It can be heated and reused in the rotary hearth furnace 15 and the second recovered dust can be extracted as a product by the second recovered dust transfer conveyor 21 b. The second recovered dust that is extracted is a fine powder, and is transported using, for example, a powder transport lorry 18.
ダストに鉄鉱石を混合する際には、 第 1回収ダストを第 1回収ダスト貯蔵ホッパー 2 2に貯蔵し、 少量の炭素系固体還元材、 造滓材と、 鉄鉱石とを配合することで回転 炉床炉の原料として使用し、 回転炉床炉 1 5で加熱して還元 ·溶融する際に第 2回収 ダストとして回収する。  When mixing iron ore with dust, the first recovered dust is stored in the first recovered dust storage hopper 22 and rotated by combining a small amount of carbon-based solid reducing material, ironmaking material, and iron ore. Used as raw material for hearth furnace, recovered as second recovered dust when reduced and melted in rotary hearth furnace 15.
前述のとおり、 粗酸化亜鉛を含有する第 2回収ダストは亜鉛濃度に応じて使用用途 が異なるが、 上記の方法で生産した第 2回収ダストは亜鉛濃度が 1 O m a s s %を超 えるものとなるので、 ゥェルツ法などの中間処理で高濃度の粗酸化亜鉛とすることが でき、 亜鉛製鍊原料として用いることができる。  As described above, the second recovered dust containing crude zinc oxide has different uses depending on the zinc concentration, but the second recovered dust produced by the above method has a zinc concentration exceeding 1 O mass%. Therefore, a high concentration of crude zinc oxide can be obtained by intermediate treatment such as the Wertz method, and it can be used as a raw material for zinc.
第 1回収ダストを回収する際の混合原料において、 鉱石の全てが高亜鉛含有鉱石で ない場合であっても、 鉱石中の平均亜鉛濃度が 0 . 0 0 5 m a s s %以上であれば、 回転炉床炉で処理して得られる第 2回収ダストの亜鉛濃度を.5 O m a s s %以上とす ることができる。 得られる回収ダストの亜鉛濃度が 5 O m a s s %以上であれば、 中 間処理が不要となり、 亜鉛精練に使用する粗酸化亜鉛として直接使用することができ るので好ましい。  If the average zinc concentration in the ore is 0.05 mass% or more in the mixed raw material for collecting the first recovered dust, even if not all of the ore is not high-zinc-containing ore, the rotary furnace The zinc concentration of the second recovered dust obtained by processing in the floor furnace can be set to 0.5 O mass% or more. If the zinc concentration of the recovered dust obtained is 5 O m s s% or more, intermediate treatment is not necessary and it can be used directly as crude zinc oxide used for zinc scouring.
以上のように、 回収ダスト (第 1回収ダスト) に対して回転炉床炉で再度処理を行 うことで回収ダスト (第 2回収ダスト) 中の亜鉛濃度は向上し、 経済性も向上する。 それに加えて、 ダスト処理のための別設備 (中間処理設備) を建設するコストが不要 となり、 また、 発生したダストを中間処理設備まで運ぶコストが不要となるといぅメ リットがある。  As described above, when the recovered dust (first recovered dust) is treated again in the rotary hearth furnace, the zinc concentration in the recovered dust (second recovered dust) is improved and the economy is improved. In addition, the cost of constructing a separate facility (intermediate processing facility) for dust treatment is eliminated, and the cost of transporting the generated dust to the intermediate processing facility is unnecessary.
上記においては回転炉床炉で発生する排ガスに含有されるダストを回収して用いたが、 回収ダスト以外の亜鉛含有ダストを、 高亜鉛含有鉄鉱石を回転炉床炉で還元する際に混合 して用いることも可能である。 高亜鉛含有鉄鉱石よりも亜鉛濃度の高いダストを混合する ことにより、 上記のように回転炉床炉で発生する排ガスから回収されたダストにおいて、 粗酸化亜鉛を高濃度に有するダストを得ることができる。 In the above, dust contained in the exhaust gas generated in the rotary hearth furnace was recovered and used. However, zinc-containing dust other than the recovered dust was mixed when reducing high zinc-containing iron ore in the rotary hearth furnace. Can also be used. By mixing dust with higher zinc concentration than iron ore with high zinc content, the dust recovered from the exhaust gas generated in the rotary hearth furnace as described above, Dust having a high concentration of crude zinc oxide can be obtained.
前述のとおり、 粗酸化亜鉛を含有する回収ダストは亜鉛濃度に応じて使用用途が異なる が、 自家発生、 外部発生に関わらず亜鉛含有ダストを用いて生産した回収ダストは亜鉛濃 度が l O m a s s %を超えるものとすることができるので、 ゥェルツ法などの中間処理で 高濃度の粗酸化亜鉛とすることができ、 亜鉛製鍊原料として用いることができる。  As mentioned above, recovered dust containing crude zinc oxide has different uses depending on the zinc concentration, but recovered dust produced using zinc-containing dust, whether self-generated or externally generated, has a zinc concentration of l O mass Therefore, it can be made into high-concentration crude zinc oxide by an intermediate treatment such as the Wertz method, and can be used as a raw material for making zinc.
高亜鉛含有鉄鉱石と混合して用いられる亜鉛含有ダストは特に限定されないが、 た とえば高炉からの発生ダスト、 転炉からの発生ダスト、 電気炉からの発生ダスト等の 鉄鋼業におけるダスト等を用いることが出来る。  The zinc-containing dust used in combination with the high-zinc-containing iron ore is not particularly limited.For example, dust generated in the iron and steel industry, such as dust generated from a blast furnace, dust generated from a converter, dust generated from an electric furnace, etc. Can be used.
混合原料中の平均亜鉛濃度が 0 . 4 5 m a s s %以上であれば、 回転炉床炉で処理 して得られる回収ダストの亜鉛濃度を 5 0 m a s s %以上とすることができる。 得ら れる回収ダス卜の亜鉛濃度が 5 0 m a s s %以上であれば、 中間処理が不要となり、 亜鉛精練に使用する粗酸化亜鉛として直接使用することができるので好ましい。 以上のように、 高亜鉛含有鉄鉱石を回転炉床炉で還元する際に、 亜鉛含有ダストを混合 して用いることで回収ダスト中の亜鉛濃度は向上し、 経済性も向上する。 以下に本発明の一実施形態を詳細に説明する。  If the average zinc concentration in the mixed raw material is 0.45 m s s% or more, the zinc concentration of the recovered dust obtained by processing in the rotary hearth furnace can be set to 50 m s s% or more. If the zinc concentration of the recovered recovered soot is 50 mass% or more, intermediate treatment is not necessary, and it can be used directly as crude zinc oxide used for zinc scouring. As described above, when reducing high zinc-containing iron ore in a rotary hearth furnace, mixing zinc-containing dust increases the concentration of zinc in the recovered dust and improves economic efficiency. Hereinafter, an embodiment of the present invention will be described in detail.
回転炉床炉の炉床上に高亜鉛含有鉄鉱石、 炭素系固体還元材、 造滓材を含む混合原 料を積載して、 炉床を回転させて炉内を移動させながら昇温加熱し、 空気もしくは酸 素を付加した空気を炉内へ吹き込み、.還元反応にて発生する C Oもしくは H2を 2次燃 焼させる。 ' A mixed raw material containing high zinc content iron ore, carbon-based solid reducing material, and ironmaking material is loaded on the hearth of the rotary hearth furnace, heated up while rotating the hearth and moving in the furnace, Air or oxygen-added air is blown into the furnace, and CO or H 2 generated by the reduction reaction is secondarily burned. '
発生する排ガスは冷却の後、 排ガスに含有するダストを回収する。 一方、 炉床上に残 存する混合原料を完全に溶融させて液体としてから、 冷却、 固化して、 銑滓分離した 粒鉄を得る。 移動する炉床上にて加熱することで、 After the generated exhaust gas is cooled, the dust contained in the exhaust gas is recovered. On the other hand, the mixed raw material remaining on the hearth is completely melted to form a liquid, which is then cooled and solidified to obtain separated iron particles. By heating on the moving hearth,
a ) 鉱石中の酸化鉄が炭素系固体還元材中の炭素と反応して金属鉄ができる、 b ) 鉄分は浸炭反応により、 脈石分 (S i 02、 A l 23、 M g Oなど) は石灰粉、 ドロマイト、蛇紋岩など C a 0、 N a 20などの塩基性成分と混合して、融点が低下し、 溶融する、 a) Iron oxide in the ore reacts with carbon in the carbon-based solid reductant to form metallic iron. b) Iron is carburized to form gangue (S i 0 2 , A l 2 0 3 , Mg O, etc.) lime powder, dolomite, mixed with basic components such as C a 0, N a 2 0 such as serpentinite, melting point is lowered, melted,
c ) 一定期間溶融状態とすることで、 溶融金属鉄部分 (メタル) と溶融脈石分 (ス ラグ) に分離する効果を得ることができ、 ·  c) By maintaining the molten state for a certain period of time, the effect of separating into molten metal iron part (metal) and molten gangue (slag) can be obtained.
銑鉄と同様に使用可能な還元鉄である粒鉄を製造することがきる。 一方、 鉱石中の亜鉛分は酸化亜鉛として存在し、 炭素系固体還元材により、 還元揮 発して排ガスに搬送され、 冷却と同時に酸化凝集して、 排ガスから分離され、 ダスト として回収される。 このダストは亜鉛が濃化されており、 直接もしくは再精製工程を 行うことで亜鉛製鍊の原料となる。 It is possible to produce granular iron that can be used in the same way as pig iron. On the other hand, the zinc content in the ore exists as zinc oxide, and is reduced and volatilized by the carbon-based solid reducing material, transported to the exhaust gas, oxidizes and aggregates simultaneously with cooling, separated from the exhaust gas, and recovered as dust. This dust is concentrated in zinc, and can be used as a raw material for zinc slag by direct or re-refining process.
回転炉床炉は充填層を持たない炉であるため、 高炉で見られるような原料含有亜鉛 分が炉壁に付着することによるコータスや鉱石の接着、 充填物の不動化などの現象が 発生することはなく、 操業の支障となることはない。 ' 回転炉床炉の加熱時には亜鉛成分が揮発し、 排ガスに搬送されると同時に炉床上に 積載されている混合原料の一部が飛散して、 回収ダストに混合する。 よって、 回収ダ スト中の亜鉛濃度は揮発する亜鉛分の量と飛散する混合原料の量によって決定され、 混合原料中の亜鉛濃度が高いほど回収されるダストの亜鉛濃度は高くなる。 本発明者 らの研究によれば、 混合原料の飛散量は通常操業においてはほぼ一定であり、 混合原 料投入量の 0 . 5 m a s s %前後であることが確認されている。 また、 ダスト中の亜 鉛濃度が高いほど亜鉛原料としての価値が高くなる。 したがって、 本発明を実施する ことにより、 亜鉛濃度の高いダストが回収され、 より有効に高亜鉛含有鉄鉱石を利用 することが可能になる。  Since the rotary hearth furnace does not have a packed bed, phenomena such as adhesion of coatings and ores and immobilization of the packing due to the zinc content contained in the blast furnace adhering to the furnace wall occur. It will not interfere with operations. '' When the rotary hearth furnace is heated, the zinc component volatilizes and is transported to the exhaust gas. At the same time, a part of the mixed raw material loaded on the hearth is scattered and mixed with the recovered dust. Therefore, the zinc concentration in the recovered dust is determined by the amount of zinc that volatilizes and the amount of mixed raw material that scatters. The higher the zinc concentration in the mixed raw material, the higher the zinc concentration in the recovered dust. According to the study by the present inventors, it has been confirmed that the amount of the mixed raw material scattered is almost constant in normal operation, and is about 0.5 mass% of the mixed raw material input amount. In addition, the higher the zinc concentration in the dust, the higher the value as a zinc raw material. Therefore, by carrying out the present invention, dust with a high zinc concentration is recovered, and it becomes possible to use iron ore with high zinc content more effectively.
また、 回転炉床炉に積載する混合原料の全部もしくは一部に回収したダストを使用 することで、 前記亜鉛濃度の高いダスト中の亜鉛をさらに濃縮して回収することも可 能である。 実施例 1  Further, by using dust recovered in all or part of the mixed raw material loaded on the rotary hearth furnace, it is also possible to further concentrate and recover zinc in the dust having a high zinc concentration. Example 1
本発明の有効性を確認するために図 1に示すものと同様の回転炉床炉において、 高 亜鉛含有鉄鉱石およぴ亜鉛含有量の低い一般的な鉱石を用いて粒鉄の製造試験を行つ た。 また回転炉床炉で発生するダストを回収して亜鉛濃度の測定も行った。 回転炉床 炉のスペックを表 1に示す。 尚、 表 2において T _ F eとはトータル F eである。  In order to confirm the effectiveness of the present invention, in a rotary hearth furnace similar to that shown in Fig. 1, a production test of granular iron was conducted using iron ore with high zinc content and general ores with low zinc content. I went. The dust generated in the rotary hearth furnace was collected and the zinc concentration was measured. Table 1 shows the specifications of the rotary hearth furnace. In Table 2, T_Fe is the total Fe.
表 1 table 1
Figure imgf000015_0001
使用した鉱石の組成を表 2に示す,
Figure imgf000015_0001
Table 2 shows the composition of the ore used.
表 2
Figure imgf000016_0001
Figure imgf000016_0003
鉱石 Aは高亜鉛含有鉄鉱石であり、鉱石 Bは亜鉛含有量の低い一般的な鉱石である。 脈石分おょぴ鉄分は両者でほぼ同じであるが、 鉱石 Aの亜鉛濃度は鉱石 Bの約 5 0倍 程度である。
Table 2
Figure imgf000016_0001
Figure imgf000016_0003
Ore A is a high zinc content iron ore, and ore B is a common ore with low zinc content. The gangue and iron content are almost the same in both cases, but the zinc concentration of ore A is about 50 times that of ore B.
鉱石と、 炭素系固体還元材としての石炭と、 造滓材としての石灰とを混合して混合 原料とした。 表 3に使用した石炭の組成を、 表 4に試験に用いた混合原料の配合につ いて示す。尚、表 3において F Cとは固定炭素、 VMとは揮発分、 A s hとは灰分である。 表 3  Ore, coal as a carbon-based solid reducing material, and lime as a slagging material were mixed to make a mixed raw material. Table 3 shows the composition of the coal used and Table 4 shows the composition of the mixed raw materials used in the test. In Table 3, F C is fixed carbon, VM is volatile, and A sh is ash. Table 3
(massX)
Figure imgf000016_0004
(massX)
Figure imgf000016_0004
表 4
Figure imgf000016_0002
Figure imgf000016_0005
表 4に示す配合 1〜3を用いて、 表 5に示す条件で回転炉床炉を操業した。 炉床上 に炭材として石炭を層厚 5 0 mmに敷いた上に、 混合原料を積層する場合を下層炭材 ありとし、また、混合原料を塊成化せず層厚約 1 0 mmに積載して使用した場合を「粉」 塊成化して粒径 1 0〜1 5 mmのペレッ トとした場合を 「塊」 として原料状態の欄に 示している。 表 5
Table 4
Figure imgf000016_0002
Figure imgf000016_0005
The rotary hearth furnace was operated under the conditions shown in Table 5 using Formulations 1 to 3 shown in Table 4. When coal is laid on the hearth as a carbon material with a layer thickness of 50 mm, the mixed raw material is layered with the lower layer carbon material, and the mixed raw material is not agglomerated and loaded with a layer thickness of about 10 mm. When used as "powder" The agglomerated pellets with a particle size of 10 to 15 mm are shown as “lumps” in the raw material column. Table 5
Figure imgf000017_0001
Figure imgf000017_0001
表 6に、 表 5に示す条件で粒鉄を製造した際の、 ダスト亜鉛濃度と鉄分回収率の結 果を示す。 表 D
Figure imgf000017_0002
表 6において、 操業 No. 3は、 高亜鉛含有鉱石を使用した本発明例である。 ダス ト中の亜鉛濃度は 7. 8ma s s %まで上昇している。
Table 6 shows the results of dust zinc concentration and iron recovery rate when granular iron was produced under the conditions shown in Table 5. Table D
Figure imgf000017_0002
In Table 6, Operation No. 3 is an example of the present invention using a high zinc content ore. The zinc concentration in the dust has risen to 7.8 ma ss%.
操業 N o . 4は一般的な鉱石中に約 1 Om a s s %の高亜鉛含有鉄鉱石を配合した 場合の例である。 この場合でも、 ダスト中の亜鉛濃度は 1. Oma S S %以上にまで 上昇している。 + Operation No. 4 is an example in which about 1 Om ass% of high zinc content iron ore is blended in general ore. Even in this case, the zinc concentration in the dust has increased to 1. Oma SS % or more. +
操業 No. 5は 1450°C以上の高温で加熱処理したものであり、 処理時間が短縮 され、 生産性が向上していることがわかる。  Operation No. 5 was heat-treated at a high temperature of 1450 ° C or higher, and it can be seen that the treatment time was shortened and the productivity was improved.
操業 No. 6は、 操業 No. 5に加えて炉床上に炭材を敷いた上に、 混合原料を積 層した場合であり、 鉄分の回収率が上昇している。  Operation No. 6 is the case where mixed raw materials are stacked on the hearth in addition to operation No. 5, and the iron recovery rate is increasing.
操業 No. 7は、 操業 No. 5に加えて塊原料を使用した場合であり、 ダスト中の 亜鉛濃度が上昇している。  Operation No. 7 is the case where lump raw materials are used in addition to Operation No. 5, and the zinc concentration in the dust is increasing.
次に、 回収したダストのリサイクル利用を行った。  Next, the collected dust was recycled.
図 1、 図 4に示すものと同様の設備で、 高亜鉛含有鉄鉱石おょぴ亜鉛含有量の低い 一般的な鉄鉱石を用いて粒鉄の製造試験を行う際に、 鉄鉱石の亜鉛濃度と、 回収され るダストの亜鉛濃度との関係を調査した。 調査には高亜鉛含有鉄鉱石である鉱石 Aと 通常の鉄鉱石である鉱石 Bとを混合して使用し、 亜鉛濃度を連続的に変化させ操業 N o. 1 1〜 1 9とし、 1回目の回転炉床炉での処理によって発生するダスト (第 1回 収ダスト) を回収して、 回収したダストの全量を回 炉床炉で 1460°Cで 1 3分の 加熱処理を行い、 発生するダスト (第 2回収ダスト) を回収した。  In the same equipment as shown in Fig. 1 and Fig. 4, the concentration of zinc in the iron ore during the production test of granular iron using general iron ore with low zinc content is high. And the relationship between the zinc concentration in the recovered dust. In the survey, ore A, which is a high-zinc-containing iron ore, and ore B, which is a normal iron ore, are mixed and used. Dust generated by the process in the rotary hearth furnace (first collected dust) is recovered, and the entire amount of recovered dust is heat-treated at 1460 ° C for 13 minutes in the hearth furnace. Dust (second recovered dust) was recovered.
表 7および図 5に、 混合原料中の鉱石亜鉛濃度と、 1回目の回転炉床炉での処理に よって発生するダストであって、 2回目の回転炉床炉での処理の原料となる第 1回収 ダストの亜鉛濃度の測定結果と、 最終的な製品ダストである第 2回収ダストの亜鉛濃 度の測定結果を示す。  Table 7 and Fig. 5 show the concentration of ore zinc in the mixed raw material and the dust generated by the first treatment in the rotary hearth furnace, which is the raw material for the second treatment in the rotary hearth furnace. 1Measurement result of zinc concentration of recovered dust and measurement result of zinc concentration of second recovered dust, which is the final product dust.
表 7およぴ図 5から分かるように、 混合原料中の鉱石の亜鉛濃度が 0. 00 5ma s s %以上となると、 製品ダストである第 2回収ダストの亜鉛濃度が 5 Oma s s % を超え、 I S P法などの亜鉛精練に直接使用が可能な原料となることが分かる。 表 7 As can be seen from Table 7 and Fig. 5, when the zinc concentration of the ore in the mixed raw material becomes 0.005 ma ss% or more, the zinc concentration of the second recovered dust, which is the product dust, exceeds 5 Oma ss%, It turns out that it becomes a raw material that can be used directly for zinc refining such as ISP method. Table 7
Figure imgf000019_0001
Figure imgf000019_0001
次に、 高亜鉛含有鉄鉱石と亜鉛含有ダストを混合した原料を用いた。 Next, the raw material which mixed high zinc content iron ore and zinc content dust was used.
使用した亜鉛含有ダストの組成を表 8に示す。 ここで亜鉛含有ダストとして転炉からの 発生ダストを用いた。  Table 8 shows the composition of the zinc-containing dust used. Here, dust generated from the converter was used as zinc-containing dust.
表 8  Table 8
Figure imgf000019_0002
図 1に示すものと同様の設備で、 高亜鉛含有鉄鉱石および亜鉛含有ダストを用いて粒鉄 の製造試験を行う際に、 混合原料中の亜鉛濃度と、 回収されるダストの亜鉛濃度との関係 を調査した。 調査には高亜鉛含有鉄鉱石である鉱石 Aと亜鉛含有ダ^トとを混合して使用 し、 亜鉛濃度を連続的に変化させ操業 N o . 2 1〜 2 5とし、 混合原料は回転炉床炉で 1 460°Cで 13分の加熱処理を行い、 発生するダストを回収した。
Figure imgf000019_0002
In a facility similar to that shown in Fig. 1, when conducting a production test of granular iron using high-zinc-containing iron ore and zinc-containing dust, the concentration of zinc in the mixed raw material and the concentration of zinc in the recovered dust The relationship was investigated. In the survey, ore A, a high-zinc iron ore, and zinc-containing dust were mixed and used, and the zinc concentration was continuously changed to operation No. 2 1-25. In the floor furnace 1 Heat treatment was performed at 460 ° C for 13 minutes, and the generated dust was recovered.
表 9に、 混合原料中の亜鉛含有ダストの配合比率と亜鉛濃度、 および回収ダストの亜鉛 濃度の測定結果を示す。  Table 9 shows the blending ratio and zinc concentration of the zinc-containing dust in the mixed raw material, and the measurement results of the zinc concentration in the recovered dust.
表 9  Table 9
Figure imgf000020_0001
表 9から分かるように、 混合原料中の亜鉛含有ダストの配合比率の上昇に伴い回収ダス トの亜鉛濃度が上昇し、 混合原料中の亜鉛濃度が 0. 45ma s s%以上となると、 製品 ダストである回収ダストの亜鉛濃度が 5 Oma s s %を超え、 I S P法などの亜鉛精練に 直接使用が可能な原料となることが分かる。
Figure imgf000020_0001
As can be seen from Table 9, the zinc concentration in the recovered dust increases with the increase in the blending ratio of the zinc-containing dust in the mixed raw material, and when the zinc concentration in the mixed raw material becomes 0.45 ma ss% or more, It can be seen that the zinc concentration of some recovered dust exceeds 5 Oma ss%, which makes it a raw material that can be used directly for zinc refining such as the ISP method.
実施の形態 2 実施の形態 2の還元鉄の製造方法は、 混合原料を準備する工程、 混合原料積載工程 と還元工程とを有する。 Embodiment 2 The method for producing reduced iron according to Embodiment 2 includes a step of preparing a mixed raw material, a mixed raw material loading step, and a reduction step.
混合原料を準備する工程は、 亜鉛を 0 · 0 1 m a s s。/o以上、 鉄を 5 0 m a s s % 以上含有する高亜鉛含有鉄鉱石を含有する鉄鉱石と、 炭素系固体還元材とを混合した 混合原料を準備することからなる。 混合原料積載工程は、 前記混合原料を移動型炉床 上に積載させることからなる。 還元工程は、 炉床上部から熱供給して移動型炉床上に 積載した混合原料を還元し、前記混合原料を溶融しないかまたは一部のみ溶融させて、 還元鉄を得ることからなる。  The process of preparing the mixed raw material is 0 · 0 1 m a s s for zinc. It comprises preparing a mixed raw material in which an iron ore containing a high zinc-containing iron ore containing 50 m a s s% or more of iron and a carbon-based solid reducing material is mixed. The mixed raw material loading step comprises loading the mixed raw material on a movable hearth. The reduction step consists of reducing the mixed raw material supplied from the upper part of the hearth and loaded on the movable hearth, and obtaining the reduced iron by not melting or partially melting the mixed raw material.
本発明者らは高亜鉛含有鉄鉱石を使用し、 含有鉄分、 さらには亜鉛分を有効に利用 するために、 移動型炉床炉を用いることを考えた。 移動型炉床炉を用いた還元鉄の製 造方法は還元鉄を製造するプロセスのひとつであり、 水平方向に移動する炉床に、 鉄 鉱石と固体還元材等を積載し、 上方から輻射伝熱によつて加熱して鉄鉱石を還元して 還元鉄を製造するものである。 .  The present inventors have considered using a high-zinc-containing iron ore and using a mobile hearth furnace in order to effectively use the iron content and further the zinc content. The method of producing reduced iron using a mobile hearth furnace is one of the processes for producing reduced iron. Iron ore and solid reductant are loaded on the horizontal moving hearth, and radiation is transmitted from above. Reduced iron ore is heated by heat to produce reduced iron. .
この移動型炉床炉は、 加熱炉の炉床が水平に移動する過程で加熱を施す炉であり、 水平に移動する炉床とは、 図 6に示すような回転移動の形態を有するのが代表的であ り、 この形態の移動型炉床炉は、 特に回転炉床炉と呼ばれている。 実施の形態 2では このような移動型;^床炉、 特に回転炉床炉を用いて高亜鉛含有鉄鉱石を還元処理して 還元鉄を製造するものである。 以下において、 移動 S炉床炉として回転炉床炉を用い る場合について実施の形態 2を説明する。  This mobile hearth furnace is a furnace that heats in the process of the horizontal movement of the hearth of the heating furnace. The horizontally moving hearth has a form of rotational movement as shown in FIG. This type of mobile hearth furnace is called a rotary hearth furnace. In Embodiment 2, reduced iron is produced by reducing the high zinc-containing iron ore using such a mobile type furnace, particularly a rotary hearth furnace. In the following, Embodiment 2 will be described for the case where a rotary hearth furnace is used as the mobile S hearth furnace.
なお、 実施の形態 2で用いる高亜鉛含有鉄鉱石とは、 通常の高炉原料として利用さ れる鉄鉱石と比較して亜鉛の含有量が高く、 一般に亜鉛を 0 . O l m a s s %以上、 鉄を 5 0 m a s s %以上含有する鉄鉱石である。 実施の形態 2で用いる髙亜鉛含有鉄 鉱石の亜鉛含有量および鉄含有量の上限に制約はないが、 鉄鉱石であることから自ず と決まり、 亜鉛については例えば 0 . 5 m a s s %程度以下、 鉄については例えば 7 O m a s s %程度以下である。 また、高亜鉛含有鉄鉱,石の N a 20、 K2O等のアルカリ 成分の含有量は、 酸化物換算で通常 0 . 0 8 m a s s %以上である。 アルカリ成分の 含有量は、 l m a s s %以下であることが好ましく、 これは回転炉床炉排ガス系のつ まりを予防するのに効果的である。 実施の形態 2はこのような高亜鉛含有鉄鉱石を用いて還元鉄を製造する技術である が、 高亜鉛含有鉄鉱石を回転炉床炉で還元する際に、 通常の鉄鉱石を混合して用いる ことも可能である。 通常の鉄鉱石と混合して用いる場合であっても、 高亜鉛含有鉄鉱 石を鉱石全体の約 1 O m a s s %以上配合する場合は実施の形態 2の効果を好適に得 ることができる。 Note that the high zinc content iron ore used in Embodiment 2 has a higher zinc content than iron ore used as a normal blast furnace raw material, and generally contains 0. Iron ore containing 0 mass% or more. There is no restriction on the zinc content and the upper limit of the iron content of the zinc-containing iron ore used in Embodiment 2, but it is naturally determined because it is iron ore, and for zinc, for example, about 0.5 mass% or less, For iron, for example, it is about 7 O mass% or less. The high zinc content iron, the content of N a 2 0, an alkali component such as K2O stone, in terms of oxide is usually 0. 0 8 mass% or more. The content of the alkali component is preferably not more than lmass%, which is effective in preventing clogging of the rotary hearth furnace exhaust gas system. Embodiment 2 is a technique for producing reduced iron using such high zinc-containing iron ore. When reducing high zinc-containing iron ore in a rotary hearth furnace, ordinary iron ore is mixed. It can also be used. Even when used in combination with ordinary iron ore, the effect of Embodiment 2 can be suitably obtained when high zinc-containing iron ore is blended in an amount of about 1 O mass% or more of the entire ore.
図 6を用いて実施の形態 2に用いる回転炉床炉の一実施形態を説明する。 回転炉床 炉 1は、 図 6に示すように、 予熱帯 2 a、 還元帯 2 bおよび冷却帯 2 dに区画された 炉体 2にて、 回転移動する炉床 3を覆ってなるものである。 この回転炉床 3の上に、 高亜鉛含有鉄鉱石と、 炭素系固体還元材とを混合した混合原料 4が積载される。 混合 原料 4は以下に述ぺるように塊成化することもできる。 回転炉床 3を覆う炉体 2は耐 火物が張られている。さらに炉床耐火物の保護のために、炉床 3の上に炭材を積載し、 その上に混合原料 4を積層する場合もある。また、炉体 2にはバーナー 5が設置され、 このバーナー 5での燃料燃焼熱を熱源として、 回転炉床 3上の混合原料 4中の鉄鉱石 を還元する。なお、図 6において、 6は混合原料を回転炉床 3上に装入する装入装置、 7は還元物を排出する排出装置、 8は冷却装置である。 一般的に炉温は 1 3 0 0 °C程 度に抑えられる。 これは炉体耐火物寿命を伸ばすことに効果があるためである。 本発 明は混合原料を積極的に溶融するものではないが、 還元の過程でその一部が溶融する ような場合も、 実施の形態 2の範囲内に含まれるものとする。  An embodiment of a rotary hearth furnace used in Embodiment 2 will be described with reference to FIG. As shown in Fig. 6, the rotary hearth furnace 1 is a furnace body 2 partitioned into a pre-tropical zone 2a, a reduction zone 2b, and a cooling zone 2d. is there. On the rotary hearth 3, a mixed raw material 4 in which a high zinc-containing iron ore and a carbon-based solid reducing material are mixed is loaded. The mixed raw material 4 can also be agglomerated as described below. The furnace body 2 covering the rotary hearth 3 is refractory. In addition, in order to protect the hearth refractory, there is a case where a carbon material is loaded on the hearth 3 and the mixed raw material 4 is laminated thereon. Also, a burner 5 is installed in the furnace body 2, and the iron ore in the mixed raw material 4 on the rotary hearth 3 is reduced using the heat of fuel combustion in the burner 5 as a heat source. In FIG. 6, 6 is a charging device for charging the mixed raw material onto the rotary hearth 3, 7 is a discharging device for discharging the reduced product, and 8 is a cooling device. In general, the furnace temperature is limited to about 1300 ° C. This is because it is effective in extending the furnace refractory life. Although the present invention does not actively melt the mixed raw material, a case where a part of the mixed raw material melts during the reduction process is also included in the scope of the second embodiment.
高亜鉛含有鉄鉱石は、その産地によって量に差はあるものの脈石成分を含んでいる。 また、 炭素系固体還元材の代表例である石炭、 石炭チヤ一、 コータスには灰分が含ま れている。 そのために、 還元操作のみを行う移動炉床炉法では、 高炉一転炉法とは異 なり、 成品である還元鉄に脈石が混入することは不可避であり、 さらに還元材からの 灰分も成品に付着し混入する可能性がある。 したがって、 実施の形態 2で得られる還 元鉄は、 脈石成分、 灰分が充分に分離されていないので、 みかけ密度 (但し、 回転炉 床炉から排出されたなりの、圧縮等を行なう前の状態) が 5 0 0 0 k g Zm3未満の状 態となつている。 High zinc-containing iron ore contains a gangue component, although the amount varies depending on the place of production. As typical examples of carbon-based solid reducing materials, coal, coal chain, and coatas contain ash. Therefore, the moving hearth furnace method, which performs only the reduction operation, is unavoidable that gangue is mixed in the reduced iron, which is a product, unlike the blast furnace single converter method. There is a possibility of adhering and mixing. Therefore, the reduced iron obtained in the second embodiment is not sufficiently separated from the gangue component and ash, so the apparent density (however, it was discharged from the rotary hearth furnace before being compressed) state) 5 0 0 0 kg Zm 3 less than Jo on purpose and summer.
回転炉床炉を用いて、 高亜鉛含有鉄鉱石を還元処理する際には、 炭素系固体還元材 とともに混合して回転移動する炉床上に積載するものとする。炭素系固体還元材とは、 石炭、 コークス、 黒鉛などである。  When reducing high zinc-containing iron ore using a rotary hearth furnace, the iron ore is mixed with the carbon-based solid reducing material and loaded on the rotating hearth. Examples of the carbon-based solid reducing material include coal, coke, and graphite.
高亜鉛含有鉄鉱石が塊鉱石の場合、 粉碎の上でたとえば粒径 1 0 mm以下の鉱石粉 としてから、 炭素系固体還元材等と混合して回転炉床に積載し、 還元することができ る。 If the high-zinc iron ore is a lump ore, for example, ore powder with a particle size of 10 mm or less on the flour After that, it can be mixed with carbon-based solid reducing material and loaded on the rotary hearth for reduction.
高亜鉛含有鉄鉱石が微粉鉱石の場合 (粒径 3 mm以下) には、 炭素系固体還元材と ともに塊成化して、 炭材内装ペレッ トとして用いることもできる。 塊成化した原料は 加熱時の飛散が少なく、 ダストの亜鉛濃度を向上させることができる。 同様に圧縮成 型して、 ブリケットとしてから使用することもできる。 また、 塊成化時、 ベントナイ トなどの無機バインダー、 糖蜜、 コーンスターチなどの有機パインダーを混合して、 より強度を高めることもできる。 これらペレツトゃプリケットは水分を蒸発させてか ら、 使用することも可能である。  When the high-zinc-containing iron ore is finely divided ore (particle size of 3 mm or less), it can be agglomerated with a carbon-based solid reducing material and used as a carbonaceous interior pellet. The agglomerated raw material is less scattered during heating and can improve the zinc concentration of dust. Similarly, it can be compressed before being used as a briquette. In addition, when agglomerating, an inorganic binder such as bentonite, and organic binders such as molasses and corn starch can be mixed to increase strength. These pellets can be used after the moisture has evaporated.
一方で、 高亜鉛含有鉄鉱石を粉状のままで使用することも効果的である。 粉原料の まま使用することにより、 塊を製造するための設備費用、 塊を製造するための電力、 パインダ一などの費用が不要になり、 経済性向上に寄与することができる。  On the other hand, it is also effective to use high zinc-containing iron ore as it is. By using the raw material as it is, the equipment costs for producing the lump, the power for producing the lump, and the cost of the binder, etc. become unnecessary, which can contribute to the improvement of economy.
回転炉床炉で高亜鉛含有鉄鉱石を還元する際の加熱温度は、 1 2 5 0 °C以上とする ことが好ましい。 回転炉床炉内の最高温度を 1 2 5 0 °C以上とすることにより、 炉内 および炉内で還元する原料は高温となる。 1 2 5 0 °C以上とすることで、 還元反応が 早くなり、 高速に還元鉄を製造することが可能となる。 実施の形態 2において、 加熱 温度の上限は混合原料が完全に溶融することのない温度(1 4 5 0 °C未満)であるが、 通常の操業においては 1 4 0 0 °C未満に制御される。  The heating temperature for reducing the high zinc-containing iron ore in the rotary hearth furnace is preferably 1250 ° C. or higher. By setting the maximum temperature in the rotary hearth furnace to 1250 ° C or higher, the raw material to be reduced in the furnace and in the furnace becomes high temperature. By setting the temperature to 1 250 ° C. or higher, the reduction reaction becomes faster and reduced iron can be produced at high speed. In the second embodiment, the upper limit of the heating temperature is a temperature at which the mixed raw material does not completely melt (less than 1450 ° C), but is controlled to be less than 1400 ° C in normal operation. The
炉床上に炭材を積載し、 該炭材の上に高亜鉛含有鉄鉱石を含む混合原料を積層する ことにより、 一部溶融した混合原料が炉床の耐火物を侵食することを防止することが 可能になる。 耐火物侵食の際には鉄分が耐火物に取り込まれるため、 炉床の耐火物の 侵食を防止することで鉄分のロスが少なくなり、 還元鉄の生産性向上に寄与すること ができる。  By loading a carbonaceous material on the hearth and stacking a mixed raw material containing iron ore containing high zinc on the carbonaceous material, it is possible to prevent the partially molten mixed raw material from attacking the refractory in the hearth. Is possible. When refractory erosion occurs, iron is taken into the refractory. By preventing refractory erosion of the hearth, iron loss is reduced, which can contribute to improved productivity of reduced iron.
回転炉床炉で発生する排ガスに含有されるダストは回収される。 このダストは高亜 鉛鉄鉱石と比較して、 亜鉛を濃化しているので、 粗酸化亜鉛の原料として使用するこ とが可能である。 図 7に、 このようなダスト回収を行う回転炉床炉の一般的な設備フ ローの概略図を示す。  Dust contained in the exhaust gas generated in the rotary hearth furnace is recovered. This dust is concentrated in zinc compared to high zinc ore, so it can be used as a raw material for crude zinc oxide. Figure 7 shows a schematic diagram of the general equipment flow of a rotary hearth furnace that collects such dust.
図 7において、 鉱石ホッパー 1 1、 石炭ホッパー 1 2から排出された鉄鉱石、 石炭 は混合機 1 4 (必要に応じてペレタイザ一等を用いる) で混合して混合原料とし、 回 転炉床炉 1 5で加熱して還元して還元鉄となり還元鉄排出口 1 6から排出される。 回 転炉床炉 1 5で発生した排ガスは吸引ファン 1 9により吸引され煙突 2 0から排出さ れるが、 その際に、 排ガスダクト用パグフィルター 1 7でダスト回収を行う。 回収さ れたダストは粉体搬送用ローリー 1 8等を用いて搬出する。 混合原料において、 高亜 鉛含有鉄鉱石を鉱石全体の約 1 O m a s s %以上配合する場合は、 回収されるダスト 中の亜鉛濃度を 1 m a s s %以上とすることができる。 In Fig. 7, iron ore and coal discharged from ore hopper 1 1 and coal hopper 1 2 are mixed in a mixer 1 4 (using a pelletizer, etc. if necessary) to make a mixed raw material. It is reduced by heating at 15 to be reduced iron and discharged from the reduced iron discharge port 16. Times The exhaust gas generated in the converter floor furnace 15 is sucked by the suction fan 19 and discharged from the chimney 20. At that time, dust is collected by the pug filter 17 for the exhaust gas duct. Collected dust is carried out using a lorry for powder conveyance. In the case of blending high ore containing iron ore in the mixed raw material, about 1 O mass% or more of the whole ore, the zinc concentration in the recovered dust can be set to 1 mass% or more.
上記のように回転炉床炉で発生する排ガスから回収されたダスト (以下、 「第 1回収 ダスト」 と記載する。) は、 再度回転炉床炉で炉床上部から熱供給して処理し、 回転炉 床炉で発生するダストを回収することで粗酸化亜鉛を得ることができる。 この第 1回' 収ダストを再度回転炉床炉で処理する際に発生したダストを回収したものを、以下「第 2回収ダスト」 と記載する。 第 1回収ダストを回転炉床炉で処理する際には、 第 1回 収ダストのみを処理すればよいが、 還元反応を促進する観点から、 第 1回収ダストに 少量 (第 1回収ダストに対して 2 m a s s %以下) の炭素系固体還元材を混合するこ ともできる。 このようにダストを再度、 回転炉床炉にて製鍊することで、 以下に述ぺ るように第 1回収ダスト中の亜鉛を濃縮することができる。 第 1回収ダスト中の亜鉛 濃度が所定量以上の場合、第 1回収ダストに炭素系固体還元材と鉄鉱石とを混合して、 還元鉄の製造量を増やすこともできる。 第 1回収ダストに鉄鉱石を混合して処理する 際に、 第 2回収ダスト中の目標亜鉛濃度が同じであれば、 高亜鉛含有鉄鉱石を用いる と鉄鉱石配合量を增やすことができるので、 ダスト中の亜鉛を濃縮しながら、 より多 量の還元鉄を製造することができるので好ましい。  Dust recovered from the exhaust gas generated in the rotary hearth furnace as described above (hereinafter referred to as “first recovered dust”) is again processed by supplying heat from the top of the hearth in the rotary hearth furnace, By collecting the dust generated in the rotary hearth furnace, crude zinc oxide can be obtained. The dust collected when the first collected dust is again processed in the rotary hearth furnace is referred to as “second recovered dust” hereinafter. When processing the first recovered dust in the rotary hearth furnace, only the first collected dust needs to be processed, but from the viewpoint of promoting the reduction reaction, a small amount of the first recovered dust (with respect to the first recovered dust). (2 mass% or less) carbon-based solid reducing material can be mixed. By making the dust again in the rotary hearth furnace in this way, the zinc in the first recovered dust can be concentrated as described below. When the zinc concentration in the first recovered dust is greater than or equal to a predetermined amount, the first recovered dust can be mixed with a carbon-based solid reducing material and iron ore to increase the amount of reduced iron produced. If the target zinc concentration in the second recovered dust is the same when the iron ore is mixed with the first recovered dust, the amount of iron ore added can be increased by using high zinc-containing iron ore. It is preferable because a larger amount of reduced iron can be produced while concentrating zinc in the dust.
ダスト中の亜鉛の濃縮は、 たとえば図 8に示すように、 ダストヤード 2 3の第 1回 収ダストを、 粉体搬送用ローリー 1 8等を用いて搬送して、 回転炉床炉 1 5にて加熱 し、 発生する排ガスを吸引して、 排ガスダクト用バグフィルター 1 7でダスト回収を 行うことで実施することができる。 または、 図 9に示すように混合原料のホッパー 1 1、 1 2と並列に第 1回収ダスト貯蔵ホッパー 2 2を設けることで実施することがで きる。 この設備は図 7に示す設備に対して、 回収ダスト搬送コンベア一 2 1と第 1回 収ダスト貯蔵ホッパー 2 2が追加されたものになっている。 回収ダスト搬送コンベア 一 2 1は 2 1 aと 2 1 bとに分岐しており、 第 1回収ダスト搬送コンベア一 2 1 aで 第 1回収ダストを第 1回収ダスト貯蔵ホッパー 2 2に搬送し、 回転炉床炉 1 5にて加 熱して再利用し、 第 2回収ダスト搬送コンベア一 2 1 bで第 2回収ダストを製品とし て抜き出すことができる。 抜き出される第 2回収ダストは、 微粉であるため、 たとえ ば粉体搬送用口一リー 1 8などを用いて搬送される。 For example, as shown in Fig. 8, the zinc collected in the dust is conveyed to the rotary hearth furnace 15 by transporting the first collected dust in the dust yard 23 using a lorry 18 for powder transportation. This can be done by sucking the generated exhaust gas and collecting the dust with the bag filter 17 for the exhaust gas duct. Alternatively, as shown in FIG. 9, the first recovered dust storage hopper 2 2 can be provided in parallel with the mixed material hoppers 1 1 and 1 2. This equipment is the same as the equipment shown in Fig. 7 except that a recovered dust transport conveyor 21 and a first collected dust storage hopper 22 are added. The recovered dust transport conveyor 1 2 1 is branched into 2 1 a and 2 1 b. The first recovered dust transport conveyor 1 2 1 a transports the first recovered dust to the first recovered dust storage hopper 2 2, It can be heated and reused in the rotary hearth furnace 15 and the second recovered dust can be extracted as a product by the second recovered dust transfer conveyor 21 b. The second collected dust that is extracted is a fine powder. For example, it is transported using a powder transport port 1 18 or the like.
ダストに鉄鉱石を混合する際には、 第 1回収ダストを第 1回収ダスト貯蔵ホッパー 2 2に貯蔵し、 少量の炭素系固体還元材と、 鉄鉱石とを配合することで回転炉床炉の 原料として使用し、 回転炉床炉 1 5で加熱して還元する際に第 2回収ダストとして回 収する。  When mixing iron ore with dust, the first recovered dust is stored in the first recovered dust storage hopper 22 and a small amount of carbon-based solid reducing material and iron ore are blended to form a rotary hearth furnace. Used as a raw material and recovered as second recovered dust when heated and reduced in a rotary hearth furnace 15.
前述のとおり、 粗酸化亜鉛を含有する第 2回収ダストは亜鉛濃度に応じて使用用途 が異なるが、 上記の方法で生産した第 2回収ダストは亜鉛濃度が 1 O m a s s %を超 えるものとなるので、 ゥェルツ法などの中間処理で高濃度の粗酸化亜鉛とすることが でき、 亜鉛製鍊原料として用いることができる。  As described above, the second recovered dust containing crude zinc oxide has different uses depending on the zinc concentration, but the second recovered dust produced by the above method has a zinc concentration exceeding 1 O mass%. Therefore, a high concentration of crude zinc oxide can be obtained by intermediate treatment such as the Wertz method, and it can be used as a raw material for zinc.
第 1回収ダストを回収する際の混合原料において、 鉱石の全てが高亜鉛含有鉱石で ない場合であっても、 鉱石中の平均亜鉛濃度が 0 . 0 0 5 m a s s %以上であれば、 回転炉床炉で処理して得られる第 2回収ダストの亜鉛濃度を 5 O m a s s %以上とす ることができる。 得られる回収ダストの亜鉛濃度が 5 O m a s s %以上であれば、 中 間処理が不要となり、 亜鉛精練に使用する粗酸化亜鉛として直接使用することができ るので好ましい。  If the average zinc concentration in the ore is 0.05 mass% or more in the mixed raw material for collecting the first recovered dust, even if not all of the ore is not high-zinc-containing ore, the rotary furnace The zinc concentration of the second recovered dust obtained by processing in the floor furnace can be 5 O mass% or more. If the zinc concentration of the recovered dust obtained is 5 O m s s% or more, intermediate treatment is not necessary and it can be used directly as crude zinc oxide used for zinc scouring.
以上のように、 回収ダスト (第 1回収ダスト) に対して回転炉床炉で再度処理を行 うことで回収ダスト (第 2回収ダスト) 中の亜鉛濃度は向上し、 経済性も向上する。 それに加えて、 ダスト処理のための別設備 (中間処理設備) を建設するコストが不要 となり、 また、 発生したダストを中間処理設備まで運ぶコストが不要となるといぅメ リットがある。  As described above, when the recovered dust (first recovered dust) is treated again in the rotary hearth furnace, the zinc concentration in the recovered dust (second recovered dust) is improved and the economy is improved. In addition, the cost of constructing a separate facility (intermediate processing facility) for dust treatment is eliminated, and the cost of transporting the generated dust to the intermediate processing facility is unnecessary.
上記においては回転炉床炉で発生する排ガスに含有されるダストを回収して用いたが、 回収ダスト以外の亜鉛含有ダストを、 高亜鉛含有鉄鉱石を回転炉床炉で還元する際に混合 して用いることも可能である。 高亜鉛含有鉄鉱石よりも亜鉛濃度の高いダストを混合する ことにより、 上記のように回転炉床炉で発生する排ガスから回収されたダストにおいて、 粗酸化亜鉛を高濃度に有するダストを得ることができる。  In the above, dust contained in the exhaust gas generated in the rotary hearth furnace was recovered and used. However, zinc-containing dust other than the recovered dust was mixed when reducing high zinc-containing iron ore in the rotary hearth furnace. Can also be used. By mixing dust with higher zinc concentration than iron ore with high zinc content, it is possible to obtain dust having a high concentration of crude zinc oxide in the dust recovered from the exhaust gas generated in the rotary hearth furnace as described above. it can.
前述のとおり、 粗酸化亜鉛を含有する回収ダストは亜鉛濃度に応じて使用用途が異なる が、 自家発生、 外部発生に関わらず亜鉛含有ダストを用いて生産した回収ダストは亜鉛濃 度が 1 O m a s s %を超えるものとすることができるので、 ゥェルツ法などの中間処理で 高濃度の粗酸化亜鉛とすることができ、 亜鉛製鍊原料として用いることができる。  As mentioned above, recovered dust containing crude zinc oxide has different uses depending on the zinc concentration, but the recovered dust produced using zinc-containing dust, whether self-generated or externally generated, has a zinc concentration of 1 O mass. Therefore, it can be made into high-concentration crude zinc oxide by an intermediate treatment such as the Wertz method, and can be used as a raw material for making zinc.
高亜鉛含有鉄鉱石と混合して用いられる亜鉛含有ダストは特に限定されないが、 た とえば高炉からの発生ダスト、 転炉からの発生ダスト、 電気炉からの発生ダスト等の 鉄鋼業におけるダスト等を用いることが出来る。 The zinc-containing dust used in combination with the high zinc-containing iron ore is not particularly limited. For example, dust generated in the iron and steel industry, such as dust generated from a blast furnace, dust generated from a converter, and dust generated from an electric furnace can be used.
混合原料中の平均亜鉛濃度が 0 . 4 5 m a s s %以上であれば、 回転炉床炉で処理 して得られる回収ダストの亜 10濃度を 5 O m a s s %以上とすることができる。 得ら れる回収ダストの亜鉛濃度が 5 0 m a s s %以上であれば、 中間処理が不要となり、 亜鉛精練に使用する粗酸化亜鉛として直接使用することができるので好ましい。  If the average zinc concentration in the mixed raw material is 0.45 m a s s% or more, the sub-10 concentration of recovered dust obtained by processing in the rotary hearth furnace can be made 5 O m a s s% or more. If the recovered recovered zinc concentration is 50 m s s% or more, intermediate treatment is unnecessary, and it can be used directly as crude zinc oxide used for zinc scouring.
以上のように、 高亜鉛含有鉄鉱石を回転炉床炉で還元する際に、 亜鉛含有ダストを混合 して用いることで回収ダスト中の亜鉛濃度は向上し、 経済性も向上する。 以下に実施の形態 2の一実施形態を詳細に説明する。  As described above, when reducing high zinc-containing iron ore in a rotary hearth furnace, mixing zinc-containing dust increases the concentration of zinc in the recovered dust and improves economic efficiency. One embodiment of the second embodiment will be described in detail below.
回転炉床炉の炉床上に高亜鉛含有鉄鉱石、 炭素系固体還元剤を含む混合原料を積載 して、 炉床を回転させて炉内を移動させながら昇温加熱し、 空気もしくは酸素を付加 した空気を炉内へ吹き込み、還元反応にて発生する C Oもしくは H2を 2次燃焼させる。 発生する A mixed raw material containing high zinc-containing iron ore and carbon-based solid reducing agent is loaded on the hearth of the rotary hearth furnace, heated up while moving inside the furnace by rotating the hearth, and added with air or oxygen The blown air is blown into the furnace, and CO or H 2 generated by the reduction reaction is secondarily burned. appear
排ガスは冷却の後、 排ガスに含有するダストを回収する。 炉床上に残存する混合原料 を充分に還元させて還元鉄を得る。 After the exhaust gas is cooled, the dust contained in the exhaust gas is recovered. The mixed raw material remaining on the hearth is sufficiently reduced to obtain reduced iron.
一方、 鉱石中の亜鉛分は酸化亜鉛として存在し、 炭素系固体還元材により、 還元揮 発して排ガスに搬送され、 冷却と同時に酸化凝集して、 排ガスから分離され、 ダスト として回収される。 このダストは亜鉛が濃化されており、 直接もしくは再精製工程を 行うことで亜鉛製鍊の原料となる。  On the other hand, the zinc content in the ore exists as zinc oxide, and is reduced and volatilized by the carbon-based solid reducing material, transported to the exhaust gas, oxidizes and aggregates simultaneously with cooling, separated from the exhaust gas, and recovered as dust. This dust is concentrated in zinc, and can be used as a raw material for zinc slag by direct or re-refining process.
回転炉床炉は充填層を持たない炉であるため、 高炉で見られるような原科含有亜鉛 分が炉壁に付着することによるコータスや鉱石の接着、 充填物の不動化などの現象が 発生することはなく、 操業の支障となることはない。  Since the rotary hearth furnace does not have a packed bed, phenomena such as adhesion of coatus and ore, immobilization of the packing due to adhesion of the zinc content contained in the raw material to the furnace wall, as seen in a blast furnace, occur. Will not interfere with operations.
回転炉床炉の加熱時には亜鉛成分が揮発し、 排ガスに搬送されると同時に炉床上に 積載されている混合原料の一部が飛散して、 回収ダストに混合する。 よって、 回収ダ スト中の亜鉛濃度は揮発する亜鉛分の量と飛散する混合原料の量によって決定され、 混合原料中の亜鉛濃度が高いほど回収されるダストの亜鉛濃度は高くなる。 本発明者 らの研究によれば、 混合原料の飛散量は通常操業においてはほぼ一定であり、 混合原 料投入量の 0 . 5 m a s s %前後であることが確認されている。 また、 ダスト中の亜 鉛濃度が高いほど亜鉛原料としての価値が高くなる。 したがって、 実施の形態 2を実 施することにより、 亜鉛濃度の高いダストが回収され、 より有効に高亜鉛含有鉄鉱石 を利用することが可能になる。 When the rotary hearth furnace is heated, the zinc component volatilizes and is transported to the exhaust gas. At the same time, a part of the mixed raw material loaded on the hearth is scattered and mixed with the recovered dust. Therefore, the zinc concentration in the recovered dust is determined by the amount of zinc that volatilizes and the amount of mixed raw material that scatters. The higher the zinc concentration in the mixed raw material, the higher the zinc concentration in the recovered dust. According to the study by the present inventors, it has been confirmed that the amount of the mixed raw material scattered is almost constant in normal operation, and is about 0.5 mass% of the mixed raw material input amount. In addition, the higher the zinc concentration in the dust, the higher the value as a zinc raw material. Therefore, the second embodiment is implemented. By applying this, dust with a high zinc concentration is recovered, and iron ores with high zinc content can be used more effectively.
また、 回転炉床炉に積載する混合原料の全部もしくは一部に回収したダストを使用 することで、 前記亜鉛濃度の高いダスト中の亜鉛をさらに濃縮して回収することも可 能である。  Further, by using dust recovered in all or part of the mixed raw material loaded on the rotary hearth furnace, it is also possible to further concentrate and recover zinc in the dust having a high zinc concentration.
実施例 2  Example 2
実施の形態 2の有効性を確認するために図 6に示すものと同様の回転炉床炉におい て、 高亜鉛含有鉄鉱石および亜鉛含有量の低い一般的な鉱石を用いて還元鉄の製造試 験を行った。また回転炉床炉で発生するダストを回収して亜鉛濃度の測定も行なった。 回転炉床炉のスペックを表 1 0に示す。  In order to confirm the effectiveness of the second embodiment, in a rotary hearth furnace similar to that shown in Fig. 6, a production test of reduced iron using high-zinc-containing iron ore and general ore with low zinc content is performed. Test was carried out. Moreover, the dust generated in the rotary hearth furnace was recovered and the zinc concentration was also measured. Table 10 shows the specifications of the rotary hearth furnace.
表 1 0  Table 1 0
Figure imgf000027_0002
使用した鉱石の組成を表 1 1に示す。 尚、 表 1 1において T一 F eとはトータル F e である。
Figure imgf000027_0002
Table 11 shows the composition of the ore used. In Table 11, T 1 F e is the total F e.
表 1 1  Table 1 1
Figure imgf000027_0001
Figure imgf000027_0003
鉱石 Aは高亜鉛含有鉄鉱石であり、鉱石 Bは亜鉛含有量の低い一般的な鉱石である。 脈石分および鉄分は両者でほぼ同じであるが、 鉱石 Aの亜鉛濃度は鉱石 Bの約 5 0倍 程度である。
Figure imgf000027_0001
Figure imgf000027_0003
Ore A is a high zinc content iron ore, and ore B is a common ore with low zinc content. The gangue and iron contents are almost the same, but the zinc concentration of ore A is about 50 times that of ore B.
鉱石と、 炭素系固体還元材としての石炭とを混合して混合原料とした。 表 1 2に使 用した石炭の組成を、 表 1 3に試験に用いた混合原料の配合について示す。 尚、 表 1 2において F Cとは固定炭素、 VMとは揮発分、 A s hとは灰分である。
Figure imgf000028_0001
Figure imgf000028_0002
Ore and coal as a carbon-based solid reducing material were mixed to make a mixed raw material. Table 12 shows the composition of the coal used, and Table 13 shows the composition of the mixed raw materials used in the test. In Table 12, FC is fixed carbon, VM is volatile, and Ash is ash.
Figure imgf000028_0001
Figure imgf000028_0002
(k /tHron)
Figure imgf000028_0003
(k / tHron)
Figure imgf000028_0003
表 1 3に示す配合 1〜3を用いて、 表 1 4に示す条件で回転炉床炉を操業した。 炉 床上に炭材として石炭を 5 O mm敷いた上に、 混合原料を積層する場合を下層炭材ぁ りとし、 また、 混合原料を約 1 O mm積載して使用した場合を 「粉」、 塊成化して粒径 1 0〜 1 5 mmのペレットとした場合を 「塊」 として原料状態の欄に示している。 表 1 4 The rotary hearth furnace was operated under the conditions shown in Table 14 using the formulations 1 to 3 shown in Table 13. When 5 O mm of coal is laid on the hearth as a carbon material, the mixed raw material is laminated with the lower layer carbon material, and when the mixed raw material is loaded with about 1 O mm and used, it is “powder”. The agglomerated pellets with a particle size of 10 to 15 mm are shown as “lumps” in the raw material column. Table 1 4
Figure imgf000028_0004
Figure imgf000028_0004
表 1 5に、 表 1 4に示す条件で還元鉄を製造した際の、 ダスト亜鉛濃度と鉄分回収 率の結果を示す。 表 1 5 Table 15 shows the results of dust zinc concentration and iron recovery rate when reduced iron was produced under the conditions shown in Table 14. Table 15
Figure imgf000029_0001
表 1 5において、 操業 No. 3は、 高亜鉛含有鉱石を使用した本発明例である。 ダスト中の亜鉛濃度は 7. 6ma s s %まで上昇している。
Figure imgf000029_0001
In Table 15, Operation No. 3 is an example of the present invention using a high zinc content ore. The zinc concentration in the dust has increased to 7.6 ma ss%.
操業 N o . 4は一般的な鉱石中に約 1 0 m a s s %の高亜鉛含有鉄鉱石を配合した 場合の例である。 この場合でも、 ダスト中の亜鉛濃度は 1. 0ma s s %以上にまで 上昇している。  Operation No. 4 is an example of a case where about 10 m a s s% of high zinc content iron ore is blended in general ore. Even in this case, the zinc concentration in the dust has risen to more than 1.0 ma s s%.
操業 No. 5は 1 250°C以上の高温で加熱処理したものであり、 処理時間が短縮 され、 生産性が向上していることがわかる。  Operation No. 5 was heat-treated at a high temperature of 1 250 ° C or higher, and it can be seen that the treatment time was shortened and the productivity was improved.
操業 No. 6は、 操業 No. 5に加えて炉床上に炭材を敷いた上に、 混合原料を積 層した場合であり、 鉄分の回収率が上昇している。  Operation No. 6 is the case where mixed raw materials are stacked on the hearth in addition to operation No. 5, and the iron recovery rate is increasing.
操業 No. 7は、 操業 No. 5に加えて塊原料を使用した場合であり、 ダスト中の 亜鉛濃度が上昇している。 次に、 回収したダストのリサイクル利用を行った。  Operation No. 7 is the case where lump raw materials are used in addition to Operation No. 5, and the zinc concentration in the dust is increasing. Next, the collected dust was recycled.
図 6、 図 9に示すものと同様の設備で、 高亜鉛含有鉄鉱石おょぴ亜鉛含有量の低い 一般的な鉱石を用いて還元鉄の製造試験を行う際に、 鉱石の亜鉛濃度と、 回収される ダストの亜鉛濃度との関係を調査した。 調査には高亜鉛含有鉱石である鉱石 Aと通常 の鉱石である鉱石 Bとを混合して使用し、 亜鉛濃度を連続的に変化させ操業 N o . 1 1〜1 9とし、 1回目の回転炉床炉での処理によって発生するダスト (第 1回収ダス ト) を回収して、 回収したダストの全量を回転炉床炉で 1 260°Cで 1 3分の加熱処 理を行い、 発生するダスト (第 2回収ダスト) を回収した。 In the same equipment as shown in Fig. 6 and Fig. 9, when conducting the production test of reduced iron using general ore with low zinc content in high-zinc-containing iron ore, The relationship between the collected dust and zinc concentration was investigated. In the survey, ore A, which is a high-zinc content ore, and ore B, which is a normal ore, are mixed and used, and the zinc concentration is continuously changed to operation No. 1 1 to 19 and the first rotation. Dust generated by treatment in hearth furnace (first recovery das G) was collected, and the entire amount of collected dust was heated in a rotary hearth furnace at 1260 ° C for 13 minutes, and the generated dust (second collected dust) was collected.
表 1 6および図 1 0に、 混合原料中の鉱石亜鉛濃度と、 1回目の回転炉床炉での処 理によって発生するダストであって、 2回目の回転炉床炉での処理の原料となる第 1 回収ダストの亜鉛濃度の測定結果と、 最終的な製品ダストである第 2回収ダストの亜 鉛濃度の測定結果を示す。 表 1 6  Table 16 and Fig. 10 show the ore zinc concentration in the mixed raw material and the dust generated by the treatment in the first rotary hearth furnace. The measurement result of the zinc concentration of the first recovered dust and the measurement result of the zinc concentration of the second recovered dust, which is the final product dust. Table 1 6
Figure imgf000030_0001
表 1 6および図 1 0から分かるように、 混合原料中の鉱石の亜鉛濃度が 0. 005 ma s s %以上となると、 製品ダストである第 2回収ダストの亜鉛濃度が 5 Oma s s %を超え、 I S P法などの亜鉛精練に直接使用が可能な原料となることが分かる。 次に、 高亜鉛含有鉄鉱石と亜鉛含有ダストを混合した原料を用いた。
Figure imgf000030_0001
As can be seen from Table 16 and Fig. 10, when the zinc concentration of the ore in the mixed raw material is 0.005 ma ss% or more, the zinc concentration of the second recovered dust, which is product dust, exceeds 5 Oma ss%, It turns out that it becomes a raw material that can be used directly for zinc refining such as ISP method. Next, the raw material which mixed high zinc content iron ore and zinc content dust was used.
使用した亜鉛含有ダストの組成を表 1 7に示す。 ここで亜鉛含有ダストとして転炉から の発生ダストを用いた。  The composition of the zinc-containing dust used is shown in Table 17. Here, dust generated from the converter was used as zinc-containing dust.
表 1 7  Table 1 7
Figure imgf000031_0001
図 6に示すものと同様の設備で、 高亜鉛含有鉄鉱石および亜鉛含有ダストを用いて還元 鉄の製造試験を行う際に、 混合原料中の亜鉛濃度と、 回収されるダストの亜鉛濃度との関 係を調査した。 調査には高亜鉛含有鉄鉱石である鉱石 Aと亜鉛含有ダストとを混合して使 用し、 亜鉛濃度を連続的に変化させ操業 N o . 2 1〜 2 5とし、 混合原料は回転炉床炉で 1 2 6 0 °Cで 1 3分の加熱処理を行い、 発生するダストを回収した。
Figure imgf000031_0001
When a production test of reduced iron is performed using high zinc content iron ore and zinc content dust with the same equipment as shown in Fig. 6, the zinc concentration in the mixed raw material and the zinc concentration in the recovered dust The relationship was investigated. In the survey, ore A, which is a high-zinc iron ore, and zinc-containing dust are mixed and used, and the zinc concentration is continuously changed to operate No. 2 1-25. Heat treatment was performed in a furnace at 1260 ° C for 13 minutes, and the generated dust was recovered.
表 1 8に、 混合原料中の亜鉛含有ダストの配合比率と亜鉛濃度、 および回収ダストの亜 鉛濃度の測定結果を示す。  Table 18 shows the measurement results of the mixing ratio and zinc concentration of zinc-containing dust in the mixed raw material, and the zinc concentration of recovered dust.
表 1 8  Table 1 8
Figure imgf000031_0002
表 1 8から分かるように、 混合原料中の亜鉛含有ダストの配合比率の上昇に伴い回収ダ ストの亜鉛濃度が上昇し、 混合原科中の亜鉛濃度が 0 . 4 5 m a s s %以上となると、 製 品ダストである回収ダストの亜鉛濃度が 5 O m a s s %を超え、 I S P法などの亜鉛精鍊 に直接使用が可能な原料となることが分かる。
Figure imgf000031_0002
As can be seen from Table 18, when the zinc concentration in the recovered dust increases as the blending ratio of the zinc-containing dust in the mixed raw material increases, and the zinc concentration in the mixed raw material reaches 0.45 mass% or more, It can be seen that the zinc concentration of the recovered dust, which is product dust, exceeds 5 O mass%, making it a raw material that can be used directly in zinc refineries such as the ISP method.

Claims

請求の範囲  The scope of the claims
1 · 亜鉛を 0. 01 m a s s %以上、 鉄を 50 m a s s %以上含有する高亜鉛含有 鉄鉱石 (A) を含有する鉄鉱石 (X) と、 炭素系固体還元材とを含む混合原料を準備 する工程と、 1 · Prepare a mixed raw material containing iron ore (X) containing high-zinc-containing iron ore (A) containing 0.01 mass% or more of zinc and 50 mass% or more of iron, and a carbon-based solid reducing material Process,
前記混合原料を移動型炉床炉の炉床上に積載させる混合原料積載工程と、 炉床上部から熱供給して移動型炉床上に積載した混合原料を還元し、 還元生成 物を得る還元工程と、  A mixed raw material loading step of loading the mixed raw material on the hearth of the mobile hearth furnace, a reduction step of reducing the mixed raw material loaded on the mobile hearth by supplying heat from the upper part of the hearth, and obtaining a reduction product; ,
を有する還元鉄の製造方法。  The manufacturing method of reduced iron which has this.
2. 前記高亜鉛含有鉄鉱石 (A) 力 0. 0 1〜0. 5 m a s s %の亜鉛と、 50〜 70 m a s s %の鉄を含有する請求項 1に記載の還元鉄の製造方法。 2. The method for producing reduced iron according to claim 1, wherein the high-zinc-containing iron ore (A) has a force of 0.01 to 0.5 m s s% zinc and 50 to 70 m s s% iron.
3. 前記高亜鉛含有鉄鉱石 (A) 1 鉄鉱石 (X) に対して 1 0〜 1 00 m a s s % の配合割合を有する請求項 1に記載の還 鉄の製造方法。 3. The method for producing return iron according to claim 1, wherein the high zinc-containing iron ore (A) 1 iron ore (X) has a blending ratio of 10 to 100 m a s s%.
4. 前記混合原料積載工程が、 塊成化された混合原料を移動型炉床上に積載させる ことからなる請求項 1に記載の還元鉄の製造方法。 4. The method for producing reduced iron according to claim 1, wherein the mixed raw material loading step comprises loading the agglomerated mixed raw material on a movable hearth.
5. 前記還元工程が、 混合原料を 1 200 °C以上の加熱温度で還元することからな る請求項 1に記載の還元鉄の製造方法。 5. The method for producing reduced iron according to claim 1, wherein the reduction step comprises reducing the mixed raw material at a heating temperature of 1 200 ° C or higher.
6. 前記加熱温度が、 1 2 50°C以上且つ 1 400°C未満である請求項 5に記載の 還元鉄の製造方法。 6. The method for producing reduced iron according to claim 5, wherein the heating temperature is 1 250 ° C or higher and lower than 1 400 ° C.
7. 前記還元工程が、 炉床上部から熱供給して移動型炉床上に積載した混合原料を 還元し、 前記混合原料を溶融しないかまたは一部のみ溶融させて、 還元鉄を得ること からなる請求項 1に記載の還元鉄の製造方法。 7. The reduction step consists of reducing the mixed raw material loaded on the movable hearth by supplying heat from the upper part of the hearth, and obtaining the reduced iron by not melting or partially melting the mixed raw material The method for producing reduced iron according to claim 1.
8. 更に、 前記移動型炉床炉で発生するダストから粗酸化亜鉛を回収する回収工程 を有し、 8. Furthermore, it has a recovery step of recovering crude zinc oxide from dust generated in the mobile hearth furnace,
前記原料を準備する工程が、 亜鉛を 0. O lma s s %以上、 鉄を 50 ma s s %以上含有する高亜鉛含有鉄鉱石 (A) を含有する鉄鉱石 (X) と、 亜鉛含有ダス トと、 炭素系固体還元材とを含む混合原料を準備することからなる、  The step of preparing the raw material includes iron ore (X) containing high zinc-containing iron ore (A) containing zinc in an amount of 0. Olma ss% or more and iron in an amount of 50 ma ss% or more, and a zinc-containing dust. Preparing a mixed raw material containing a carbon-based solid reducing material,
請求項 1に記載の還元鉄の製造方法。  The method for producing reduced iron according to claim 1.
9. 前記混合原料が 0. 45 m a s s %以上の平均亜鉛濃度を有する請求項 8に記 載の還元鉄の製造方法。 9. The method for producing reduced iron according to claim 8, wherein the mixed raw material has an average zinc concentration of 0.45 mass% or more.
1 0. 前記平均亜鉛濃度が 0. 45〜0.. 6 Oma s s %である請求項 9に記載の還 元鉄の製造方法。 10. The method for producing reduced iron according to claim 9, wherein the average zinc concentration is 0.45 to 0.6.6 Oma s s%.
1 1. 前記亜鉛含有ダストが、 高炉からの発生ダスト、 転炉からの発生ダストと電気 炉からの発生ダストからなるグループから選択された少なくとも一つのダストである 請求項 8に記 の還元鉄の製造方法。 1 1. The zinc-containing dust is at least one dust selected from the group consisting of dust generated from a blast furnace, dust generated from a converter, and dust generated from an electric furnace. Production method.
1 2. 更に、 移動型炉床炉で発生したダストを回収し、 回収ダストを得る回収工程を 有し、 . 1 2.Furthermore, it has a recovery process to recover the dust generated in the mobile hearth furnace and obtain the recovered dust.
前記原料を準備する工程が、 亜鉛を 0. 0 Ima s s %以上、 鉄を 50 m a s s %以上含有する高亜鉛含有鉄鉱石 (A) を含有する鉄鉱石 (X) と、 前記回収ダス トと、 炭素系固体還元材とを含む混合原料を準備することからなる、  The step of preparing the raw material includes: iron ore (X) containing high-zinc-containing iron ore (A) containing not less than 0.0 Ima ss% zinc and not less than 50 mass% of iron; and the recovered dust, Comprising preparing a mixed raw material containing a carbon-based solid reducing material,
請求項 1に記載の還元鉄の製造方法。  The method for producing reduced iron according to claim 1.
13. 更に、 13. In addition,
移動型炉床炉で発生したダストを回収する工程と、  Recovering dust generated in the mobile hearth furnace;
回収されたダストを前記移動型炉床上に積載する工程と、  Loading the collected dust on the movable hearth;
該炉床上部から熱供給して、 前記移動型炉床炉で発生するダストから粗酸化亜 鉛を得る工程と、  Supplying crude heat from the upper part of the hearth to obtain crude zinc oxide from dust generated in the mobile hearth furnace;
を有する請求項 1に記載の還元鉄の製造方法。 The method for producing reduced iron according to claim 1, comprising:
14. 更に、 前記還元生成物を溶融させる溶融工程を有する請求項 1に記載の還元鉄 の製造方法。 14. The method for producing reduced iron according to claim 1, further comprising a melting step of melting the reduction product.
1 5. 更に、 前記還元生成物を溶融させる溶融工程を有し、 1 5. Furthermore, it has a melting step of melting the reduction product,
前記混合原料が、 亜鉛を 0. 0 1 m a s s %以上、 鉄を 50 m a s s %以上含 有する高亜鉛含有鉄鉱石 (A) を含有する鉄鉱石 (X) と、 炭素系固体還元材と、 造 滓材とを含む、  The mixed raw material includes iron ore (X) containing high-zinc-containing iron ore (A) containing zinc in an amount of 0.01 mass% or more and iron in an amount of 50 mass% or more, a carbon-based solid reducing material, Including materials,
請求項 1に記載の還元鉄の製造方法。  The method for producing reduced iron according to claim 1.
1 6. 前記溶融工程が、 前記還元生成物を 1400°C以上の加熱温度で溶融させるこ とからなる請求項 14に記載の還元鉄の製造方法。 1 6. The method for producing reduced iron according to claim 14, wherein the melting step comprises melting the reduction product at a heating temperature of 1400 ° C or higher.
1 7. 前記加熱温度が、 14 50°C以上且つ 1 500°C以下である請求項 1 6に記載 の還元鉄の製造方法。 1 7. The method for producing reduced iron according to claim 16, wherein the heating temperature is 1450 ° C or higher and 1500 ° C or lower.
1 8. 更に、 前記還元生成物を溶融させる溶融工程と、 前記移動型炉床炉で発生する ダストから粗酸化亜鉛を回収する回収工程とを有し、 1 8. Furthermore, it has a melting step of melting the reduction product, and a recovery step of recovering crude zinc oxide from dust generated in the mobile hearth furnace,
前記原料を準備する工程が、 亜鉛を 0. 0 lma s s %以上、 鉄を 50 ma s s %以上含有する高亜鉛含有鉄鉱石 (A) を含有する鉄鉱石 (X) と、 亜鉛含有ダス トと、 炭素系固体還元材と、 造滓材とを含む混合原料を準備することからなる、 請求項 1に記載の還元鉄の製造方法。  The step of preparing the raw material includes iron ore (X) containing high zinc-containing iron ore (A) containing zinc in an amount of 0.0 lma ss% or more and iron in an amount of 50 ma ss% or more, and a zinc-containing dust. The method for producing reduced iron according to claim 1, comprising preparing a mixed raw material containing a carbon-based solid reducing material and a slagging material.
1 9. 前記混合原料が 0. 45 m a s s %以上の平均亜鉛濃度を有する請求項 1 8に 記載の還元鉄の製造方法。 19. The method for producing reduced iron according to claim 18, wherein the mixed raw material has an average zinc concentration of 0.45 mass% or more.
20. 前記平均亜鉛濃度が 0. 45〜0. 6 0ma s s %である請求項 1 9に記載の 還元鉄の製造方法。 20. The method for producing reduced iron according to claim 19, wherein the average zinc concentration is 0.45 to 0.6 mass%.
2 1 . 前記亜鉛含有ダストが、 高炉からの発生ダスト、 転炉からの発生ダストと電気 炉からの発生ダストからなるグループから選択された少なくとも一つのダストである 請求項 1 8に記載の還元鉄の製造方法。 21. The reduced iron according to claim 18, wherein the zinc-containing dust is at least one dust selected from the group consisting of dust generated from a blast furnace, dust generated from a converter, and dust generated from an electric furnace. Manufacturing method.
2 2 . 更に、 前記還元生成物を溶融させる溶融工程と、 移動型炉床炉で発生したダス トを回収し、 回収ダストを得る回収工程と、 を有し、 2 2. Further, a melting step of melting the reduction product, and a recovery step of recovering dust generated in the mobile hearth furnace to obtain recovered dust,
前記原料を準備する工程が、 亜鉛を 0 . 0 l m a s s %以上、 鉄を 5 O m a s s %以上含有する高亜鉛含有鉄鉱石 (A) を含有する鉄鉱石 (X ) と、 前記回収ダス トと、 炭素系固体還元材と、 造滓材とを含む混合原料を準備することからなる、 請求項 1に記載の還元鉄の製造方法。  The step of preparing the raw material includes iron ore (X) containing a high zinc-containing iron ore (A) containing zinc at 0.0 lmass% or more and iron at 5 O mass% or more, and the recovered dust, 2. The method for producing reduced iron according to claim 1, comprising preparing a mixed raw material containing a carbon-based solid reducing material and a slagging material.
2 3 . 更に、 2 3.
前記還元生成物を溶融させる溶融工程と、  A melting step for melting the reduction product;
移動型炉床炉で発生したダストを回収する工程と、  Recovering dust generated in the mobile hearth furnace;
回収されたダストを前記移動型炉床上に積載する工程と、  Loading the collected dust on the movable hearth;
該炉床上部から熱供給して、 前記移動型炉床炉で発生するダストから粗酸化亜 鉛を得る工程と、  Supplying crude heat from the upper part of the hearth to obtain crude zinc oxide from dust generated in the mobile hearth furnace;
を有する請求項 1に記載の還元鉄の製造方法。  The method for producing reduced iron according to claim 1, comprising:
2 4 . 前記混合原料積載工程より前に、更に、移動型炉床上に炭材を積載した上に、 混合原料を積層するために、 炭材を移動型炉床上に積載させる炭材積載工程を有する 請求項 1に記載の還元鉄の製造方法。 2 4. Prior to the mixed raw material loading step, a carbon material loading step for loading the carbonaceous material on the mobile hearth in order to stack the mixed raw material on the mobile hearth after loading the carbonaceous material on the mobile hearth. The method for producing reduced iron according to claim 1.
PCT/JP2009/058431 2008-04-25 2009-04-22 Process for production of direct-reduced iron WO2009131242A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020107022162A KR101234388B1 (en) 2008-04-25 2009-04-22 Process for production of direct-reduced iron
CN2009801146351A CN102016080A (en) 2008-04-25 2009-04-22 Process for production of direct-reduced iron
US12/936,566 US20110036204A1 (en) 2008-04-25 2009-04-22 Method for producing reduced iron

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008-115675 2008-04-25
JP2008-115674 2008-04-25
JP2008115674 2008-04-25
JP2008115675 2008-04-25
JP2008-169805 2008-06-30
JP2008169804 2008-06-30
JP2008169805 2008-06-30
JP2008-169804 2008-06-30

Publications (1)

Publication Number Publication Date
WO2009131242A1 true WO2009131242A1 (en) 2009-10-29

Family

ID=41216965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058431 WO2009131242A1 (en) 2008-04-25 2009-04-22 Process for production of direct-reduced iron

Country Status (5)

Country Link
US (1) US20110036204A1 (en)
KR (1) KR101234388B1 (en)
CN (1) CN102016080A (en)
TW (1) TWI424065B (en)
WO (1) WO2009131242A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007180A (en) * 2008-05-30 2010-01-14 Jfe Steel Corp Method for producing pig iron by using iron ore with high content of zinc
JP2010007181A (en) * 2008-05-30 2010-01-14 Jfe Steel Corp Method for producing reduced iron
JP2010031355A (en) * 2008-04-25 2010-02-12 Jfe Steel Corp Method for producing luppe using high zinc-content iron ore
JP2010031356A (en) * 2008-04-25 2010-02-12 Jfe Steel Corp Method for producing reduced iron using high zinc-content iron ore

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442920B1 (en) 2012-12-18 2014-09-22 주식회사 포스코 Manufacturing method and apparatus for reduced iron
JP7456762B2 (en) * 2019-12-10 2024-03-27 日鉄エンジニアリング株式会社 Rotary hearth furnace and method for using the same, and method for producing reduced iron-containing products and zinc-containing products

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172312A (en) * 1997-09-30 1999-06-29 Kawasaki Steel Corp Operation of movable hearth type furnace and movable hearth type furnace
JPH11335712A (en) * 1998-05-27 1999-12-07 Kawasaki Steel Corp Production of reduced iron
JP2005220398A (en) * 2004-02-05 2005-08-18 Mitsubishi-Hitachi Metals Machinery Inc Reduced metal molded body, and device and method for producing the same
JP2005299979A (en) * 2004-04-08 2005-10-27 Nippon Steel Corp Exhaust gas treatment device and exhaust gas treatment method for rotary hearth type reduction furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9707133A (en) * 1996-11-11 1999-05-18 Sumitomo Metal Ind Process to produce reduced iron and hot metal from fine iron oxides and installation to carry out the process
JP2003183716A (en) 2001-12-13 2003-07-03 Nippon Steel Corp Method for manufacturing reduced iron by using rotary bed furnace
EP1561829B1 (en) * 2002-09-13 2013-12-18 Nippon Steel & Sumitomo Metal Corporation Method for reduction treatment of metal oxide or ironmaking waste, and method for concentration and/or recovery of zinc and/or lead.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172312A (en) * 1997-09-30 1999-06-29 Kawasaki Steel Corp Operation of movable hearth type furnace and movable hearth type furnace
JPH11335712A (en) * 1998-05-27 1999-12-07 Kawasaki Steel Corp Production of reduced iron
JP2005220398A (en) * 2004-02-05 2005-08-18 Mitsubishi-Hitachi Metals Machinery Inc Reduced metal molded body, and device and method for producing the same
JP2005299979A (en) * 2004-04-08 2005-10-27 Nippon Steel Corp Exhaust gas treatment device and exhaust gas treatment method for rotary hearth type reduction furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031355A (en) * 2008-04-25 2010-02-12 Jfe Steel Corp Method for producing luppe using high zinc-content iron ore
JP2010031356A (en) * 2008-04-25 2010-02-12 Jfe Steel Corp Method for producing reduced iron using high zinc-content iron ore
JP2010007180A (en) * 2008-05-30 2010-01-14 Jfe Steel Corp Method for producing pig iron by using iron ore with high content of zinc
JP2010007181A (en) * 2008-05-30 2010-01-14 Jfe Steel Corp Method for producing reduced iron

Also Published As

Publication number Publication date
TW201000640A (en) 2010-01-01
KR20100122946A (en) 2010-11-23
KR101234388B1 (en) 2013-02-18
US20110036204A1 (en) 2011-02-17
TWI424065B (en) 2014-01-21
CN102016080A (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5397021B2 (en) Reduced iron production method
CN1335412A (en) Method for producing granulated metal iron
WO1999016913A1 (en) Rotary hearth furnace for reducing oxides, and method of operating the furnace
JP2010111941A (en) Method for producing ferrovanadium
WO2009131242A1 (en) Process for production of direct-reduced iron
WO2010023691A1 (en) Method for separation of zinc and extraction of iron values from iron ores with high concentration of zinc
JP2010229525A (en) Method for producing ferronickel and ferrovanadium
EP1900828A1 (en) Method for producing feed material for molten metal production
KR101493965B1 (en) Process for recovering iron and zinc from iron and zinc-bearing waste
CZ301924B6 (en) Refining technology of and a device for treating metalline zinc-containing waste in revolving furnace
TWI426133B (en) Production method of pig iron
JP4499306B2 (en) Method for dezincing zinc-containing iron oxide using a rotary kiln
CA2831461C (en) Use of bimodal carbon distribution in compacts for producing metallic iron nodules
JP2003213312A (en) Method for manufacturing metallic iron
JP5396991B2 (en) Granular iron production method using high zinc content iron ore
JP2010090431A (en) Method for producing ferro-alloy containing nickel and vanadium
JP5428495B2 (en) Reduced iron production method using high zinc content iron ore
JPH06330198A (en) Method for recovering zinc in dust
JP2001521583A (en) How to recycle brass foundry waste.
WO2020059630A1 (en) Method for smelting oxide ore
JP5397020B2 (en) Reduced iron production method
JP2011179090A (en) Method for producing granulated iron
JP2009091664A (en) Method for producing granular metal iron
JP2000119722A (en) Production of reduced iron pellet
RU2182184C1 (en) Technology of processing of iron-carrying materials

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980114635.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09734958

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12010501955

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20107022162

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12936566

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 3892/KOLNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09734958

Country of ref document: EP

Kind code of ref document: A1