JP2007211296A - Agglomerate including carbonaceous material to be used for vertical furnace, and production method therefor - Google Patents

Agglomerate including carbonaceous material to be used for vertical furnace, and production method therefor Download PDF

Info

Publication number
JP2007211296A
JP2007211296A JP2006032736A JP2006032736A JP2007211296A JP 2007211296 A JP2007211296 A JP 2007211296A JP 2006032736 A JP2006032736 A JP 2006032736A JP 2006032736 A JP2006032736 A JP 2006032736A JP 2007211296 A JP2007211296 A JP 2007211296A
Authority
JP
Japan
Prior art keywords
carbonaceous material
agglomerate
heat treatment
powdered
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006032736A
Other languages
Japanese (ja)
Other versions
JP4996105B2 (en
Inventor
Akito Kasai
昭人 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006032736A priority Critical patent/JP4996105B2/en
Publication of JP2007211296A publication Critical patent/JP2007211296A/en
Application granted granted Critical
Publication of JP4996105B2 publication Critical patent/JP4996105B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an agglomerate including a carbonaceous material, which is more suitable for a raw material to be charged into a vertical furnace such as a blast furnace, and further has high strength and a lower tar content, and to provide a production method therefor. <P>SOLUTION: This manufacturing method comprises the steps of: mixing a powdery charcoal wood (A) having softening and melting properties with a powdery iron-containing material (B) to prepare a mixture (C); hot-forming the mixture (C) at 250 to 550°C with a twin-roll-type forming machine 4 to produce a formed article (D); further heat-treating the formed article (D) in a heat-treatment apparatus 5 while adjusting a treatment temperature into 500 to 800°C and/or a treatment period of time into 5 to 60 min to control a reduction rate of the obtained agglomerate (E) including the carbonaceous material to be used in the vertical furnace, into a range of 3 to 17%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高炉、キューポラなどの竪型炉用装入原料として用いることができる、ハンドリング強度に優れた竪型炉用炭材内装塊成鉱およびその製造方法に関する。   The present invention relates to a vertical furnace carbonaceous material-incorporated agglomerate having excellent handling strength that can be used as a raw material for vertical furnaces such as blast furnaces and cupolas, and a method for producing the same.

本発明者らは、高炉、キューポラなどの竪型炉用装入原料として用いることを目的として、粉鉱石と軟化溶融性を有する炭材の混合物を熱間成形することにより、従来の炭材内装コールドペレット等のようにセメントなどのバインダを添加せずとも高強度が得られる炭材内装塊成化物を開発した。   For the purpose of using as a raw material for vertical furnaces such as blast furnaces and cupolas, the present inventors have formed a conventional carbon material interior by hot forming a mixture of fine ore and a soft and meltable carbon material. We have developed an agglomerate of carbonaceous materials that can provide high strength without adding a binder such as cement, such as cold pellets.

このような炭材内装塊成鉱は、粉状鉄鉱石をロータリキルン等で400〜800℃に加熱するとともに、軟化溶融性を有する粉状炭材を別途ロータリドライヤ等で軟化溶融が起こらない250℃未満の温度で乾燥したのち、この粉状炭材と粉状鉄鉱石とを二軸型のミキサ等で混合して粉状炭材が軟化溶融する温度である250〜550℃の混合物とする。そして、この混合物を双ロール型成形機等で熱間成形してブリケット化することにより高強度の成形物である炭材内装塊成鉱が得られる。そして、このようにして熱間成形された炭材内装塊成鉱は、熱間成形の際の加熱により炭材に含有されるタール分がほとんど除去されているため高炉などの竪型炉での使用上問題とならないことを示唆した(例えば、特許文献1参照)。   Such a carbonaceous material agglomerated ore heats powdered iron ore to 400-800 ° C. with a rotary kiln or the like, and does not cause softening and melting of powdered carbon material having soft melting property with a rotary dryer or the like 250 After drying at a temperature of less than ℃, the powdered carbonaceous material and powdered iron ore are mixed with a biaxial mixer or the like to obtain a mixture at 250 to 550 ° C, which is the temperature at which the powdered carbonaceous material softens and melts. . Then, this mixture is hot-molded with a twin-roll molding machine or the like and briquetted to obtain a carbonaceous material-incorporated agglomerated mineral that is a high-strength molded product. And the carbon material agglomerated ore thus hot formed in the vertical furnace such as a blast furnace because the tar content contained in the carbon material is almost removed by the heating in the hot forming. This suggests that there is no problem in use (for example, see Patent Document 1).

その後、本発明者らは、さらなる検討の結果、熱間成形後の炭材内装塊成鉱をさらに成形温度ないしそれ以上の温度で5分以上加熱して脱ガス処理(熱処理)を行うことにより、炭材内装塊成鉱からタール分をより完全に除去することができるとともに、炭材内装塊成鉱の圧潰強度がさらに上昇し、高炉内での粉化がより確実に防止できることを示唆した(例えば、特許文献2参照)。   Thereafter, as a result of further studies, the present inventors have further carried out degassing treatment (heat treatment) by further heating the carbonized material agglomerated ore after hot forming at a forming temperature or higher for 5 minutes or more. It was suggested that the tar content could be removed more completely from the carbonaceous material agglomerated minerals, and that the crushing strength of the carbonaceous material agglomerated minerals further increased, and that pulverization in the blast furnace could be more reliably prevented. (For example, refer to Patent Document 2).

しかしながら、上記脱ガス処理(熱処理)の最適条件範囲については明確でなく、高炉などの竪型炉の装入原料により適した、さらに高強度でかつよりタール分の少ない竪型炉用炭材内装塊成鉱およびその製造方法の確立が求められていた。
特開2001−303143号公報(段落[0025]) 特開2003−301205号公報(段落[0025])
However, the optimum condition range for the above degassing treatment (heat treatment) is not clear, and it is more suitable for the charging materials of vertical furnaces such as blast furnaces. The establishment of agglomerates and their production methods has been demanded.
JP 2001-303143 A (paragraph [0025]) Japanese Patent Laying-Open No. 2003-301205 (paragraph [0025])

そこで、本発明は、高炉などの竪型炉の装入原料により適した、さらに高強度でかつよりタール分の少ない竪型炉用炭材内装塊成鉱およびその製造方法を提供することを目的とする。   Accordingly, the present invention has an object to provide a carbonaceous material-incorporated agglomerated ore for a vertical furnace that is more suitable for a raw material of a vertical furnace such as a blast furnace and has higher strength and less tar content, and a method for producing the same. And

請求項1に記載の発明は、粉状鉄含有原料と軟化溶融性を有する粉状炭材との混合物を熱間成形した後に熱処理して得られる、還元率が3〜17%であることを特徴とする竪型炉用炭材内装塊成鉱である。   The invention according to claim 1 has a reduction rate of 3 to 17%, which is obtained by heat-forming a mixture of powdered iron-containing raw material and powdered carbon material having softening and melting properties. It is a charcoal-incorporated agglomerated mineral for vertical furnaces.

請求項2に記載の発明は、タール含有量が0.05質量%以下である請求項1に記載の竪型炉用炭材内装塊成鉱である。   Invention of Claim 2 is a carbon material interior agglomerated mineral for vertical furnaces of Claim 1 whose tar content is 0.05 mass% or less.

請求項3に記載の発明は、粉状鉄含有原料と軟化溶融性を有する粉状炭材との混合物を250〜550℃で熱間成形して作製した成形物を、さらに500〜800℃、5〜60minの範囲で処理温度および/または処理時間を調節して熱処理を行うことにより、請求項1または2に記載の炭材内装塊成鉱を得ることを特徴とする竪型炉用炭材内装塊成鉱の製造方法である。   The invention according to claim 3 further comprises a molded product prepared by hot forming a mixture of powdered iron-containing raw material and powdered carbon material having softening and melting properties at 250 to 550 ° C, further 500 to 800 ° C, The carbonaceous material for vertical furnaces characterized in that the carbonized material agglomerated ore according to claim 1 or 2 is obtained by performing heat treatment while adjusting the treatment temperature and / or treatment time within a range of 5 to 60 min. It is a manufacturing method of an interior agglomerate.

請求項4に記載の発明は、前記熱処理を不活性ガス雰囲気下で行う請求項3に記載の竪型炉用炭材内装塊成鉱の製造方法である。 Invention of Claim 4 is a manufacturing method of the carbonaceous material interior agglomerated for vertical furnace of Claim 3 which performs the said heat processing in inert gas atmosphere.

なお、「軟化溶融性を有する粉状炭材」とは、logMF(ここに、MFはギーセラ最高流動度である。)が1.0以上の石炭、SRC、タイヤチップ、プラスチック、アスファルト、タール、ASP、ハイパーコールなど軟化溶融性を有する炭素質物質を少なくとも1種含むものであって、粉状のものの総称である。なお、この「軟化溶融性を有する粉状炭材」は、上記軟化溶融性を有する炭素質物質に加えて、さらにコークス、一般炭、無煙炭、オイルコークスなど軟化溶融性を実質的に有しない炭素質物質を1種以上混合したものであってもよい。また、「粉状鉄含有原料」とは、鉄鉱石、製鉄ダスト(高炉ダスト、転炉ダスト、電気炉ダスト、ミルスケールなど)、雑鉱、ペレット篩下など主として酸化鉄を含有する原料、またはこれらの原料の2種以上の混合物であって、粉状のものの総称である。   The “powdered carbon material having softening and melting properties” means coal, SRC, tire chips, plastics, asphalt, tar, log MF (where MF is Giesera maximum fluidity) of 1.0 or more. It is a generic term for powdery substances containing at least one kind of carbonaceous material having softening and melting properties such as ASP and hypercoal. This “powdered carbonaceous material having softening and melting properties” includes carbon having substantially no softening and melting properties, such as coke, steaming coal, anthracite, and oil coke, in addition to the carbonaceous material having softening and melting properties. It may be a mixture of one or more substances. “Powdered iron-containing raw material” is a raw material mainly containing iron oxide such as iron ore, iron-making dust (blast furnace dust, converter dust, electric furnace dust, mill scale, etc.), miscellaneous or pellet sieving, or It is a mixture of two or more of these raw materials, and is a generic term for powdered materials.

また、上記「還元率」は、炭材内装塊成鉱中の全鉄分がヘマタイトであると仮定したときを基準(還元率0%)とする。   The “reduction rate” is based on the assumption (total reduction rate 0%) when it is assumed that the total iron content in the carbonaceous material agglomerate is hematite.

本発明によれば、竪型炉用炭材内装塊成鉱(以下、単に「炭材内装塊成鉱」または「塊成鉱」ともいう。)の還元率を3%以上に規定したことで、炭材内装塊成鉱からのタール分のより完全な除去が達成されるとともに、炭材内装塊成鉱の還元率を17%以下に規定したことで、炭材内装塊成鉱の気孔率の増加が抑制され、炭材の固化による強度上昇効果が十分に発揮され、より圧潰強度の高い竪型炉用炭材内装塊成鉱が得られる。   According to the present invention, the reduction rate of the vertical furnace carbonaceous material agglomerated ore (hereinafter also simply referred to as “carbonaceous material agglomerated ore” or “agglomerated ore”) is defined as 3% or more. In addition to achieving more complete removal of tar from the carbonaceous agglomerated minerals, the reduction rate of the carbonaceous agglomerated minerals is regulated to 17% or less, and the porosity of the carbonaceous agglomerated minerals The increase in strength is suppressed, the effect of increasing the strength due to solidification of the carbonaceous material is sufficiently exhibited, and the carbonaceous material-incorporated agglomerate for vertical furnaces with higher crushing strength is obtained.

(実施形態)
図1に本発明の一実施形態に係る竪型炉用炭材内装塊成化物の製造フローの概念図を示す。以下、粉状鉄含有原料として粉状鉄鉱石を代表例として説明する。炭材のうち軟化溶融性を有する炭材(例えば、粘結炭、SRC等)は、粉状鉄鉱石および軟化溶融性を実質的に有しない炭材との混合状態を良好に保つために1mm以下程度に粉砕するのが望ましい。また、上記軟化溶融性を有する炭材との充填性を上げるため、鉄鉱石と、炭材のうち軟化溶融性を実質的に有しない炭材(例えば、コークス粉、一般炭、無煙炭、オイルコークス等)は、必要な場合には粉砕して使用する。粉砕粒度は、その上限は成形が可能な粒度であるが、下限は特に限定されないものの、軟化溶融性を有する炭材と同程度が望ましい。
(Embodiment)
The conceptual diagram of the manufacturing flow of the carbonaceous material interior agglomerate for vertical furnaces which concerns on FIG. 1 at one Embodiment of this invention is shown. Hereinafter, powder iron ore will be described as a representative example as a powder iron-containing raw material. Among the carbon materials, a carbon material having soft melting property (for example, caking coal, SRC, etc.) is 1 mm in order to maintain a good mixed state with the powdered iron ore and the carbon material substantially not having soft melting property. It is desirable to grind to the following extent. Moreover, in order to improve the filling property with the above-mentioned softening and melting carbonaceous material, iron ore and a carbonaceous material that does not substantially have softening and melting property (for example, coke powder, general coal, anthracite, oil coke). Etc.) should be crushed and used if necessary. Although the upper limit of the pulverized particle size is a particle size that can be molded, the lower limit is not particularly limited, but it is preferably about the same as that of a carbon material having softening and melting properties.

〔炭材乾燥加熱工程〕
このようにして粒度調整された粉状炭材Aは、炭材乾燥加熱設備(例えば、ロータリドライヤ)1で、炭材Aが実質的に軟化溶融しない例えば350℃以下の温度で乾燥・加熱し、付着水分を除去する。ここで、粉状炭材の乾燥加熱温度は、従来技術(特許文献1参照)では炭材が軟化溶融しない「250℃未満」としていたが、発明者らのその後の検討により「350℃」まで乾燥加熱温度を上昇させても実質上軟化溶融しない炭材も存在することが判明したため、「例えば350℃以下」とした。
[Carbon material drying heating process]
The powdery carbon material A thus adjusted in particle size is dried and heated at a temperature of, for example, 350 ° C. or less at which the carbon material A does not substantially soften and melt in the carbon material drying and heating equipment (for example, rotary dryer) 1. , Remove adhering moisture. Here, the drying heating temperature of the powdered carbon material was set to “less than 250 ° C.” in which the carbon material is not softened and melted in the prior art (see Patent Document 1), but it was reduced to “350 ° C.” by the inventors' subsequent examination. Since it was found that there is also a carbon material that does not soften and melt even when the drying heating temperature is raised, it was set to “for example, 350 ° C. or less”.

〔原料加熱工程〕
一方、粉状鉄鉱石Bは、粉状炭材Aと混合したときに目標温度の250〜550℃となるように、原料加熱設備(例えば、ロータリキルン)2で400〜800℃に予熱する。ロータリキルン2のバーナから吹き込む燃料としては固体燃料である微粉炭、液体燃料である重油、気体燃料である天然ガス、COG等いずれも使用できる。
[Raw material heating process]
On the other hand, the powdered iron ore B is preheated to 400 to 800 ° C. with the raw material heating equipment (for example, rotary kiln) 2 so that the target temperature becomes 250 to 550 ° C. when mixed with the powdered carbon material A. As fuel injected from the burner of the rotary kiln 2, pulverized coal that is solid fuel, heavy oil that is liquid fuel, natural gas that is gaseous fuel, COG, or the like can be used.

〔混合工程〕
乾燥した粉状炭材Aと予熱した粉状鉄鉱石Bとの混合には、混合設備として、粉状炭材Aの無機化および/または炭材軟化による不要な造粒を抑制するために短時間で混合できるこの業種で常用されている、例えば竪形混合槽3を用いる。また、この竪形混合槽3は成形温度を確保するために断熱および/または保温する。
[Mixing process]
The mixing of the dried powdered carbon material A and the preheated powdered iron ore B is short as a mixing facility in order to suppress unnecessary granulation due to mineralization and / or softening of the carbonaceous material. For example, a bowl-shaped mixing tank 3 that is commonly used in this type of industry that can be mixed with time is used. In addition, this bowl-shaped mixing tank 3 is insulated and / or kept warm in order to ensure the molding temperature.

〔熱間成形工程〕
粉状炭材Aと粉状鉄鉱石Bからなる混合物Cは、成形設備として例えば熱間成形用の双ロール型成形機4を用いて加圧成形し、成形物Dとなす。加圧成形は、成形物Dを熱処理して得られた塊成化物Eが成形機4から竪型炉(例えば、高炉)への装入までのハンドリングに耐え得るに十分な強度である0.5kN/個以上が得られるよう、成形加圧力を10kN/cm以上とする。
[Hot forming process]
The mixture C composed of the powdered carbon material A and the powdered iron ore B is pressure-molded by using, for example, a hot-rolling twin-roll molding machine 4 as a molding facility to obtain a molded product D. The pressure molding has a strength sufficient to allow the agglomerate E obtained by heat-treating the molded product D to withstand handling from the molding machine 4 to charging into a vertical furnace (for example, a blast furnace). The molding pressure is set to 10 kN / cm or more so that 5 kN / piece or more is obtained.

このようにして成形された成形物Dは、粉状鉄鉱石Bの空隙に、溶融した軟化溶融性を有する炭材Aが浸入し、この炭材Aが潤滑剤として作用して、成形物Dの表面に加えられた成形加圧力が成形物Dの内部にまでほぼ均一に及ぶため、表面近傍のみが圧密されることが防止され、成形物D内の気孔率分布が平均化され、加熱時に爆裂が起こらない塊成化物Eが得られる。   In the molded product D thus molded, the melted softening and melting carbon material A enters the voids of the powdered iron ore B, and this carbon material A acts as a lubricant to form the molded product D. Since the molding pressure applied to the surface of the material extends almost uniformly to the inside of the molded product D, it is prevented that only the vicinity of the surface is consolidated, the porosity distribution in the molded product D is averaged, and during heating, An agglomerate E in which no explosion occurs is obtained.

また、固化後の炭材Aは、粉状鉄鉱石Bの粒子同士を強固に連結するとともに、粉状鉄鉱石Bとの接触面積も大きくなっており、このようにして得られた塊成化物Eは、高強度で、かつ被還元性に優れたものとなる。   In addition, the carbonized material A after solidification firmly connects the particles of the powdered iron ore B and has a large contact area with the powdered iron ore B, and the agglomerates obtained in this way. E has high strength and excellent reducibility.

〔熱処理工程〕
この成形物Dを熱処理設備(例えば、シャフト炉)5内に装入し、熱処理して得られる塊成鉱Eの還元率が3〜17%の範囲となるように、500〜800℃、5〜60minの範囲で処理温度および/または処理時間を調整して熱処理を行う。すなわち、塊成鉱Eの還元率の調整は、熱処理設備5での処理温度を一定にして処理時間を変更することにより行ってもよいし、逆に処理時間を一定にして処理温度を変更することによって行ってもよいし、さらに処理温度と処理時間をともに変更することによって行ってもよい。
[Heat treatment process]
The molded product D is charged into a heat treatment facility (for example, a shaft furnace) 5 and subjected to heat treatment so that the reduction rate of the agglomerated E obtained in the range of 3 to 17% is 500 to 800 ° C., 5 Heat treatment is performed by adjusting the treatment temperature and / or treatment time within a range of ˜60 min. That is, the reduction rate of the agglomerate E may be adjusted by changing the treatment time while keeping the treatment temperature in the heat treatment equipment 5 constant, or conversely, changing the treatment temperature while keeping the treatment time constant. It may be performed by changing the processing temperature and the processing time.

このように、塊成鉱の還元率を3〜17%の範囲に規定したのは以下の理由による。すなわち、熱処理により、成形物D中に残存する揮発分およびタール分が除去され、得られた塊成鉱Eが収縮して緻密化するとともに、炭材がコークス化して固化する。一方、成形物D中の粉状鉄鉱石Bが炭材Aで還元され、得られた塊成鉱Eの気孔率が増加する。塊成鉱Eの緻密化および炭材の固化は、塊成鉱Eの強度を上昇させる方向に作用するが、気孔率の増加は、逆に塊成鉱Eの強度を低下させる方向に作用する。したがって、熱処理の進行とともに、塊成鉱Eの圧潰強度は、当初は揮発分等の除去による成形物の緻密化および炭材固化による強度向上効果のほうが優勢なため上昇するが、やがて揮発分等の除去がほぼ完了し、気孔率の増加による強度低下効果が優勢となるため、最高値を示した後、低下する傾向を示す。また、熱処理の進行度合いを表す指標として、塊成鉱Eの還元率を用いることができ、後記実施例に示すように、還元率と圧潰強度との間に一定の関係が認められる。塊成鉱Eの還元率が3%未満では、熱処理が不足して熱間成形後の成形物D中に残存する揮発分およびタール分の除去が十分に行われず、塊成鉱の緻密化および炭材の固化が不十分となり圧潰強度の上昇効果が小さい。他方、塊成鉱の還元率が17%を超えると、揮発分およびタール分の除去が実質的に完了して塊成鉱の緻密化および炭材の固化による強度向上効果が飽和する一方、気孔率の増加による強度低下効果が優勢となる。よって、塊成鉱の還元率の範囲は3〜17%とする。なお、好ましい範囲は5〜15%、より好ましい範囲は7〜13%である。   As described above, the reason why the reduction rate of the agglomerated mineral is specified in the range of 3 to 17% is as follows. That is, the volatile matter and tar content remaining in the molded product D are removed by the heat treatment, and the resulting agglomerate E shrinks and becomes dense, and the carbonaceous material cokes and solidifies. On the other hand, the powdered iron ore B in the molded product D is reduced with the carbon material A, and the porosity of the obtained agglomerated ore E increases. The densification of the agglomerate E and the solidification of the carbonaceous material act in the direction of increasing the strength of the agglomerate E, but the increase in porosity acts in the direction of decreasing the strength of the agglomerate E. . Therefore, as the heat treatment progresses, the crushing strength of the agglomerate E increases at the beginning because the effect of densification of the molded product by removing volatiles and the like and the strength improvement effect by solidifying the carbonaceous material are more prevalent. Since the strength reduction effect due to the increase in the porosity becomes dominant, the removal of the metal has almost reached the maximum value and then tends to decrease. Moreover, the reduction rate of the agglomerate E can be used as an index representing the progress degree of the heat treatment, and a certain relationship is recognized between the reduction rate and the crushing strength, as shown in Examples below. When the reduction rate of the agglomerated E is less than 3%, the heat treatment is insufficient and the volatile matter and the tar content remaining in the molded product D after hot forming cannot be sufficiently removed. The solidification of the carbon material becomes insufficient, and the effect of increasing the crushing strength is small. On the other hand, when the reduction rate of the agglomerated mineral exceeds 17%, the removal of volatile components and tars is substantially completed, and the effect of improving the strength due to densification of the agglomerated mineral and solidification of the carbonaceous material is saturated. The strength reduction effect due to the increase in rate becomes dominant. Therefore, the range of the reduction rate of the agglomerated ore is 3 to 17%. In addition, a preferable range is 5 to 15%, and a more preferable range is 7 to 13%.

このように、熱間成形後に、さらに熱処理を施すことにより得られた還元率3〜17%の塊成化物Eは、竪型炉に装入されて加熱された際においても、もはや炭材が軟化することがなく、かつ熱処理時に気孔率の増加が抑制されているため強度が維持される。   As described above, the agglomerate E having a reduction rate of 3 to 17% obtained by further heat treatment after hot forming is no longer carbonaceous even when charged in a vertical furnace and heated. The strength is maintained because it is not softened and the increase in porosity is suppressed during heat treatment.

また、熱処理後の塊成鉱Eに残留するタール含有量は、できるだけ少なくするのが望ましいが、0.05質量%以下とすれば十分であり、これにより竪型炉内でのタール分の発生が非常に少なくなり竪型炉の排ガス系統にタールが固着する等のトラブルの発生を防止できる。   Further, the tar content remaining in the agglomerated ore E after heat treatment is preferably as small as possible, but it is sufficient if it is 0.05% by mass or less, and this generates tar content in the vertical furnace. The occurrence of troubles such as sticking of tar to the exhaust gas system of the vertical furnace can be prevented.

熱処理温度を500〜800℃としたのは、500℃を下回ると揮発分やタール分の除去速度が遅く、これらの除去が非常に困難となるためであり、他方800℃を超えると還元速度が著しく上昇し還元率を上記規定範囲内(3〜17%)に制御することが困難になるためである。なお、熱処理温度の好ましい範囲は550〜700℃であり、特に好ましい温度は約600℃である。   The reason why the heat treatment temperature is set to 500 to 800 ° C. is that when the temperature is lower than 500 ° C., the removal rate of volatile components and tars is slow, and it is very difficult to remove them. This is because it is remarkably increased and it becomes difficult to control the reduction rate within the specified range (3 to 17%). In addition, the preferable range of heat processing temperature is 550-700 degreeC, and especially preferable temperature is about 600 degreeC.

熱処理時間を5〜60minとしたのは、5min未満では揮発分やタール分の除去が十分に行えなかったり、塊成鉱の品質がはらつきやすくなったりするためであり、他方60minを超えると熱処理設備が過大になり設備コストが上昇するためである。なお、熱処理時間の好ましい範囲は10〜50min、さらに好ましい範囲は20〜40minである。   The heat treatment time is set to 5 to 60 minutes because if less than 5 minutes, the volatile matter and tar content cannot be sufficiently removed, or the quality of the agglomerate tends to vary. This is because the equipment becomes excessive and the equipment cost increases. In addition, the preferable range of heat processing time is 10 to 50 min, and a more preferable range is 20 to 40 min.

また、熱処理時に還元された塊成鉱が空気などの酸化性ガスにより再酸化されると強度が低下してしまうため、シャフト炉5内は窒素ガス等により不活性ガス雰囲気としておくことが好ましい。   Further, since the strength decreases when the agglomerated mineral reduced during the heat treatment is re-oxidized with an oxidizing gas such as air, the shaft furnace 5 is preferably kept in an inert gas atmosphere with nitrogen gas or the like.

また、揮発分やタール分の除去を促進するために、シャフト炉5内を負圧に制御することも有効な手段の一つである。   Further, in order to promote the removal of volatile matter and tar content, it is one of effective means to control the inside of the shaft furnace 5 to a negative pressure.

シャフト炉5で熱処理された塊成鉱Hは、熱いまま大気中に排出すると発火や燃焼のおそれがあるため、シャフト炉5の下部で窒素ガスなどの不活性ガスにより400℃以下まで冷却してから排出するのが望ましい。   Since the agglomerate H heat-treated in the shaft furnace 5 may be ignited or burned if discharged into the atmosphere while being hot, it is cooled to 400 ° C. or lower with an inert gas such as nitrogen gas at the bottom of the shaft furnace 5. It is desirable to discharge from.

なお、シャフト炉5で発生する炭材Aの熱分解ガス(揮発分)は炭化水素が主成分であるので、このガスをエジェクタ等を用いて吸引回収し、回収したガスはロータリキルン2等の加熱燃料として利用することができる。   Since the pyrolysis gas (volatile matter) of the carbonaceous material A generated in the shaft furnace 5 is mainly composed of hydrocarbons, this gas is sucked and recovered using an ejector or the like, and the recovered gas is the rotary kiln 2 or the like. It can be used as a heated fuel.

(変形例)
上記実施形態では、炭材乾燥加熱工程にロータリドライヤを用いる例を示したが、流動層式ドライヤ、チューブドライヤ、外熱式多筒型ロータリドライヤ、気流式ドライヤ、流動層式ドライヤなどを用いてもよく、これらを複数組み合わせて用いてもよい。
(Modification)
In the above embodiment, an example in which a rotary dryer is used for the carbonaceous material drying and heating process has been shown, but a fluidized bed dryer, a tube dryer, an externally heated multi-cylinder rotary dryer, an airflow dryer, a fluidized bed dryer, etc. Alternatively, a combination of these may be used.

また、上記実施形態では、原料加熱工程にロータリキルンを用いる例を示したが、流動層式加熱炉、チューブ式加熱炉、外熱式多筒型キルン、加熱固体による間接加熱炉などを用いてもよく、これらを複数組み合わせて用いてもよい。   Moreover, in the said embodiment, although the example which uses a rotary kiln for the raw material heating process was shown, using a fluidized bed type heating furnace, a tube type heating furnace, an external heating type multi-cylinder kiln, an indirect heating furnace by heating solid, etc. Alternatively, a combination of these may be used.

また、上記実施形態では、混合工程に竪型混合槽を用いる例を示したが、容器回転型混合槽や横型混合槽などを用いてもよく、これらを複数組み合わせて用いてもよい。また、連続式の混合方式だけでなく、混合槽の前段にホッパを設置し断続的に稼動させるバッチ式の混合形方式を採用してもよく、さらに連続式とバッチ式とを組み合わせて用いてもよい。   Moreover, although the example which uses a vertical mixing tank for a mixing process was shown in the said embodiment, a container rotation type mixing tank, a horizontal type mixing tank, etc. may be used and you may use combining these two or more. In addition to the continuous mixing method, a batch type mixing method in which a hopper is installed upstream of the mixing tank and operated intermittently may be adopted. Also good.

また、上記実施形態では、熱間成形工程に双ロール型成形機を用いる例を示したが、押出し成形機や打錠機などを用いてもよい。   Moreover, although the example which uses a twin roll type | mold molding machine for the hot forming process was shown in the said embodiment, you may use an extrusion molding machine, a tableting machine, etc.

また、上記実施形態では、熱処理工程にシャフト炉を用いる例を示したが、ロータリキルン、回転炉床炉、外熱式多筒型キルン、バッチ炉などを用いてもよく、これらを複数組み合わせて用いてもよい。   Moreover, in the said embodiment, although the example which uses a shaft furnace for the heat treatment process was shown, you may use a rotary kiln, a rotary hearth furnace, an external heating type multi-cylinder kiln, a batch furnace, etc., combining these two or more. It may be used.

また、上記実施形態では、シャフト炉の下部に冷却部を設けた例を示したが、シャフト炉と別に冷却設備を設けてもよい。   Moreover, although the example which provided the cooling part in the lower part of the shaft furnace was shown in the said embodiment, you may provide cooling equipment separately from a shaft furnace.

〔塊成鉱の還元率と圧潰強度との関係〕
塊成鉱の圧潰強度に及ぼす還元率の影響を調査するため、以下のような熱間成形実験および熱処理実験を行った。
[Relationship between reduction rate and crushing strength of agglomerates]
In order to investigate the effect of the reduction rate on the crushing strength of agglomerates, the following hot forming experiments and heat treatment experiments were conducted.

図2に本熱間成形実験で用いた熱間成形機の概要を示す。原料として、表1に示す2種類の粉状石炭および表2に示す4種類の粉状鉄鉱石を種々組み合わせて用いた。なお、粉状石炭の粒度は74μm以下、60〜80質量%程度、粉状鉄鉱石の粒度は−1mm、100質量%とした。   FIG. 2 shows an outline of the hot forming machine used in this hot forming experiment. As raw materials, two types of powdered coal shown in Table 1 and four types of powdered iron ore shown in Table 2 were used in various combinations. In addition, the particle size of the powdered coal was 74 μm or less and about 60 to 80% by mass, and the particle size of the powdered iron ore was −1 mm and 100% by mass.

そして、粉状石炭と粉状鉄鉱石を18:82〜22:78の質量割合で、粉状鉄鉱石のみを図示しない電気炉で600〜800℃に予熱した後、オイルヒータで約200℃に保温されたミキサに装入し混合して400〜550℃とし、この混合物を熱いまま双ロール型成形機に供給し、ロール回転速度4〜8rpm、成形圧力10〜50kN/cmの条件で30mm×25mm×17mmの卵形のブリケット(成形物)に成形した。そして、このブリケットを窒素雰囲気下、500〜800℃、30〜90minの範囲で処理温度および処理時間を種々変更して熱処理を行った。

Figure 2007211296
Figure 2007211296
Then, after preheating the powdered coal and the powdered iron ore at a mass ratio of 18:82 to 22:78, only the powdered iron ore at 600 to 800 ° C. in an electric furnace (not shown), the oil heater is heated to about 200 ° C. The mixture was charged into a heat-insulated mixer and mixed to 400 to 550 ° C., and this mixture was supplied to a twin roll molding machine while being hot, and 30 mm × under conditions of a roll rotation speed of 4 to 8 rpm and a molding pressure of 10 to 50 kN / cm. Molded into a 25 mm × 17 mm egg-shaped briquette (molded product). And this briquette was heat-processed by changing process temperature and process time variously in the range of 500-800 degreeC and 30-90min by nitrogen atmosphere.
Figure 2007211296
Figure 2007211296

熱処理後の各ブリケット(塊成鉱)について、還元率と圧潰強度を測定し、その結果を図3および4に示す(ただし、鉱石C/石炭Bの組み合わせについては、圧潰強度のみ測定し、還元率は測定しなかったため、図3にのみ■[黒塗り四角]のプロットで示した。)。なお、これらの図において圧潰強度は、熱処理前のブリケット(成形物)の圧潰強度を基準として相対圧潰強度(=熱処理後のブリケットの圧潰強度/熱処理前のブリケットの圧潰強度)で表示した。   For each briquette (agglomerated ore) after heat treatment, the reduction rate and crushing strength were measured, and the results are shown in FIGS. 3 and 4 (however, for the combination of ore C / coal B, only crushing strength was measured and reduced) Since the rate was not measured, it is shown in FIG. 3 only by the plot of ■ [black square]. In these figures, the crushing strength is expressed as a relative crushing strength (= crushing strength of the briquette after heat treatment / crushing strength of the briquette before heat treatment) based on the crushing strength of the briquette (molded product) before the heat treatment.

図3より塊成鉱の圧潰強度は、熱処理温度を500℃から上昇させていくと当初は上昇するが、600℃近辺で最高値を示し、それを超えると低下する傾向を示し、800℃で熱処理前とほぼ同等のレベルに戻ることがわかる。なお、本実施例では熱処理時間を30min以上としたため、800℃では塊成鉱の還元が過剰となり圧潰強度が熱処理前のレベルまで低下しているが、熱処理時間を適正とすることにより、塊成鉱の還元を制限することができ、圧潰強度を熱処理前の値より高くすることは十分可能と考えられる。   From FIG. 3, the crushing strength of the agglomerates initially increases when the heat treatment temperature is increased from 500 ° C., but shows a maximum value near 600 ° C., and shows a tendency to decrease when the heat treatment temperature is exceeded, at 800 ° C. It can be seen that the level returns to almost the same level as before the heat treatment. In this example, since the heat treatment time was set to 30 min or more, at 800 ° C., the reduction of the agglomerate was excessive and the crushing strength was reduced to the level before the heat treatment. It is considered possible to limit the reduction of the ore and to make the crushing strength higher than the value before the heat treatment.

また、図4より、塊成鉱の圧潰強度は、塊成鉱の還元率が増加していくと当初は上昇するが、炭種と鉱石種の組合せの違いによって異なるものの還元率5〜15%の範囲で最高値に達し、その後低下する傾向を示し、還元率約20%以上になると熱処理前とほぼ同等のレベルに戻ることがわかる。   In addition, from FIG. 4, the crushing strength of the agglomerated ore increases initially when the agglomerated ore reduction rate increases, but the reduction rate varies depending on the combination of the coal type and the ore type. In this range, the maximum value is reached, and after that, it shows a tendency to decrease. When the reduction rate is about 20% or more, it can be seen that the level returns to a level almost equal to that before the heat treatment.

〔塊成鉱のタール含有量〕
つぎに、上記塊成鉱のタール含有量を測定するため、熱処理後の各ブリケット(塊成鉱)を、高炉内のヒートパターンを模擬した条件で昇温加熱し、発生するガス、水分、揮発分およびタールを回収する実験を行った。そして、回収物のうちベンゼン可溶分を重量測定し、これをタール量とした。
[Tar content of agglomerated ore]
Next, in order to measure the tar content of the agglomerated ore, each heated briquette (agglomerated ore) is heated and heated under conditions simulating the heat pattern in the blast furnace, and the generated gas, moisture, and volatilization Experiments were conducted to recover the minute and tar. Then, the benzene-soluble component in the recovered material was weighed and used as the tar amount.

図5に、熱処理温度と塊成鉱のタール含有量との関係を示す。なお、比較のため、熱処理前のブリケット(成形物)のタール含有量と、実高炉に装入実験を行った廃タイヤのタール含有量を併せて示した。   FIG. 5 shows the relationship between the heat treatment temperature and the agglomerated tar content. For comparison, the tar content of a briquette (molded product) before heat treatment and the tar content of a waste tire subjected to a charging experiment in an actual blast furnace are also shown.

図5より明らかなように、熱処理前のブリケット(成形物)のタール含有量は炭種により異なるものの0.2〜0.025質量%程度の範囲にあり、廃タイヤの約35質量%に比べ1/100〜1/1000のオーダーと大幅に少なく、実高炉に相当多量に装入してもタール発生によるトラブルはほとんど生じないと考えられる。しかしながら、この成形物にさらに熱処理を施すことで、塊成鉱のタール含有量を炭種によらずつねに0.05質量%以下とすることができ、竪型炉内でのタール発生によるトラブルをより確実に防止できることが確認できた。   As is clear from FIG. 5, the tar content of the briquette (molded product) before heat treatment is in the range of about 0.2 to 0.025% by mass although it varies depending on the coal type, compared with about 35% by mass of the waste tire. The order of 1/100 to 1/1000 is much less, and it is considered that there is almost no trouble due to the generation of tar even if a large amount is charged into the actual blast furnace. However, by further heat-treating this molded product, the tar content of the agglomerated mineral can always be 0.05% by mass or less regardless of the type of coal, and troubles due to tar generation in the vertical furnace can be avoided. It was confirmed that it could be prevented more reliably.

本発明の実施に係る竪型炉用炭材内装塊成化物の製造フローの概念図である。It is a conceptual diagram of the manufacturing flow of the carbon material interior agglomerate for vertical furnaces concerning implementation of this invention. 実施例で用いた熱間成形機の概要を示すフロー図である。It is a flowchart which shows the outline | summary of the hot forming machine used in the Example. 熱処理温度と竪型炉用炭材内装塊成化物の圧潰強度との関係を示すグラフ図である。It is a graph which shows the relationship between heat processing temperature and the crushing strength of a carbonaceous material interior agglomerate for vertical furnaces. 竪型炉用炭材内装塊成化物の還元率と圧潰強度との関係を示すグラフ図である。It is a graph which shows the relationship between the reduction rate and crush strength of a vertical furnace carbonaceous material agglomerate. 熱処理温度と竪型炉用炭材内装塊成化物のタール含有量との関係を示すグラフ図である。It is a graph which shows the relationship between heat processing temperature and tar content of the carbonaceous material interior agglomerate for vertical furnaces.

符号の説明Explanation of symbols

1:炭材乾燥加熱設備(ロータリドライヤ)
2:原料加熱設備(ロータリキルン)
3:混合設備(竪形混合槽)
4:成形設備(双ロール型成形機)
5:熱処理設備(シャフト炉)
A:粉状炭材(粉状石炭)
B:粉状鉄含有原料(粉状鉄鉱石)
C:混合物
D:成形物(熱処理前のブリケット)
E:炭材内装塊成鉱(熱処理後のブリケット)
1: Carbon material drying and heating equipment (rotary dryer)
2: Raw material heating equipment (rotary kiln)
3: Mixing equipment (vertical mixing tank)
4: Molding equipment (twin roll molding machine)
5: Heat treatment equipment (shaft furnace)
A: Powdered carbon material (powdered coal)
B: Powdered iron-containing raw material (powdered iron ore)
C: Mixture D: Molded product (briquet before heat treatment)
E: Carbonaceous agglomerate (briquet after heat treatment)

Claims (4)

粉状鉄含有原料と軟化溶融性を有する粉状炭材との混合物を熱間成形した後にさらに熱処理して得られる、還元率が3〜17%であることを特徴とする竪型炉用炭材内装塊成鉱。   A vertical furnace charcoal characterized by a reduction rate of 3 to 17% obtained by further heat-treating a mixture of a powdered iron-containing raw material and a powdered carbon material having softening and melting properties. Material interior agglomeration. タール含有量が0.05質量%以下である請求項1に記載の竪型炉用炭材内装塊成鉱。   The coal internal agglomerate for vertical furnace according to claim 1, wherein the tar content is 0.05 mass% or less. 粉状鉄含有原料と軟化溶融性を有する粉状炭材との混合物を250〜550℃で熱間成形して作製した成形物を、さらに500〜800℃、5〜60minの範囲で処理温度および/または処理時間を調節して熱処理を行うことにより、請求項1または2に記載の炭材内装塊成鉱を得ることを特徴とする竪型炉用炭材内装塊成鉱の製造方法。   A molded product prepared by hot forming a mixture of powdered iron-containing raw material and powdered carbon material having soft melting property at 250 to 550 ° C., and further processed at a processing temperature in the range of 500 to 800 ° C. and 5 to 60 min. A method for producing a carbonaceous material-incorporated agglomerated mineral for vertical furnaces according to claim 1 or 2, wherein heat treatment is carried out by adjusting the treatment time. 前記熱処理を不活性ガス雰囲気下で行う請求項3に記載の竪型炉用炭材内装塊成鉱の製造方法。   The manufacturing method of the carbonaceous material interior agglomerate for vertical furnaces of Claim 3 which performs the said heat processing in inert gas atmosphere.
JP2006032736A 2006-02-09 2006-02-09 Vertical coal interior agglomerates Expired - Fee Related JP4996105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032736A JP4996105B2 (en) 2006-02-09 2006-02-09 Vertical coal interior agglomerates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032736A JP4996105B2 (en) 2006-02-09 2006-02-09 Vertical coal interior agglomerates

Publications (2)

Publication Number Publication Date
JP2007211296A true JP2007211296A (en) 2007-08-23
JP4996105B2 JP4996105B2 (en) 2012-08-08

Family

ID=38489996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032736A Expired - Fee Related JP4996105B2 (en) 2006-02-09 2006-02-09 Vertical coal interior agglomerates

Country Status (1)

Country Link
JP (1) JP4996105B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111917A (en) * 2008-11-06 2010-05-20 Kobe Steel Ltd Apparatus for manufacturing carbonaceous material-containing agglomerate
JP2010285684A (en) * 2009-05-14 2010-12-24 Kobe Steel Ltd Method for producing agglomerated ore including carbonaceous material to be used for vertical furnace
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
JP2012153947A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2012153949A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2012153948A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2017101323A (en) * 2015-12-02 2017-06-08 ポスコPosco Carbon-containing agglomerate ore, manufacturing method and manufacturing apparatus of carbon-containing agglomerate ore
WO2023171467A1 (en) * 2022-03-07 2023-09-14 Jfeスチール株式会社 Method for producing hot metal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101638769B1 (en) * 2014-12-05 2016-07-12 주식회사 포스코 Mill scale briquettes and method for manufacturing the same
KR101918363B1 (en) * 2016-11-30 2018-11-14 인하대학교 산학협력단 Carbon composite iron oxide briquette comprising the carbon composite comprising volatile matter, and reduction method thereof at oxidation atmosphere

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301205A (en) * 2002-04-11 2003-10-24 Kobe Steel Ltd Method for charging blast furnace material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301205A (en) * 2002-04-11 2003-10-24 Kobe Steel Ltd Method for charging blast furnace material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111917A (en) * 2008-11-06 2010-05-20 Kobe Steel Ltd Apparatus for manufacturing carbonaceous material-containing agglomerate
JP2010285684A (en) * 2009-05-14 2010-12-24 Kobe Steel Ltd Method for producing agglomerated ore including carbonaceous material to be used for vertical furnace
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
JP2012153947A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2012153949A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2012153948A (en) * 2011-01-26 2012-08-16 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace
JP2017101323A (en) * 2015-12-02 2017-06-08 ポスコPosco Carbon-containing agglomerate ore, manufacturing method and manufacturing apparatus of carbon-containing agglomerate ore
WO2023171467A1 (en) * 2022-03-07 2023-09-14 Jfeスチール株式会社 Method for producing hot metal
JP7416340B1 (en) 2022-03-07 2024-01-17 Jfeスチール株式会社 Method for producing hot metal

Also Published As

Publication number Publication date
JP4996105B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4996105B2 (en) Vertical coal interior agglomerates
CA2519229C (en) Process for producing reduced metal and agglomerate with carbonaceous material incorporated therein
KR100730820B1 (en) Method for producing improved coal for use in metallurgy, and method for producing reduced metal and slag containing oxidized nonferrous metal
TWI412602B (en) The manufacturing method of the agglomerate, the manufacturing method of the reduced metal, and the separation method of zinc or lead
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP5411615B2 (en) Manufacturing method of carbonized material agglomerates
JPH1192833A (en) Agglomerate for reduced iron and its production
JP3502064B2 (en) Method for producing agglomerates of ironmaking raw materials
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
JP2004211179A (en) Method of reducing chromium-containing raw material
JP5421685B2 (en) Production method of coal-type agglomerated ore for vertical furnace
JP4265422B2 (en) Production method of coal for coke oven charging
JP3502011B2 (en) Manufacturing method of carbonized interior agglomerates
JP4441461B2 (en) Manufacturing method of carbonized material agglomerates
JP3502008B2 (en) Manufacturing method of carbonized interior agglomerates
JP5365044B2 (en) Ferro-coke manufacturing method
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
JP4490735B2 (en) Manufacturing method of carbonized material agglomerates
CA2423166C (en) Method for making reduced iron
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP2003239008A (en) Method for operating movable type hearth furnace and solid reducing material for protecting furnace hearth refractory
JPH1112619A (en) Production of reduced iron
JP4843445B2 (en) Manufacturing method of carbonized material agglomerates
JPH0364571B2 (en)
JP3723521B2 (en) Reduced iron manufacturing method and crude zinc oxide manufacturing method using blast furnace wet dust

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees