JP2012153947A - Method for producing agglomerate for raw material for blast furnace - Google Patents

Method for producing agglomerate for raw material for blast furnace Download PDF

Info

Publication number
JP2012153947A
JP2012153947A JP2011014186A JP2011014186A JP2012153947A JP 2012153947 A JP2012153947 A JP 2012153947A JP 2011014186 A JP2011014186 A JP 2011014186A JP 2011014186 A JP2011014186 A JP 2011014186A JP 2012153947 A JP2012153947 A JP 2012153947A
Authority
JP
Japan
Prior art keywords
raw material
coal
iron ore
mass
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011014186A
Other languages
Japanese (ja)
Other versions
JP5624486B2 (en
Inventor
Akito Kasai
昭人 笠井
Hitoshi Toyoda
人志 豊田
Kentaro Nozawa
健太郎 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011014186A priority Critical patent/JP5624486B2/en
Publication of JP2012153947A publication Critical patent/JP2012153947A/en
Application granted granted Critical
Publication of JP5624486B2 publication Critical patent/JP5624486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an agglomerate for the raw material for a blast furnace, in which an agglomerate for the raw material for a blast furnace having high strength can be produced even if coal having low softening-melting properties or hardly having softening-melting properties and high crystallization water-containing iron ore are combinedly used.SOLUTION: In powdery coal A having the maximum fluidity MF of 0.3 to 2.5 by log MF, further containing a volatile matter VM of ≥10 mass% and containing ≥0.3 mass% sulfur S and powdery iron ore B containing crystallization water LOI of ≥3 mass%, the average particle diameter dof the powdery iron ore B (Do) is controlled to 5 to 70 μm, also, the ratio with the average particle diameter dof the powdery coal A (Dc), Do/Dc is controlled to 0.1 to 2.0, they are subjected to cold mixing by a mixer 1 to be a mixed raw material C, thereafter, the mixed raw material C is heated at 350 to 550°C by a heating device 2, the heated raw material C' is hot--molded by a hot molding machine 4 to produce a molding D, and the molding D is subjected to heating treatment at 560 to 750°C for ≥10 min in an inert gas atmosphere by a heat treatment device 5 to produce an agglomerate E for the raw material for a blast furnace.

Description

本発明は、高炉の装入原料として用いることができる、熱間成形による高炉原料用塊成化物の製造方法に関し、特に、高結晶水含有鉄鉱石と微非粘結性石炭との組合せで高炉原料用塊成化物を製造する場合に適した方法に関する。   The present invention relates to a method for producing an agglomerated material for blast furnace raw material by hot forming, which can be used as a charging raw material for a blast furnace, and in particular, a combination of a high crystal water-containing iron ore and a fine non-caking coal blast furnace. The present invention relates to a method suitable for producing an agglomerated material.

本出願人は、高炉、キューポラなどの竪型炉用装入原料として用いることを目的として、粉鉱石と軟化溶融性を有する炭材の混合物を熱間成形することにより、従来の炭材内装コールドペレット等のようにセメントなどのバインダを添加せずとも高強度が得られる炭材内装塊成化物を開発した。   The applicant of the present invention is a conventional carbonaceous material-internal cold by hot-forming a mixture of fine ore and softening-melting carbonaceous material for the purpose of using as raw materials for vertical furnaces such as blast furnaces and cupolas. We have developed an agglomerate of carbonaceous material that can provide high strength without adding a binder such as cement, such as pellets.

このような炭材内装塊成化物は、例えば図12に示すような工程で製造できる。すなわち、粉状鉄鉱石Bをロータリキルン(原料加熱手段)12で400〜800℃に加熱するとともに、軟化溶融性(流動性)を有する粉状石炭Aを別途ロータリドライヤ(炭材加熱手段)11で軟化溶融が起らない250℃未満の温度で乾燥したのち、これらの加熱された粉状石炭A(以下、単に「石炭」ともいう。)と粉状鉄鉱石B(以下、単に「鉄鉱石」ともいう。)とからなる加熱原料を混合機13で混合して粉状石炭Aが軟化溶融する温度である250〜550℃の加熱混合物C’とする。そして、この加熱混合物C’を双ロール型成形機(成形手段)14で熱間成形してブリケット化し、必要により脱ガス槽(熱処理手段)15にて残留タール分を除去することにより炭材内装塊成化物Eが得られる(特許文献1参照)。   Such a carbonaceous material agglomerated material can be produced by a process as shown in FIG. 12, for example. That is, the powdered iron ore B is heated to 400 to 800 ° C. by the rotary kiln (raw material heating means) 12, and the powdered coal A having the softening and melting property (fluidity) is separately separated from the rotary dryer (carbon material heating means) 11. After drying at a temperature of less than 250 ° C. at which no softening and melting occurs, these heated pulverized coal A (hereinafter also simply referred to as “coal”) and pulverized iron ore B (hereinafter simply referred to as “iron ore”). Is also used as a heated mixture C ′ at 250 to 550 ° C., which is a temperature at which the powdered coal A is softened and melted. The heated mixture C ′ is hot-molded by a twin-roll type molding machine (molding means) 14 to form a briquette, and if necessary, the residual tar content is removed by a degassing tank (heat treatment means) 15 so that the interior of the carbonaceous material is contained. Agglomerated product E is obtained (see Patent Document 1).

ところで、上記特許文献1においては、その実施例で、logMF(MF:最高流動度)が3を超える高軟化溶融性の石炭(表1の石炭A、B参照)と、LOI(結晶水含有量)が6質量%以上の高結晶水含有鉄鉱石(表2の鉱石A、D参照)とを組み合わせて用いることで高強度の竪型炉用塊成化物が得られることが開示されている。しかしながら、logMFが3を超えるような高軟化溶融性の石炭は、原料選択上制約があることから、もっと軟化溶融性の低い、あるいはほとんど軟化溶融性を有しない石炭と、高結晶水含有鉄鉱石とを組み合わせて用いても、高炉の装入原料として用いることができる、高強度の高炉原料用塊成化物を製造しうる技術の開発が望まれていた。   By the way, in the said patent document 1, in the Example, log MF (MF: highest fluidity | liquidity) highly soft meltable coal (refer coal A and B of Table 1) exceeding 3 and LOI (crystal water content) ) Is used in combination with 6% by mass or more of high-crystal water-containing iron ore (see ores A and D in Table 2), a high-strength vertical agglomerate is disclosed. However, high soft melting coal with a log MF of more than 3 is limited in raw material selection, so coal with lower softening melting property or little softening melting property and iron ore with high crystal water content Development of a technique capable of producing a high-strength agglomerate for blast furnace raw material that can be used as a charging raw material for the blast furnace has been desired.

特開2007−211296号公報JP 2007-2111296 A

そこで、本発明は、軟化溶融性の低い、あるいは軟化溶融性をほとんど有しない石炭と、高結晶水含有鉄鉱石とを組み合わせて用いても、高強度の高炉原料用塊成化物を製造しうる高炉原料用塊成化物の製造方法を提供することを目的とする。   Therefore, the present invention can produce a high-strength agglomerate for a blast furnace raw material even when used in combination with coal having low softening meltability or little softening meltability and iron ore containing high crystal water. It aims at providing the manufacturing method of the agglomerated material for blast furnace raw materials.

発明者らは、上記課題の解決策を見出すため、まず、炭種と鉄鉱石銘柄との組合せを種々変更するとともに、それらの混合および加熱の方式を種々変更して熱間成形し、得られた高炉原料用塊成化物(以下、単に「塊成化物」ともいう。)の強度に及ぼす影響を調査した。   In order to find a solution to the above problems, the inventors first changed the combination of the coal type and the iron ore brand, and changed the mixing and heating methods to various hot forming methods. The effect on the strength of the agglomerated material for blast furnace (hereinafter also simply referred to as “agglomerated material”) was investigated.

その結果、驚くべきことに、低流動性ないしはほとんど無流動性ではあるが揮発分と硫黄をそれぞれ所定量含有する石炭と、結晶水を所定量含有する鉄鉱石を冷間で混合した後に、この混合原料を熱間成形温度まで加熱して熱間成形し、さらに、熱間成形温度よりも高い温度で熱処理することで、高炉原料用塊成化物の強度が向上することがわかった(後記実施例参照)。   As a result, surprisingly, after low-flowing or almost non-flowing coal containing a predetermined amount of volatile matter and sulfur and iron ore containing a predetermined amount of water of crystallization are cold mixed, It was found that the strength of the agglomerates for blast furnace raw materials is improved by heating the mixed raw material to the hot forming temperature and hot forming it, and then heat-treating it at a temperature higher than the hot forming temperature (see below) See example).

上記のように、粘結性の低い又はほとんど無い石炭を用いても、高炉原料用塊成化物の強度が発現するメカニズムについては、発明者らは以下の仮説に基づくものと想定している。   As described above, the inventors assume that the strength of the agglomerated material for blast furnace raw material is expressed based on the following hypothesis even when coal having low or hardly caking properties is used.

すなわち、低流動性ないしはほとんど無流動性ではあるが揮発分と硫黄とをそれぞれ所定量含有する石炭と、結晶水を所定量含有する鉄鉱石からなる混合原料を熱間成形温度である350〜550℃に加熱すると、揮発分と硫黄とを含有する石炭からは揮発分が気化(脱揮)するに際して炭化水素成分とともにHSを含有する熱分解ガスが発生する。 That is, it is a hot forming temperature of 350 to 550, which is a mixed raw material composed of coal containing a predetermined amount of volatile matter and sulfur and iron ore containing a predetermined amount of crystal water, although it is low fluidity or almost non-flowable. When heated to ° C., pyrolysis gas containing H 2 S is generated together with hydrocarbon components when the volatile matter is vaporized (devolatilized) from coal containing volatile matter and sulfur.

一方、結晶水を含有する鉄鉱石(ゲーサイト;FeO(OH))からは、下記式(1)に示す化学反応式により、結晶水(HO)が解離して除去され、ごく微細なナノ気孔が形成されて比表面積が著しく増大した活性ヘマタイト(Fe)が生成する。 On the other hand, from iron ore containing crystallization water (goethite; FeO (OH)), crystallization water (H 2 O) is dissociated and removed by the chemical reaction formula shown in the following formula (1), and is extremely fine. Active hematite (Fe 2 O 3 ) having a significantly increased specific surface area is formed by forming nanopores.

2FeO(OH) → Fe + HO … 式(1) 2FeO (OH) → Fe 2 O 3 + H 2 O Formula (1)

そして、この比表面積が著しく増大した活性ヘマタイト(Fe)の反応サイトに熱分解ガス中のHSが接触すると、下記式(2)に示す化学反応式により、ピロータイト(Fe1−xS)が生成する。 When H 2 S in the pyrolysis gas comes into contact with the reaction site of active hematite (Fe 2 O 3 ) whose specific surface area has increased remarkably, the pilot reaction (Fe 1 -X S) is generated.

Fe + HS → Fe1−xS + HO … 式(2) Fe 2 O 3 + H 2 S → Fe 1-x S + H 2 O Formula (2)

また、熱分解ガス中のメタン(CH)が、鉄鉱石から除去された結晶水由来の水蒸気(HO)でガス改質されて下記式(3)に示す化学反応により、Hが生成する。 Further, methane (CH 4 ) in the pyrolysis gas is gas-reformed with water vapor (H 2 O) derived from crystal water removed from the iron ore, and H 2 is converted by a chemical reaction represented by the following formula (3). Generate.

CH + HO → 3H + CO … 式(3) CH 4 + H 2 O → 3H 2 + CO ... Equation (3)

そして、上記熱間成形温度に加熱された混合原料をすぐに熱間で加圧成形すると、鉄鉱石粒子と石炭粒子とが緊密に接触する。そうすると、上記式(2)の化学反応により生成したピロータイト(Fe1−xS)は、石炭液化反応の触媒として作用することが知られている(例えば、特開平11−228972号公報参照)ことから、上記式(3)の化学反応で生成した水素(H)の存在により石炭の表層部が水添されてゲル化する。なお、石炭全体を液化させる場合には、温度:350〜500℃で水素分圧:7〜20MPaといった超高圧水素を必要とする(上記特開平11−228972号公報の[0037]参照)が、本発明では、石炭の表層部のみをゲル化すればよいので、温度を350〜550℃に確保しさえすれば、常圧より低い分圧の水素でも十分にゲル化反応を起こさせることができると考えられる。 When the mixed raw material heated to the hot forming temperature is immediately hot pressed, the iron ore particles and the coal particles come into close contact with each other. Then, the equation (2) pyrrhotite (Fe 1-x S) produced by chemical reaction are known to act as a catalyst for coal liquefaction reaction (e.g., see Japanese Patent Laid-Open No. 11-228972) For this reason, the surface layer of coal is hydrogenated and gelled due to the presence of hydrogen (H 2 ) generated by the chemical reaction of the above formula (3). In addition, when liquefying the whole coal, ultra high pressure hydrogen such as a temperature: 350 to 500 ° C. and a hydrogen partial pressure of 7 to 20 MPa is required (see [0037] of the above-mentioned JP-A-11-228972). In the present invention, since only the surface layer of coal needs to be gelled, as long as the temperature is secured at 350 to 550 ° C., the gelation reaction can be sufficiently caused even with partial pressure of hydrogen lower than normal pressure. it is conceivable that.

このようにして、表層部がゲル化した石炭と、結晶水の解離によりゲーサイトからヘマタイトへの相変態に伴って比表面積が著しく増大した鉄鉱石とを熱間で加圧成形することで、ゲル状の石炭表層部が、鉄鉱石粒子と石炭粒子本体とを結合するバインダとして働き、強固な成形物が得られる。そして、熱間成形後に熱間成形温度よりもさらに高い温度で成形物を熱処理することで、成形物中に残留する揮発分が気化して十分に除去されるとともに、熱間成形までの加熱の際に改質を受けた石炭組織がさらに縮重合・再配列して固化することで、成形物(高炉原料用塊成化物)の強度がより上昇することとなる。   In this way, by hot pressing the coal whose surface layer has been gelled and the iron ore whose specific surface area has significantly increased due to the phase transformation from goethite to hematite due to dissociation of crystal water, The gel-like coal surface layer portion functions as a binder for binding the iron ore particles and the coal particle main body, and a strong molded product is obtained. Then, by heat-treating the molded product at a temperature higher than the hot forming temperature after hot forming, the volatile matter remaining in the formed product is vaporized and removed sufficiently, and the heating up to hot forming is performed. The strength of the molded product (agglomerated material for blast furnace raw material) is further increased by further solidifying the reformed coal structure by condensation polymerization and rearrangement.

発明者らは上記知見に基づいてさらに検討を加え、以下の発明を完成するに至った。   The inventors have further studied based on the above findings and have completed the following invention.

請求項1に記載の発明は、ギーセラー最高流動度MFがlogMFで0.3〜2.5であるとともに、揮発分VMを10質量%以上、硫黄Sを0.3質量%以上含有する粉状石炭と、結晶水LOIを3質量%以上含有する粉状鉄鉱石とを混合して混合原料となす混合工程と、この混合原料を350〜550℃に加熱して加熱原料となす加熱工程と、この加熱原料を熱間成形して成形物となす熱間成形工程と、この成形物を不活性ガス雰囲気下にて560〜750℃で10min以上加熱処理して高炉原料用塊成化物となす熱処理工程と、を備え、前記粉状鉄鉱石の平均粒径d50が5〜70μmで、かつ、該粉状鉄鉱石の平均粒径d50(以下、「Do」という。)と、前記粉状石炭の平均粒径d50(以下、「Dc」という。)の比率Do/Dcが0.1〜2.0であることを特徴とする高炉原料用塊成化物の製造方法である。 The invention described in claim 1 is a powdery state in which the Gieseler maximum fluidity MF is 0.3 to 2.5 in log MF, the volatile content VM is 10 mass% or more, and the sulfur S is 0.3 mass% or more. A mixing step of mixing coal and powdered iron ore containing 3% by mass or more of crystal water LOI to make a mixed raw material, a heating step of heating this mixed raw material to 350 to 550 ° C. to make a heated raw material, A hot forming step in which the heated raw material is hot formed into a formed product, and a heat treatment in which the formed material is heat-treated at 560 to 750 ° C. for 10 minutes or more in an inert gas atmosphere to form an agglomerated material for a blast furnace raw material. comprising a step of, in said powdery average particle size d 50 of iron ore 5 to 70 m, and an average particle size d 50 of the powder-like iron ore (hereinafter referred to as "Do".) and the powdery Ratio D of average particle diameter d 50 of coal (hereinafter referred to as “Dc”) o / Dc is 0.1-2.0, It is a manufacturing method of the agglomerated material for blast furnace raw materials characterized by the above-mentioned.

請求項2に記載の発明は、ギーセラー最高流動度MFがlogMFで0.3〜2.5であるとともに、揮発分VMを10質量%以上、硫黄Sを0.3質量%以上含有する粉状石炭と、結晶水LOIを3質量%以上含有する粉状鉄鉱石とを混合して混合原料となす混合工程と、この混合原料の全部または一部をペレットに造粒する造粒工程と、このペレットと前記混合原料の残部とを350〜550℃に加熱して加熱原料となす加熱工程と、この加熱原料を熱間成形して成形物となす熱間成形工程と、この成形物を不活性ガス雰囲気下にて560〜750℃で10min以上加熱処理して高炉原料用塊成化物となす熱処理工程と、を備え、前記粉状鉄鉱石の平均粒径d50が5〜70μmで、かつ、該粉状鉄鉱石の平均粒径d50(以下、「Do」という。)と、前記粉状石炭の平均粒径d50(以下、「Dc」という。)の比率Do/Dcが0.1〜2.0であることを特徴とする高炉原料用塊成化物の製造方法である。 The invention according to claim 2 is a powdery state in which the Gieseler maximum fluidity MF is 0.3 to 2.5 in log MF, the volatile content VM is 10 mass% or more, and the sulfur S is 0.3 mass% or more. A mixing step of mixing coal and powdered iron ore containing 3% by mass or more of crystal water LOI to form a mixed raw material, a granulating step of granulating all or part of the mixed raw material into pellets, A heating step of heating the pellet and the remainder of the mixed raw material to 350 to 550 ° C. to form a heated raw material, a hot forming step of hot forming the heated raw material to form a molded product, and the molded product inactive A heat treatment step of heat treatment at 560 to 750 ° C. for 10 minutes or more in a gas atmosphere to form an agglomerate for a blast furnace raw material, and the average particle diameter d 50 of the powdered iron ore is 5 to 70 μm, and the average particle size d 50 of the powder-like iron ore (hereinafter, " o "hereinafter. a), the average particle size d 50 of the powder-like coal (hereinafter referred to as" Dc ".) blast furnace feedstock mass ratio Do / Dc is characterized in that 0.1 to 2.0 of It is a manufacturing method of a chemical compound.

請求項3に記載の発明は、前記熱処理工程の後に、前記高炉原料用塊成化物を酸素濃度5容量%以下の雰囲気下にて300℃以下まで冷却する冷却工程を備えた請求項1または2に記載の高炉原料用塊成化物の製造方法である。   Invention of Claim 3 provided the cooling process which cools the said agglomerate for blast furnace raw materials to 300 degrees C or less in the atmosphere of oxygen concentration 5 volume% or less after the said heat treatment process. It is a manufacturing method of the agglomerated material for blast furnace raw materials as described in 1 ..

請求項4に記載の発明は、前記粉状石炭が、2種類以上の石炭を配合してなる請求項1〜3のいずれか1項に記載の高炉原料用塊成化物の製造方法である。   Invention of Claim 4 is a manufacturing method of the agglomerated material for blast furnace raw materials of any one of Claims 1-3 which the said powdered coal mix | blends 2 or more types of coal.

本発明によれば、上記従来技術(特許文献1に記載の製造方法)と異なり、軟化溶融性は低い、あるいは軟化溶融性をほとんど有しないが所定量の揮発分と硫黄を含有する粉状石炭と、所定量の結晶水を含有する粉状鉄鉱石とを、所定の粒度に調整して冷間で混合してから、350〜550℃に加熱して熱間成形し、さらにこの熱間成形温度よりも高い560〜750℃で熱処理することで、粉状石炭から発生した熱分解ガス中のHSによって結晶水解離後の粉状鉄鉱石がピロータイト化し、その触媒作用により粉状石炭の表層部が水添されてゲル化しバインダとして作用する結果、高強度の高炉原料用塊成化物を製造できるようになった。 According to the present invention, unlike the above-described prior art (the manufacturing method described in Patent Document 1), powdered coal having low softening meltability or little softening meltability but containing a predetermined amount of volatile matter and sulfur. And powdered iron ore containing a predetermined amount of crystallization water, adjusted to a predetermined particle size and mixed cold, then heated to 350 to 550 ° C. and hot-formed, and further hot formed By heat treatment at 560 to 750 ° C., which is higher than the temperature, the powdered iron ore after crystal water dissociation is converted into pyrotite by H 2 S in the pyrolysis gas generated from the powdered coal, and the catalytic action causes the powdered coal As a result of the surface layer portion being hydrogenated and gelled to act as a binder, a high-strength agglomerated material for a blast furnace raw material can be produced.

本発明の一実施形態に係る、高炉原料用塊成化物の製造装置の概略構成を示すフロー図である。It is a flowchart which shows schematic structure of the manufacturing apparatus of the agglomerated material for blast furnace raw materials based on one Embodiment of this invention. 実施例のラボ試験の手順を説明するためのフロー図である。It is a flowchart for demonstrating the procedure of the laboratory test of an Example. 粉状鉄鉱石中の硫黄S含有量と高炉原料用塊成化物の引張強度との関係を示すグラフ図である。It is a graph which shows the relationship between the sulfur S content in a powder iron ore, and the tensile strength of the agglomerated material for blast furnace raw materials. 高炉原料用塊成化物のミクロ組織を示す図である。It is a figure which shows the microstructure of the agglomerated material for blast furnace raw materials. 微小部X線回折により高炉原料用塊成化物中の化合物を同定した結果を示す図である。It is a figure which shows the result of having identified the compound in the agglomerated material for blast furnace raw materials by micro part X-ray diffraction. ピロータイト添加量とタブレットの引張強度との関係を示すグラフ図である。It is a graph which shows the relationship between the added amount of pillowite and the tensile strength of a tablet. 粉状鉄鉱石中の結晶水LOI含有量と高炉原料用塊成化物の引張強度との関係を示すグラフ図である。It is a graph which shows the relationship between the crystal water LOI content in a powder iron ore, and the tensile strength of the agglomerated material for blast furnace raw materials. 粉状鉄鉱石の平均粒径d50と高炉原料用塊成化物の引張強度との関係を示すグラフ図である。It is a graph showing the relationship between tensile strength of the average particle size d 50 and blast furnace feedstock agglomerates of powdery iron ore. 粉状鉄鉱石の平均粒径d50(Do)と粉状石炭の平均粒径d50(Dc)の比率Do/Dcと、高炉原料用塊成化物の引張強度との関係を示すグラフ図である。In graph showing the ratio Do / Dc average particle size d 50 of powdery iron ore (Do) and an average particle size d 50 of powdery coal (Dc), the relationship between the tensile strength of the blast furnace feedstock agglomerate is there. 熱処理時間と高炉原料用塊成化物の引張強度との関係を示すグラフ図である。It is a graph which shows the relationship between heat processing time and the tensile strength of the agglomerated material for blast furnace raw materials. タブレットの示差熱分析結果を示すグラフ図である。It is a graph which shows the differential thermal analysis result of a tablet. 従来技術における、炭材内装塊成化物の製造装置の概略構成を示すフロー図である。It is a flowchart which shows schematic structure of the manufacturing apparatus of the carbonaceous material agglomerated material in a prior art.

(実施形態)
図1に本発明の一実施形態に係る高炉原料用塊成化物の製造装置の概略構成を示す。なお、上記従来技術で説明した図12と共通する物質には同じ符号を用いた。
(Embodiment)
FIG. 1 shows a schematic configuration of an apparatus for producing an agglomerated material for a blast furnace raw material according to an embodiment of the present invention. In addition, the same code | symbol was used for the substance in common with FIG. 12 demonstrated by the said prior art.

石炭としては、ギーセラー最高流動度MFをlogMFで0.3〜2.5(好ましくは0.3〜1.0)とするとともに、揮発分VMを10質量%以上(好ましくは12質量%以上)、硫黄Sを0.3質量%以上(好ましくは0.4質量%以上、さらに好ましくは0.5質量%以上)含有するもの、例えば高炉羽口吹込み用微粉炭に用いられる非粘結炭などを用いることができるが、揮発分の含有量が低い(10質量%未満の)無煙炭は適しない。   As coal, the Gieseler maximum fluidity MF is 0.3 to 2.5 (preferably 0.3 to 1.0) in log MF, and the volatile content VM is 10 mass% or more (preferably 12 mass% or more). , Sulfur S containing 0.3% by mass or more (preferably 0.4% by mass or more, more preferably 0.5% by mass or more), for example, non-coking coal used in pulverized coal for blast furnace tuyere injection Anthracite with a low content of volatile matter (less than 10% by mass) is not suitable.

ギーセラー最高流動度MFをlogMFで0.3〜2.5(好ましくは0.3〜1.0)としたのは、最高流動度が低すぎると石炭表層部のゲル化が十分に起らず、一方、最高流動度が十分に高いものであれば、上記従来技術を適用すればよく、本発明を適用するまでもないためである。また、揮発分VMを10質量%以上(好ましくは12質量%以上)含有するものとしたのは、上記仮説に基づくメカニズムにおいて、石炭への水添用の水素が相当量生成することが必須であるためである。また、硫黄Sを0.3質量%以上(好ましくは0.4質量%以上、さらに好ましくは0.5質量%以上)含有するものとしたのは、上記仮説に基づくメカニズムにおいて、ピロータイトが相当量生成することが必須であるためである。なお、粉状石炭中の硫黄S含有量の上限値(許容値)は、ピロータイト生成量確保の観点からは特に設ける必要はないが、高炉への全S装入量制限の観点から自ずと決定される。この上限値(許容値)は、高炉への全S装入量の許容量、高炉原料中への高炉原料用塊成化物の配合割合等により変動するものであるが、例えば1.0質量%以下とすればよい。   The Gieseler maximum fluidity MF was set to 0.3 to 2.5 (preferably 0.3 to 1.0) in log MF. If the maximum fluidity is too low, the gelation of the coal surface layer does not occur sufficiently. On the other hand, if the maximum fluidity is sufficiently high, the above prior art may be applied, and the present invention does not need to be applied. The reason why the volatile matter VM is contained in an amount of 10% by mass or more (preferably 12% by mass or more) is that in the mechanism based on the above hypothesis, it is essential that a considerable amount of hydrogen for hydrogenation of coal is generated. Because there is. In addition, it is assumed that the sulfur S is contained in an amount of 0.3% by mass or more (preferably 0.4% by mass or more, more preferably 0.5% by mass or more) in the mechanism based on the above hypothesis. This is because it is essential to generate a quantity. The upper limit (allowable value) of the sulfur S content in the powdered coal is not particularly required from the viewpoint of securing the amount of pyrotite produced, but is naturally determined from the viewpoint of limiting the total amount of S charged to the blast furnace. Is done. This upper limit (allowable value) varies depending on the allowable amount of the total S charge to the blast furnace, the blending ratio of the agglomerated material for the blast furnace raw material in the blast furnace raw material, etc. What is necessary is as follows.

また、鉄鉱石としては、結晶水LOIを3質量%以上(好ましくは5質量%以上、さらに好ましくは7質量%以上)含有するもの、例えば高結晶水鉱石、マラマンバ鉱石、リモナイト鉱石などを用いることができるが、結晶水含有量の低い(3質量%未満の)ヘマタイト鉱石やマグネタイト鉱石は適しない。   Moreover, as iron ore, what contains 3 mass% or more of crystal water LOI (preferably 5 mass% or more, more preferably 7 mass% or more), for example, high crystal water ore, maramamba ore, limonite ore, or the like is used. However, hematite ore or magnetite ore with low crystal water content (less than 3% by mass) is not suitable.

結晶水LOIの含有量を3質量%以上(好ましくは5質量%以上、さらに好ましくは7質量%以上)としたのは、上記仮説に基づくメカニズムにおいて、活性ヘマタイトが相当量生成することが必須であるためである。   The reason why the crystal water LOI content is 3% by mass or more (preferably 5% by mass or more, more preferably 7% by mass or more) is that it is essential that a considerable amount of active hematite is generated in the mechanism based on the above hypothesis. Because there is.

石炭と鉄鉱石は、必要な場合にはそれぞれ粉砕して粒度調整を行う必要があるが、特に粉状鉄鉱石の粒度は以下のように設定する必要がある。   Coal and iron ore need to be pulverized to adjust the particle size, if necessary. In particular, the particle size of powdered iron ore needs to be set as follows.

すなわち、粉状鉄鉱石の平均粒径d50を5〜70μm(好ましくは5〜60μm、さらに好ましくは5〜50μm)とし、かつ、該粉状鉄鉱石の平均粒径d50(以下、「Do」という。)と、前記粉状石炭の平均粒径d50(以下、「Dc」という。)の比率Do/Dcを0.1〜2.0(好ましくは0.1〜1.0、さらに好ましくは0.1〜0.5)とする。 That is, the average particle size d 50 of powdery iron ore 5 to 70 m (preferably 5 to 60 m, more preferably 5 to 50 [mu] m) and then, and the average particle size d 50 of the powder-like iron ore (hereinafter, "Do ) And the average particle diameter d 50 (hereinafter referred to as “Dc”) of the powdered coal, the ratio Do / Dc is 0.1 to 2.0 (preferably 0.1 to 1.0, Preferably 0.1 to 0.5).

ここで、平均粒径d50は、50質量%通過粒径を意味する。 The average particle size d 50 refers to the 50 wt% pass diameter.

粉状鉄鉱石の平均粒径d50を5〜70μm(好ましくは5〜60μm、さらに好ましくは5〜50μm)としたのは、粉状鉄鉱石の粒度を小さくすることで、粉状鉄鉱石の比表面積を増大させ、加熱時における結晶水の脱離速度を高めることにより、活性ヘマタイトの生成速度を高めてピロータイトの生成量を増加させると同時に、脱離した結晶水由来の水蒸気でガス改質されて生成した水素の分圧を上昇させることによって石炭表層部のゲル化を促進させるとともに、鉄鉱石粒子同士や鉄鉱石粒子と石炭粒子の付着強度を高める効果を得るためである。 The average particle diameter d50 of the powdered iron ore is set to 5 to 70 μm (preferably 5 to 60 μm, more preferably 5 to 50 μm). By reducing the particle size of the powdered iron ore, By increasing the specific surface area and increasing the desorption rate of crystal water during heating, the generation rate of active hematite is increased to increase the amount of pyrotite generated, and at the same time, gas reforming is performed with water vapor derived from the desorbed crystal water. This is because the gelation of the surface layer of the coal is promoted by increasing the partial pressure of the hydrogen produced and produced, and the effect of increasing the adhesion strength between the iron ore particles and between the iron ore particles and the coal particles is obtained.

また、粉状鉄鉱石の平均粒径d50(Do)と、前記粉状石炭の平均粒径d50(Dc)の比率Do/Dcを0.1〜2.0(好ましくは0.1〜1.0、さらに好ましくは0.1〜0.5)としたのは、石炭粒子の周りに微粉の鉄鉱石粒子を数多く配置して、加熱時における鉄鉱石粒子からの結晶水の脱離速度をさらに高めて石炭表層部のゲル化をより促進させるためである。 Further, the ratio Do / Dc of the average particle diameter d 50 (Do) of the powdered iron ore and the average particle diameter d 50 (Dc) of the powdered coal is set to 0.1 to 2.0 (preferably 0.1 to 0.1). 1.0, and more preferably 0.1 to 0.5), a large number of fine iron ore particles are arranged around the coal particles, and the rate of desorption of crystal water from the iron ore particles during heating This is for further enhancing the gelation and further promoting the gelation of the coal surface layer.

なお、粉状鉄鉱石の平均粒径d50およびDo/Dcにそれぞれ下限を規定したのは、鉄鉱石の粒度を過小にすると粉砕コストが過大になることを考慮したものである。 Incidentally, each average particle size d 50 and Do / Dc powdery iron ore and defines the lower limit is to grinding costs and to under-the granularity of iron ore considering from becoming excessive.

〔混合工程〕
このようにして粒度調整した粉状石炭Aと粉状鉄鉱石Bとを質量比で20:80〜50:50の配合割合で切り出して混合機1で混合して混合原料Cとする。
[Mixing process]
The powdered coal A and the powdered iron ore B thus adjusted in particle size are cut out in a mass ratio of 20:80 to 50:50 and mixed with the mixer 1 to obtain a mixed raw material C.

粉状石炭Aと粉状鉄鉱石Bとの配合割合を20:80〜50:50の範囲としたのは、以下の理由による。すなわち、粉状石炭Aの配合が少なすぎると、バインダとして作用するゲル化した表層部の総量が不足して塊成化物の強度が低下する。一方、粉状石炭Aの配合が多すぎると、加熱冷却に伴う石炭の膨張収縮により成形後の塊成化物中の石炭組織に亀裂が発生しやすくなり、やはり塊成化物の強度が低下するとともに、塊成化物中の鉄分含有量が低くなりすぎて鉄原料としての意味がなくなる。   The reason why the blending ratio of the powdered coal A and the powdered iron ore B is set in the range of 20:80 to 50:50 is as follows. That is, when there are too few compounding of powdered coal A, the total amount of the gelatinized surface layer part which acts as a binder will run short, and the intensity | strength of an agglomerate will fall. On the other hand, if the amount of powdered coal A is too large, cracks are likely to occur in the coal structure in the agglomerated material after molding due to expansion and contraction of the coal accompanying heating and cooling, and the strength of the agglomerated material is also reduced. The iron content in the agglomerated product becomes too low and the meaning as an iron raw material is lost.

この混合に際して、粉状鉄鉱石Bは、上記従来技術のように粉状石炭Aとの混合前に250℃以上に加熱することは避ける必要がある。つまり、結晶水を含有する粉状鉄鉱石Bを250℃以上に加熱すると、粉状石炭Aとの混合前に結晶水が解離して除去されごく微細なナノ気孔を有する活性ヘマタイトが生成してしまう。この状態で粉状石炭Aと混合した後に再度加熱しても、その間にナノ気孔が粗大化してマイクロ気孔となりヘマタイトは活性を失ってしまうためピロータイト生成量が減少するとともに、もはや結晶水由来の水蒸気(HO)が発生せず、上記ガス改質反応が起こらなくなるためHも発生しなくなり、石炭表層部への水添反応、すなわち石炭表層部のゲル化が進行しなくなるためである。ただし、付着水分を除去する目的で、250℃未満、好ましくは180℃以下で乾燥することは、結晶水が離脱することがないので問題ない。 At the time of this mixing, it is necessary to avoid heating the powdered iron ore B to 250 ° C. or higher before mixing with the powdered coal A as in the prior art. That is, when the powdered iron ore B containing crystal water is heated to 250 ° C. or higher, the active hematite having very fine nanopores is generated by dissociating and removing the crystal water before mixing with the powdered coal A. End up. Even if heated again after mixing with pulverized coal A in this state, the nanopores become coarse and become micropores in the meantime, and the hematite loses its activity. This is because water vapor (H 2 O) does not occur and the gas reforming reaction does not occur, so H 2 also does not occur, and hydrogenation reaction to the coal surface layer, that is, gelation of the coal surface layer does not proceed. . However, for the purpose of removing adhering moisture, drying at less than 250 ° C., preferably 180 ° C. or less is not a problem because the crystal water does not separate.

また、粉状石炭Aも、上記従来技術と同様に、当然、250℃以上に加熱することは避ける必要がある。つまり、揮発分を含有する粉状石炭Aを250℃以上に加熱すると、揮発分が気化してHSおよびCHが除去されてしまうので、粉状鉄鉱石Bと混合した後に再度加熱しても上記ピロータイト化反応およびガス改質反応が起こらなくなることから、石炭表層部のゲル化が進行しなくなるためである。ただし、付着水分を除去する目的で、250℃未満、好ましくは180℃以下で乾燥することは、揮発分が気化することがないので問題ない。 Moreover, it is necessary to avoid heating the powdered coal A to 250 ° C. or higher as in the case of the above-described conventional technology. That is, when the powdered coal A containing volatile matter is heated to 250 ° C. or higher, the volatile matter is vaporized and H 2 S and CH 4 are removed. However, since the above-described pyrotiteization reaction and gas reforming reaction do not occur, gelation of the coal surface layer portion does not proceed. However, drying at a temperature lower than 250 ° C., preferably 180 ° C. or lower for the purpose of removing adhering moisture is not a problem because volatile components do not vaporize.

なお、混合機1としては周知のドラムミキサなどを用いることができる。   As the mixer 1, a known drum mixer or the like can be used.

〔加熱工程〕
混合原料Cは、加熱装置(例えば、外部加熱式ロータリキルン)2で350〜550℃、好ましくは400〜500℃に加熱して加熱原料C’とする。
[Heating process]
The mixed raw material C is heated to 350 to 550 ° C., preferably 400 to 500 ° C. with a heating device (for example, an external heating rotary kiln) 2 to obtain a heated raw material C ′.

このように、軟化溶融性の低い、あるいは軟化溶融性をほとんど有しないが揮発分を所定量含有する粉状石炭Aと、結晶水を所定量含有する粉状鉄鉱石Aを混合した後に所定温度で加熱することで、本来軟化溶融性をほとんど有しない粉状石炭Aが、上記仮説に基づくメカニズムによりその表層部がゲル化してバインダとしての機能を獲得するものと考えられる。   Thus, after mixing the powdered coal A having a low softening meltability or little softening meltability but containing a predetermined amount of volatile matter and the powdered iron ore A containing a predetermined amount of crystal water, a predetermined temperature is mixed. It is considered that the powdered coal A, which has essentially no softening and melting properties, is heated by the above-mentioned hypothesis and the surface layer is gelled to acquire a function as a binder.

加熱温度を350〜550℃(好ましくは400〜500℃)としたのは、加熱温度が低すぎると、粉状石炭Aからの揮発分VMの気化も、粉状鉄鉱石Bからの結晶水LOIの気化も遅く、粉状石炭Aの表層部のゲル化が遅延するためであり、一方加熱温度が高すぎると、粉状石炭Aは、その表層部のゲル化状態に留まらず、石炭組織がさらに縮重合・再配列にまで進行して固化してしまい、いずれの場合もバインダとしての機能が十分に発揮されないためである。   The reason for setting the heating temperature to 350 to 550 ° C. (preferably 400 to 500 ° C.) is that if the heating temperature is too low, the vaporization of the volatile matter VM from the pulverized coal A is also caused by the crystal water LOI from the pulverized iron ore B. This is because the gasification of the surface layer portion of the powdered coal A is delayed, and when the heating temperature is too high, the powdered coal A does not stay in the gelled state of the surface layer portion, and the coal structure is Further, it progresses to condensation polymerization / rearrangement and solidifies, and in any case, the function as a binder is not sufficiently exhibited.

加熱装置2として外部加熱式のものを採用するのは、内部加熱式の加熱装置で加熱すると混合原料Cが急速加熱されてバースティング(爆裂)が発生しやすくなるためである。   The reason why the external heating type is employed as the heating device 2 is that when heated by the internal heating type heating device, the mixed raw material C is rapidly heated and bursting (explosion) is likely to occur.

加熱装置2から排出された排ガスは、粉状石炭Aから発生したタール分を含有する場合があり、排ガス系統において凝縮・固着し、配管等を閉塞させるおそれがある。これを防止するため、図示しないが、例えば、加熱装置2の排ガス排出ダクトに燃焼器を設置してタール分を燃焼分解してガス化させてしまう方法や、同排出ダクトにバーナを設置して排ガス中の揮発分(炭化水素ガス)を部分燃焼してタール分が凝縮しない温度に保持して排ガス処理装置まで搬送する方法などを採用すればよい。   The exhaust gas discharged from the heating device 2 may contain a tar content generated from the pulverized coal A, which may condense and adhere in the exhaust gas system and block the piping and the like. In order to prevent this, although not shown in the figure, for example, a combustor is installed in the exhaust gas discharge duct of the heating device 2 to burn and decompose tar components and gasify, or a burner is installed in the exhaust duct. What is necessary is just to employ | adopt the method etc. which carry out partial combustion of the volatile matter (hydrocarbon gas) in waste gas, hold | maintain at the temperature which a tar part does not condense, and convey to a waste gas processing apparatus.

〔熱間成形工程〕
加熱された混合原料(加熱原料)C’は、熱間成形機(例えば熱間成形用の双ロール型成形機)4を用いてブリケット(成形物)Dに加圧成形する。
[Hot forming process]
The heated mixed raw material (heated raw material) C ′ is pressure-formed into a briquette (molded product) D using a hot molding machine (for example, a twin roll molding machine for hot molding) 4.

〔熱処理工程〕
成形物Dを、上記加熱工程での加熱温度範囲よりも高い温度範囲である560〜750℃に調整した熱処理装置(例えば、シャフト炉)5内に装入し、10min以上加熱処理することで、成形物D中に残存する揮発分を気化させて十分に除去するとともに、石炭組織の縮重合・再配列を促進して固化させる。これにより、得られた塊成化物Eが、高強度を獲得するとともに、高炉に装入されて加熱された際に、もはや石炭が軟化することがなく塊成化物Eの強度が維持されるとともに、タール分が多量に発生することがなく高炉の排ガス系統にタールが固着する等のトラブルの発生を防止できる。
[Heat treatment process]
By charging the molded product D into a heat treatment apparatus (for example, a shaft furnace) 5 adjusted to a temperature range of 560 to 750 ° C., which is higher than the heating temperature range in the heating step, and performing heat treatment for 10 minutes or more, The volatile matter remaining in the molded product D is vaporized and removed sufficiently, and the condensation polymerization / rearrangement of the coal structure is promoted and solidified. As a result, the obtained agglomerated material E obtains high strength, and when charged in the blast furnace and heated, the coal is no longer softened and the strength of the agglomerated material E is maintained. Thus, a large amount of tar is not generated, and troubles such as sticking of tar to the exhaust gas system of the blast furnace can be prevented.

〔冷却工程〕
シャフト炉5で熱処理された成形物Dは、熱いまま大気中に排出すると発火や燃焼のおそれがあるため、シャフト炉5の下部または図示しない冷却器中で酸素濃度5容量%以下(例えば、窒素ガスや冷却後の燃焼排ガス等)の雰囲気下にて300℃以下まで冷却してから排出するのが望ましい。
[Cooling process]
Since the molded product D heat-treated in the shaft furnace 5 may be ignited or burnt if discharged into the atmosphere while being hot, an oxygen concentration of 5% by volume or less (for example, nitrogen) in the lower part of the shaft furnace 5 or a cooler (not shown). It is desirable to cool it to 300 ° C. or lower in an atmosphere of gas or combustion exhaust gas after cooling, etc. before discharging.

脱ガス後の成形物Dは、スクリーン6で篩って、篩下粉Fは、可能であれば混合機1等へ戻して再利用しつつ、篩上塊状物Eは目的とする高強度の高炉原料用塊成化物として回収する。   The molded product D after degassing is sieved with a screen 6, and the sieved powder F is returned to the mixer 1 and reused if possible, while the mass E on the sieve has a desired high strength. Collected as agglomerated material for blast furnace raw material.

(変形例)
上記実施形態では、粉状石炭Aと粉状鉄鉱石Bからなる混合原料Cを、造粒することなくそのまま加熱して加熱原料C’とする例(混合工程→加熱工程)を示したが、混合原料Cの全部または一部を造粒機(例えばディスク型ペレタイザ)にて適量の水分を添加してペレットに造粒し、このペレットと混合原料Cの残部とを加熱して加熱原料C’とする(混合工程→造粒工程→加熱工程)ようにしてもよい。このように、混合原料Cの全部または一部をペレット化してから加熱することで、造粒された個々のペレットは、その内部で粉状石炭Aと粉状鉄鉱石Bとが密接に接触した状態であるため、これを加熱することにより、粉状石炭Aの表層部が十分にゲル化し、熱間成形機4で加圧された際に個々のペレットが押し潰され、内部のゲル化部分が表面に押し出されて加熱原料C’全体が一体化し、冷却後に高強度のブリケット(塊成化物)Eが得られることとなる。
(Modification)
In the said embodiment, although the mixed raw material C which consists of pulverized coal A and pulverized iron ore B was shown as the heating raw material C 'by heating as it is, without granulating (mixing process-> heating process), All or a part of the mixed raw material C is granulated into pellets by adding an appropriate amount of water with a granulator (for example, a disk-type pelletizer), and the pellets and the remainder of the mixed raw material C are heated to heat the raw material C ′. (Mixing process → granulation process → heating process). Thus, by heating after pelletizing all or part of the mixed raw material C, the granulated individual pellets were in close contact with the pulverized coal A and the pulverized iron ore B. Since it is in a state, by heating this, the surface layer portion of the powdered coal A is sufficiently gelled, and when pressed by the hot molding machine 4, individual pellets are crushed, and the gelled portion inside Is extruded to the surface, and the entire heating raw material C ′ is integrated, and a high-strength briquette (agglomerated product) E is obtained after cooling.

なお、上記ペレットの平均粒径は1〜15mm、さらには1.5〜10mm、特に2〜5mmとするのが好ましい。ここに、ペレットの平均粒径とは、粒径分布を有するペレットを粒径範囲ごとに篩い分け、各粒径範囲の代表径を各粒径範囲に存在するペレットの質量割合で加重平均して求めた値である。ペレットの粒径が小さすぎると、個々のペレット中における粉状炭材Aと粉状鉄鉱石Bの質量割合が不均一になりやすく、一方ペレットの粒径が大きすぎるとペレットの中心部まで加熱するのに時間を要することに加え、成形物Dのサイズにもよるが、成形の際に成形機のポケット内に入るペレットの総質量にばらつきが出やすくなり、また、加熱時にバースティング(爆裂)が起こりやすくなり、いずれの場合も塊成化物Eの強度低下の原因となる可能性が高くなるからである。熱間成形工程で用いる成形機が双ロール型成形機である場合には、前記ペレットの平均粒径は、上記規定を満たしたうえで、さらに、該双ロール型成形機のロールギャップ以上で、かつ、該双ロール型成形機のポケット深さ以下とするのが好ましい。前記ペレットの平均粒径をロールギャップ以上とすることにより、成形機への噛み込み性が向上し、成形圧力を高くすることができ、また、ポケット深さ以下にすることにより、成形物Dの見掛け密度を高くすることができ、塊成化物Eの強度向上に繋がる。上記造粒機としては、周知のディスク型ペレタイザやドラム型ペレタイザを用いることができる。   The average particle size of the pellets is preferably 1 to 15 mm, more preferably 1.5 to 10 mm, and particularly preferably 2 to 5 mm. Here, the average particle size of the pellets is obtained by sieving the pellets having a particle size distribution for each particle size range, and weighted average the representative diameters of each particle size range by the mass ratio of the pellets present in each particle size range. This is the calculated value. If the particle size of the pellet is too small, the mass ratio of the powdered carbonaceous material A and the powdered iron ore B in each pellet tends to be non-uniform, while if the particle size of the pellet is too large, it is heated to the center of the pellet. Depending on the size of the molded product D, the total mass of pellets entering the pocket of the molding machine is likely to vary during molding, and bursting (explosion) occurs during heating. This is because the possibility of causing a decrease in strength of the agglomerate E increases. When the molding machine used in the hot molding process is a twin roll type molding machine, the average particle size of the pellets satisfies the above regulations, and more than the roll gap of the twin roll type molding machine, And it is preferable to make it below the pocket depth of this twin roll type molding machine. By making the average particle size of the pellets equal to or larger than the roll gap, the biting property to the molding machine is improved, the molding pressure can be increased, and by making the pocket depth or less, An apparent density can be made high and it leads to the strength improvement of the agglomerate E. As the granulator, a known disk type pelletizer or drum type pelletizer can be used.

また、上記実施形態では、粉状石炭Aおよび粉状鉄鉱石Bとしては、ともに単一の銘柄を用いる例を示したが、2種類以上の銘柄を配合して用いてもよい。この場合、配合後の組成および性状が、上記請求項1で規定する条件を満足すべきことは当然である。なお、配合後の粉状石炭AのlogMFは、各銘柄(各炭種)のlogMFをそれらの質量割合で加重平均したものとする。また、上記篩下粉Fを再利用する場合は、篩下粉Fを鉄鉱石の複数銘柄の一つとみなして同様の取り扱いをすればよい。   Moreover, in the said embodiment, as the powdered coal A and the powdered iron ore B, although the example using a single brand was shown, you may mix | blend and use 2 or more types of brands. In this case, it is natural that the composition and properties after blending should satisfy the conditions defined in claim 1 above. The log MF of the powdered coal A after blending is obtained by weighted averaging the log MF of each brand (each coal type) by their mass ratio. Moreover, when reusing the above sieve powder F, the sieve powder F may be regarded as one of a plurality of brands of iron ore and handled in the same manner.

また、上記実施形態では、混合工程において、混合原料として粉状鉄鉱石と粉状石炭のみを用いる例を示したが、さらに粉状フラックス(石灰石、ドロマイトなど)を含有させてもよい。この場合も、フラックスを鉄鉱石の複数銘柄の一つとみなして上記と同様の取り扱いをすればよい。   Moreover, although the example which uses only a powdered iron ore and powdered coal as a mixing raw material was shown in the said embodiment in a mixing process, you may contain powdery flux (limestone, dolomite, etc.) further. In this case as well, the flux may be regarded as one of a plurality of brands of iron ore and handled in the same manner as described above.

また、上記実施形態では、熱間成形機として双ロール型成形機を用いる例を示したが、押出し成形機を用いてもよい。   Moreover, in the said embodiment, although the example using a twin roll type molding machine was shown as a hot molding machine, you may use an extrusion molding machine.

本発明の効果を確証するため、以下のラボ試験を実施した。   In order to confirm the effect of the present invention, the following laboratory tests were conducted.

〔試験方法〕
ラボ試験の方法としては、以下の(1)〜(6)の手順で行った(図2参照)。
〔Test method〕
As a laboratory test method, the following procedures (1) to (6) were performed (see FIG. 2).

(1)粉状石炭と粉状鉄鉱石を質量比で40:60の配合割合にて合計質量で約8gになるように配合し、混合機(攪拌羽根付き縦型円筒容器)内で、攪拌羽根の回転速度:180rpm、混合時間1.0minの条件で冷間混合して混合原料を作製する。
(2)ついで、この混合原料を、外部ヒータ付きのドーナツ型モールドの中心部円筒空間(内径20mm)に充填して所定温度に加熱する。
(3)その後、モールドの外部ヒータの電源をOFFにし、直ちに加圧用ピンで加熱原料を2000kgf(1kgf≒9.8N)の成形荷重で加圧してタブレット(成形物)を作製する。
(4)モールドからタブレット(成形物)を取り出し、これをN流通下で所定温度に加熱された加熱炉内に速やかに装入して所定時間熱処理する。
(5)熱処理が終了したタブレット(成形物)を取り出し、Nで室温まで冷却する。
(6)コンクリートの引張強度試験方法(JIS−A1113)に準じて、タブレット(高炉原料用塊成化物)の圧潰強度を測定し、引張強度を算出する。
(1) Powdered coal and powdered iron ore are blended in a mass ratio of 40:60 so that the total mass is about 8 g and stirred in a mixer (vertical cylindrical container with stirring blades). The mixed raw material is prepared by cold mixing under the conditions of blade rotation speed: 180 rpm and mixing time of 1.0 min.
(2) Next, this mixed raw material is filled into a central cylindrical space (inner diameter 20 mm) of a donut mold with an external heater and heated to a predetermined temperature.
(3) After that, the power source of the external heater of the mold is turned off, and the heated raw material is immediately pressurized with a molding load of 2000 kgf (1 kgf≈9.8 N) with a pressurizing pin to produce a tablet (molded product).
(4) Take out the tablet (molded product) from the mold, quickly charge it into a heating furnace heated to a predetermined temperature under N 2 flow, and heat-treat it for a predetermined time.
(5) Take out the tablet (molded product) after the heat treatment and cool to room temperature with N 2 .
(6) According to the concrete tensile strength test method (JIS-A1113), the crushing strength of the tablet (agglomerated material for blast furnace raw material) is measured, and the tensile strength is calculated.

〔試料〕
粉状石炭の粒度は平均粒径d50(=Do)で40μm、粉状鉄鉱石の粒度は平均粒径d50(=Dc)で25μm(すなわち、Do/Dc=1.6)とした。そして、混合原料は、粉状鉄鉱石:粉状石炭=60:40(質量比)の配合割合(一定)とした。
〔sample〕
The particle size of the powdered coal was 40 μm in terms of the average particle size d 50 (= Do), and the particle size of the powdered iron ore was 25 μm in terms of the average particle size d 50 (= Dc) (that is, Do / Dc = 1.6). And the mixing raw material was made into the compounding ratio (constant) of powdered iron ore: powdered coal = 60: 40 (mass ratio).

〔試験結果〕
[試験1](粉状石炭中の硫黄S含有量の影響)
タブレット(高炉原料用塊成化物)の引張強度に及ぼす粉状石炭中の硫黄S含有量の影響を調査するため、以下の試験を実施した。
〔Test results〕
[Test 1] (Effect of sulfur S content in powdered coal)
In order to investigate the influence of sulfur S content in the powdered coal on the tensile strength of the tablet (agglomerated material for blast furnace raw material), the following tests were carried out.

粉状鉄鉱石としては、豪州産高結晶水鉱石(LOI:10.38質量%)のみを用い、粉状石炭としては、揮発分VMが10〜35質量%、logMFが0〜0.3、硫黄S含有量が0.1〜0.7質量%の範囲の5種類の石炭を用い、これらの石炭をそれぞれ単味で配合して上述の試験方法でタブレット(高炉原料用塊成化物)を作製し、その圧潰強度を測定し引張強度を算出した。なお、加熱温度(成形温度)は430℃、熱処理温度は650℃、熱処理時間は20minでいずれも一定とした。   As powdered iron ore, only Australian high crystal water ore (LOI: 10.38% by mass) is used, and as powdered coal, volatile matter VM is 10 to 35% by mass, log MF is 0 to 0.3, Using five types of coal with a sulfur S content in the range of 0.1 to 0.7% by mass, each of these coals is blended in a simple manner, and tablets (agglomerated for blast furnace raw material) are formed using the above test method. The crushing strength was measured and the tensile strength was calculated. The heating temperature (molding temperature) was 430 ° C., the heat treatment temperature was 650 ° C., and the heat treatment time was 20 min.

試験結果を図3に示す。同図に示すように、石炭の種類に関わらず、logMFが同レベルの石炭の間では、石炭中の硫黄S含有量が増加するに伴ってタブレット(高炉原料用塊成化物)の引張強度が直線的に上昇することが明らかである。また、同図より、石炭のlogMFが0.3以上で、石炭中の硫黄S含有量が0.3質量%以上であれば、高炉用装入物として十分な強度である引張強度23kgf/cm以上(高炉原料に適した体積約6cmのブリケットの圧潰強度換算で200kgf以上に相当)が得られることがわかる。 The test results are shown in FIG. As shown in the figure, regardless of the type of coal, between coals with the same log MF, the tensile strength of the tablet (agglomerated material for blast furnace raw material) increases as the sulfur S content in the coal increases. It is clear that it rises linearly. Further, from the figure, when the log MF of coal is 0.3 or more and the sulfur S content in the coal is 0.3 mass% or more, the tensile strength is 23 kgf / cm, which is sufficient strength as a charge for blast furnace. It can be seen that 2 or more (corresponding to 200 kgf or more in terms of crushing strength of a briquette having a volume of about 6 cm 3 suitable for a blast furnace raw material) can be obtained.

図4は、熱処理後のタブレット(高炉原料用塊成化物)のミクロ組織を観察した結果を示すものであり、(a)は従来技術に相当する軟化溶融性の高い石炭(logMF=2.59)を用いた参考例であり、(b)は軟化溶融性のほとんどない石炭(logMF=0.3)を用いた本発明例である。同図に示すように、(a)の参考例では石炭粒子はそのほとんどの粒子全体が一旦溶融したことが明らかであるのに対し、(b)の本発明例では石炭粒子はそのほとんどが角張った形状を残しており、粒子全体が溶融した形跡は見られない。それにも関わらず、本発明例の熱処理後のタブレットが所定の強度を発現していることから、石炭粒子の表層部のみが一旦ゲル化したものと推定した。   FIG. 4 shows the result of observing the microstructure of the tablet after heat treatment (agglomerated material for blast furnace raw material). (A) is a coal with a high softening and melting property corresponding to the prior art (log MF = 2.59). ), And (b) is an example of the present invention using coal (log MF = 0.3) having almost no softening and melting property. As shown in the figure, in the reference example of (a), it is clear that most of the coal particles once melted, whereas in the present invention example of (b), most of the coal particles are square. In other words, there is no evidence of melting of the entire particle. Nevertheless, it was estimated that only the surface layer of the coal particles once gelled because the tablet after heat treatment of the present invention example exhibited a predetermined strength.

そこで、熱処理後のタブレット(高炉原料用塊成化物)を微小部X線回折で分析して化合物の同定を行った。その結果を図5に示す。(a)は石炭中の硫黄S含有量が0.2質量%に満たない比較例であり、(b)は石炭中の硫黄S含有量が0.6質量%を超える本発明例である。同図に示すように、(a)の比較例では、ピロータイト(Fe1−xS)の回折ピークが視認されず、タブレット中にピロータイトの存在が認められなかった。これに対し、(b)の本発明例では、ピロータイト(Fe1−xS)の回折ピークが明瞭に視認されることから、タブレット中にピロータイトが存在することが確認できた。(なお、本発明例の熱処理前のタブレットについても同定を行ったが、ピロータイトが存在していなかったことを確認している。)このことから、本発明例では、石炭表層部がピロータイトの触媒作用によりゲル化したとの確信が高まった。   Therefore, the tablet after heat treatment (agglomerated material for blast furnace raw material) was analyzed by micro X-ray diffraction to identify the compound. The result is shown in FIG. (A) is a comparative example in which the sulfur S content in coal is less than 0.2% by mass, and (b) is an example of the present invention in which the sulfur S content in coal exceeds 0.6% by mass. As shown in the figure, in the comparative example (a), the diffraction peak of pyrotite (Fe1-xS) was not visually recognized, and the presence of pyrotite was not observed in the tablet. On the other hand, in the present invention example of (b), since the diffraction peak of pyrotite (Fe1-xS) is clearly visually recognized, it was confirmed that pyrotite was present in the tablet. (In addition, although it identified also about the tablet before heat processing of the example of this invention, it confirmed that the pilotite did not exist.) From this, in this invention example, coal surface layer part is a pilotite. The belief that gelation occurred due to the catalytic action of was increased.

[試験2](タブレットの引張強度に及ぼすピロータイト添加量の影響)
そこで、さらに、ピロータイトの石炭表層部のゲル化作用を別の観点から検証するため、上記試験1とは異なり粉状鉄鉱石を用いることなく、粉状石炭単味に試薬のピロータイトを添加し、その他の条件は上記試験1と同じ条件で加熱→熱間成形→熱処理を行ってタブレットを作製し、タブレットの引張強度に及ぼすピロータイト添加量の影響を調査した。
[Test 2] (Effect of added amount of pillow tightness on tablet tensile strength)
Therefore, in order to verify the gelation effect of the coal surface layer of the pilotite from another point of view, unlike the test 1 described above, the reagent pilotite is added to the powdered coal alone without using the powdered iron ore. The other conditions were the same as in Test 1 above, and heating, hot forming, and heat treatment were performed to produce tablets, and the influence of the added amount of pillowite on the tablet tensile strength was investigated.

試験結果を図6に示す。同図に示すように、ピロータイトを添加しないものに比べて、ピロータイトの添加量を増加させたものほどタブレットの引張強度が上昇することが明らかである。   The test results are shown in FIG. As shown in the figure, it is apparent that the tensile strength of the tablet increases as the amount of added pilotite increases compared to the case where no added pilotite is added.

上記試験1およびこの試験2の結果を総合して判断することにより、ピロータイトの存在が石炭表層部のゲル化に対して触媒作用を有することがほぼ検証されたといえる。   By comprehensively judging the results of Test 1 and Test 2, it can be said that the existence of pyrotite has been substantially verified to have a catalytic action on the gelation of the coal surface layer.

[試験3](粉状鉄鉱石中の結晶水LOI含有量の影響)
次に、タブレット(高炉原料用塊成化物)の引張強度に及ぼす粉状鉄鉱石中の結晶水LOI含有量の影響を調査するため、以下の試験を実施した。
[Test 3] (Effect of crystal water LOI content in powdered iron ore)
Next, in order to investigate the influence of the crystal water LOI content in the powdered iron ore on the tensile strength of the tablet (agglomerated material for blast furnace raw material), the following test was carried out.

すなわち、粉状石炭としては、高炉羽口吹込み用石炭(揮発分VM:15.4質量%、logMF:0.4、硫黄S含有量:0.45質量%)のみを用い、粉状鉄鉱石としては、豪州産高結晶水鉱石(LOI:10.38質量%)と、リモナイト鉱石(LOI:14.0質量%)と、前記豪州産高結晶水鉱石を事前に空気中で650℃×2h加熱して結晶水を完全に除去したものを用い、これらの鉄鉱石をそれぞれ単味で配合して上記試験1と同じ条件で加熱→熱間成形→熱処理を行ってタブレットを作製し、タブレットの引張強度に及ぼす粉状鉄鉱石中の結晶水LOI含有量の影響を調査した。   That is, as pulverized coal, only coal for blast furnace tuyere injection (volatile matter VM: 15.4 mass%, log MF: 0.4, sulfur S content: 0.45 mass%) is used, and pulverized iron ore is used. As the stone, Australian high crystal water ore (LOI: 10.38% by mass), limonite ore (LOI: 14.0% by mass), and the Australian high crystal water ore in air at 650 ° C. in advance Using the one that was heated for 2 hours and completely removing the crystal water, each of these iron ores was blended as a simple substance and heated under the same conditions as in Test 1 above, followed by hot forming → heat treatment to produce a tablet. The effect of the crystal water LOI content in the powdered iron ore on the tensile strength of the iron was investigated.

試験結果を図7に示す。同図に示すように、粉状鉄鉱石中の結晶水LOI含有量とタブレット(高炉原料用塊成化物)の引張強度とは、正の相関関係があり、所定のタブレット強度を得るためには、一定以上の結晶水LOI含有量が必要なことが確認された。   The test results are shown in FIG. As shown in the figure, there is a positive correlation between the crystal water LOI content in the powdered iron ore and the tensile strength of the tablet (agglomerated material for blast furnace raw material), and in order to obtain a predetermined tablet strength It was confirmed that the crystal water LOI content above a certain level is necessary.

ここで、結晶水を事前に除去した粉状鉄鉱石を用いた場合にタブレット強度が低下する理由は以下のように考えられる。すなわち、混合原料を加熱温度まで加熱する際に、結晶水の事前除去時に生成した活性ヘマタイトが長時間を経て再加熱されることにより、活性ヘマタイト中のナノ気孔が粗大化してマイクロ気孔となりヘマタイトが活性を失い、ピロータイトの生成量が減少するとともに、結晶水由来の水蒸気(HO)の発生がないためガス改質反応によるHの生成もないので、石炭表層部への水添反応が起らないためと考えられる。 Here, the reason why the tablet strength is reduced when using powdered iron ore from which crystal water has been removed in advance is considered as follows. That is, when the mixed raw material is heated to the heating temperature, the active hematite generated during the prior removal of the crystal water is reheated over a long period of time, so that the nanopores in the active hematite become coarse and become micropores. The activity is lost, the amount of pyrotite produced is reduced, and since there is no generation of water vapor (H 2 O) derived from crystal water, there is no production of H 2 due to gas reforming reaction. It is thought that this does not happen.

[試験4](粉状鉄鉱石および粉状石炭の粒度の影響)
次に、タブレット(高炉原料用塊成化物)の引張強度に及ぼす粉状鉄鉱石および粉状石炭の粒度の影響を調査するため、以下の試験を実施した。
[Test 4] (Effect of particle size of powdered iron ore and powdered coal)
Next, in order to investigate the influence of the particle size of the powdered iron ore and powdered coal on the tensile strength of the tablet (agglomerated material for blast furnace raw material), the following tests were carried out.

すなわち、粉状鉄鉱石としては、豪州産高結晶水鉱石A(LOI:10.38質量%)と、リモナイト鉱石B(LOI:14.0質量%)を用い、粉状石炭としては、高炉羽口吹込み用石炭T(揮発分VM:16.5質量%、logMF:0.0、硫黄S含有量:0.65質量%)と、高炉羽口吹込み用配合微粉炭R(揮発分VM:28.5質量%、logMF:0.63、硫黄S含有量:0.39質量%)の2種類の石炭を用い、それぞれのトップサイズを変更して平均粒径d50を調整し、それらを種々組み合わせてタブレットを作製し、タブレットの引張強度を測定した。なお、上記試験1および2と同様、加熱温度は430℃、熱処理温度は650℃でともに一定とした。 In other words, Australian high crystal water ore A (LOI: 10.38% by mass) and limonite ore B (LOI: 14.0% by mass) are used as powdered iron ore, and blast furnace wings are used as powdered coal. Mouth coal T (volatile matter VM: 16.5% by mass, log MF: 0.0, sulfur S content: 0.65% by mass) and blast furnace tuyere infused pulverized coal R (volatile matter VM) : 28.5% by mass, log MF: 0.63, sulfur S content: 0.39% by mass), adjusting the average particle size d 50 by changing the respective top sizes, Tablets were prepared by variously combining the above, and the tensile strength of the tablets was measured. As in tests 1 and 2, the heating temperature was 430 ° C. and the heat treatment temperature was 650 ° C., both being constant.

試験結果を表1に示す。同表に示すように、粉状鉄鉱石および粉状石炭の粒度が本発明の規定範囲を外れる場合(比較例)は、タブレットの引張強度は目標強度23kgf/cmに達しないのに対し、粉状鉄鉱石および粉状石炭の粒度が本発明の規定範囲内の場合(発明例、参考例[粉状石炭のlogMFのみ本発明の規定を満足しないケース])は、タブレットの引張強度は目標強度23kgf/cm以上を達成できることがわかる。 The test results are shown in Table 1. As shown in the table, when the particle sizes of the powdered iron ore and the powdered coal are outside the specified range of the present invention (comparative example), the tablet tensile strength does not reach the target strength of 23 kgf / cm 2 , When the particle sizes of the powdered iron ore and the powdered coal are within the specified range of the present invention (invention example, reference example [case where only log MF of powdered coal does not satisfy the specification of the present invention]), the tensile strength of the tablet is the target. It can be seen that a strength of 23 kgf / cm 2 or more can be achieved.

さらに、タブレット(高炉原料用塊成化物)の引張強度に及ぼす粉状鉄鉱石の粒度の影響を調査するため、粉状鉄鉱石として豪州産高結晶水鉱石A(LOI:10.38質量%)を、粉状石炭として高炉羽口吹込み用石炭S(揮発分VM:15.8質量%、logMF:0.0、硫黄S含有量:0.55質量%)をそれぞれ用い、粉状石炭の粒度は−250μm(平均粒径d50=27μm)一定とし、粉状鉄鉱石の粒度はトップサイズを種々変更することにより平均粒径d50の調整を行った。なお、加熱温度は410℃、熱処理温度は650℃でともに一定とした。 Furthermore, in order to investigate the influence of the particle size of powdered iron ore on the tensile strength of tablets (agglomerated materials for blast furnace raw materials), Australian high crystal water ore A (LOI: 10.38% by mass) as powdered iron ore Blast furnace tuyere blowing coal S as pulverized coal (volatile matter VM: 15.8 mass%, log MF: 0.0, sulfur S content: 0.55 mass%), respectively, particle size and -250Myuemu (average particle size d 50 = 27 [mu] m) constant, the particle size of the powdery iron ore was adjusted average particle size d 50 by variously changing the top size. The heating temperature was 410 ° C. and the heat treatment temperature was 650 ° C., both being constant.

試験結果を図8および図9に示す。これらの図には、熱処理前および熱処理後のタブレットのデータを併記した。図8に示すように、粉状鉄鉱石の平均粒径d50が70μm以下になると、熱処理後の成形物の引張強度は急激に上昇することがわかる。また、図9に示すように、粉状鉄鉱石の平均粒径d50(Do)と、粉状石炭の平均粒径d50(Dc)の比率Do/Dcが2.0以下になると、熱処理後の成形物の引張強度は急激に上昇することがわかる。なお、本実施例では、粉状石炭としてlogMF=0.0と本発明の規定範囲(logMF=0.3〜2.5)を外れるものを使用したため、図8および図9に示すように、タブレットの引張強度は相対的に低めの値を示し、Do=70μm、Do/Dc=2.0の粒度において12〜13kgf/cm程度の引張強度しか得られていないが、粉状石炭としてlogMFが本発明の規定範囲内のものを使用すれば、既述の図3の結果から類推すれば同粒度において十分に目標引張強度23kgf/cmを得ることができると想定される。また、本実施例では粉状石炭の粒度(平均粒径d50)は一定としたが、粉状石炭の粒度(平均粒径d50)が変化しても、同様の結果が得られると想定される。 The test results are shown in FIGS. In these figures, the data of tablets before and after heat treatment are also shown. As shown in FIG. 8, it can be seen that when the average particle diameter d 50 of the powdered iron ore is 70 μm or less, the tensile strength of the molded product after the heat treatment is rapidly increased. Moreover, as shown in FIG. 9, when the ratio Do / Dc between the average particle diameter d 50 (Do) of the powdered iron ore and the average particle diameter d 50 (Dc) of the powdered coal is 2.0 or less, heat treatment is performed. It can be seen that the tensile strength of the later molded product increases rapidly. In addition, in this example, as the powdered coal, log MF = 0.0 and those outside the specified range (log MF = 0.3 to 2.5) of the present invention were used, so as shown in FIGS. 8 and 9, The tensile strength of the tablet is relatively low, and only a tensile strength of about 12 to 13 kgf / cm 2 is obtained at a particle size of Do = 70 μm and Do / Dc = 2.0. However, it is assumed that the target tensile strength of 23 kgf / cm 2 can be sufficiently obtained at the same grain size by analogy with the results of FIG. Further, the particle size of the powdered coal in the present embodiment (an average particle diameter d 50) is assumed to have been constant, also the particle size of the powdery coal (mean particle diameter d 50) is changed, similar results Is done.

[試験5](加熱温度の影響)
次に、タブレット(高炉原料用塊成化物)の引張強度に及ぼす加熱温度の影響を調査するため、以下の試験を実施した。
[Test 5] (Influence of heating temperature)
Next, in order to investigate the influence of the heating temperature on the tensile strength of the tablet (agglomerated material for blast furnace raw material), the following test was carried out.

すなわち、粉状鉄鉱石としては、豪州産高結晶水鉱石(LOI:10.38質量%)のみを用い、粉状石炭としては、高炉羽口吹込み用石炭P(揮発分VM:23.1質量%、logMF:0.6、硫黄S含有量:0.51質量%)と、準強粘結炭Q(揮発分VM:28.8質量%、logMF:2.47、硫黄S含有量:0.54質量%)の2種類の石炭をそれぞれ単味で用い、加熱温度を種々変更し、その他の条件は上記試験1と同じ条件でタブレットを作製し、タブレットの引張強度に及ぼす加熱温度の影響を調査した。   That is, only Australian high crystal water ore (LOI: 10.38% by mass) is used as the powdered iron ore, and blast furnace tuyere blowing coal P (volatile matter VM: 23.1) is used as the powdered coal. Mass%, log MF: 0.6, sulfur S content: 0.51 mass%) and semi-strongly caking coal Q (volatile matter VM: 28.8 mass%, log MF: 2.47, sulfur S content: 0.54% by mass) each of the two types of coal is used in a simple manner, the heating temperature is changed variously, and the other conditions are the same as in Test 1 above, and a tablet is produced. The impact was investigated.

試験結果を下記表2に示す。同表に示すように、加熱温度が本発明で規定する350〜550℃の範囲を外れる場合は、タブレットの引張強度は目標強度23kgf/cmに達しないのに対し、加熱温度が本発明で規定する350〜550℃の範囲内の場合は、タブレットの引張強度は目標強度23kgf/cm以上を達成できることがわかる。 The test results are shown in Table 2 below. As shown in the same table, when the heating temperature is outside the range of 350 to 550 ° C. defined in the present invention, the tablet tensile strength does not reach the target strength of 23 kgf / cm 2 , whereas the heating temperature is the present invention. In the range of 350-550 degreeC to prescribe | regulate, it turns out that the tensile strength of a tablet can achieve target strength 23kgf / cm < 2 > or more.

[試験6](熱処理時間の影響)
タブレット(高炉原料用塊成化物)の引張強度に及ぼす熱処理時間の影響を調査するため、以下の試験を実施した。
[Test 6] (Effect of heat treatment time)
In order to investigate the effect of heat treatment time on the tensile strength of tablets (agglomerated materials for blast furnace raw materials), the following tests were conducted.

すなわち、粉状鉄鉱石としては、豪州産高結晶水鉱石(LOI:10.38質量%)を用い、粉状石炭としては、高炉羽口吹込み用石炭(揮発分VM:24.2質量%、logMF:0.8、硫黄S含有量:0.5質量%)を用いて、熱処理時間のみを種々変更し、その他の条件は上記試験1と同じ条件でタブレットを作製し、タブレットの引張強度に及ぼす熱処理時間の影響を調査した。   That is, Australian high crystal water ore (LOI: 10.38% by mass) is used as the powdered iron ore, and coal for blast furnace tuyere (volatile matter VM: 24.2% by mass) is used as the powdered coal. Log MF: 0.8, sulfur S content: 0.5% by mass), only the heat treatment time was changed, and other conditions were used to produce tablets under the same conditions as in Test 1 above. The effect of heat treatment time on the effect was investigated.

試験結果を図10に示す。同図には、熱処理中における加熱炉排ガス中のHS濃度の変化を併記した。同図に示すように、熱処理時間の延長に伴ってタブレットの引張強度が上昇し、熱処理時間10min以上でタブレットの引張強度が目標強度の23kgf/cm以上を達成できることがわかる。なお、タブレットからのHSの発生は10min以内に終了していることから、熱処理工程におけるタブレットの強度の発現は、ピロータイトを触媒とする水添反応による石炭表層部のゲル化に基づくものではなく、前段の加熱工程および成形工程で改質を受けた石炭組織が縮重合・再配列して固化したことによるものと推定される。 The test results are shown in FIG. In the same figure, changes in H 2 S concentration in the furnace exhaust gas during heat treatment are also shown. As shown in the figure, it can be seen that the tensile strength of the tablet increases as the heat treatment time is extended, and that the tablet tensile strength can achieve the target strength of 23 kgf / cm 2 or more after the heat treatment time of 10 minutes or longer. Since the generation of H 2 S from the tablet is completed within 10 minutes, the development of the strength of the tablet in the heat treatment process is based on the gelation of the coal surface layer by hydrogenation reaction using pyrotite as a catalyst. Rather, it is presumed that the coal structure that had been modified in the preceding heating process and molding process was solidified by condensation polymerization and rearrangement.

[試験7](冷却温度の影響)
最後に、タブレット(成形物)を熱処理後、どの程度まで冷却すれば大気中に安全に取り出せるかを確認するため、600℃および800℃でそれぞれ熱処理した後のタブレット(成形物)を、N雰囲気中および大気雰囲気中のそれぞれで示差熱分析を実施した。
[Test 7] (Influence of cooling temperature)
Finally, after the heat treatment of the tablet (molded product), the tablet (molded product) after being heat-treated at 600 ° C. and 800 ° C. in order to confirm to what extent the tablet (molded product) can be safely taken out into the atmosphere is checked with N 2. Differential thermal analysis was performed in the atmosphere and in the atmosphere.

測定結果を図11に示す。同図に示すように、N雰囲気中では発熱は見られないのに対し、大気雰囲気中では、300℃を超える頃から試料質量はあまり変化はないものの発熱量が増加し始め、400℃を超えると試料質量が大幅に減少し始めるとともに発熱量も急激に増大して500℃付近で発熱量が最大になり、500℃を超えると発熱量が低下することがわかる。 The measurement results are shown in FIG. As shown in the figure, heat generation is not observed in the N 2 atmosphere, but in the air atmosphere, although the sample mass does not change much from around 300 ° C., the heat generation amount starts to increase, and 400 ° C. When it exceeds, the sample mass starts to decrease greatly, and the calorific value increases rapidly, and the calorific value becomes maximum at around 500 ° C., and when it exceeds 500 ° C., the calorific value decreases.

このことから、300℃を超える頃からタブレット中に残留する揮発分VMが気化してこれが大気で酸化されて発熱し始め、400℃を超えるあたりで、大きな発熱を伴う炭素の酸化が開始し、500℃を超えると炭素の酸化反応に加えて酸化鉄が炭素で直接還元される吸熱反応が開始して発熱量が減少するものと考えられる。   From this, the volatile matter VM remaining in the tablet evaporates from around 300 ° C., and this begins to oxidize in the atmosphere and generates heat. At around 400 ° C., oxidation of carbon with a large exotherm begins, When the temperature exceeds 500 ° C., it is considered that in addition to the oxidation reaction of carbon, an endothermic reaction in which iron oxide is directly reduced by carbon starts and the calorific value decreases.

以上の結果から、タブレット中に残留する揮発分VMの気化とそれに伴う大気による酸化発熱反応をより確実に回避するためには、熱処理後の冷却工程での不活性ガス雰囲気中における成形物の冷却温度は300℃以下とすることが推奨される。   From the above results, in order to more reliably avoid the vaporization of the volatile matter VM remaining in the tablet and the accompanying oxidative exothermic reaction due to the atmosphere, cooling the molded product in an inert gas atmosphere in the cooling step after the heat treatment It is recommended that the temperature be 300 ° C. or lower.

1:混合機
2:加熱装置(外部加熱式ロータリキルン)
4:熱間成形機(双ロール型成形機)
5:熱処理装置(シャフト炉)
6:スクリーン
A:粉状石炭
B:粉状鉄鉱石
C:混合原料
C’:加熱原料
D:成形物(ブリケット)
E:高炉原料用塊成化物(篩上塊状物)
F:篩下粉
1: Mixer 2: Heating device (external heating type rotary kiln)
4: Hot forming machine (double roll type forming machine)
5: Heat treatment equipment (shaft furnace)
6: Screen A: Powdered coal B: Powdered iron ore C: Mixed raw material C ': Heated raw material D: Molded product (briquette)
E: Agglomerated material for blast furnace raw material (lumped on sieve)
F: Sieve powder

Claims (4)

ギーセラー最高流動度MFがlogMFで0.3〜2.5であるとともに、揮発分VMを10質量%以上、硫黄Sを0.3質量%以上含有する粉状石炭と、結晶水LOIを3質量%以上含有する粉状鉄鉱石とを混合して混合原料となす混合工程と、
この混合原料を350〜550℃に加熱して加熱原料となす加熱工程と、
この加熱原料を熱間成形して成形物となす熱間成形工程と、
この成形物を不活性ガス雰囲気下にて560〜750℃で10min以上加熱処理して高炉原料用塊成化物となす熱処理工程と、を備え、
前記粉状鉄鉱石の平均粒径d50が5〜70μmで、かつ、該粉状鉄鉱石の平均粒径d50(以下、「Do」という。)と、前記粉状石炭の平均粒径d50(以下、「Dc」という。)の比率Do/Dcが0.1〜2.0であることを特徴とする高炉原料用塊成化物の製造方法。
Gieseler maximum fluidity MF is 0.3 to 2.5 in log MF, pulverized VM containing 10 mass% or more, sulfur coal containing 0.3 mass% or more, and 3 mass of crystal water LOI A mixing step of mixing powdered iron ore containing at least 5% into a mixed raw material,
A heating step of heating the mixed raw material to 350 to 550 ° C. to obtain a heated raw material;
A hot forming step of hot forming the heated raw material into a molded product;
A heat treatment step of heat-treating the molded product at 560 to 750 ° C. for 10 minutes or more under an inert gas atmosphere to obtain an agglomerated material for a blast furnace raw material,
An average particle diameter d 50 of 5~70μm of the powdery iron ore, and the average particle size d 50 of the powder-like iron ore (hereinafter referred to. "Do") and an average particle diameter d of the powdery coal 50 (hereinafter referred to as “Dc”), the ratio Do / Dc is 0.1 to 2.0.
ギーセラー最高流動度MFがlogMFで0.3〜2.5であるとともに、揮発分VMを10質量%以上、硫黄Sを0.3質量%以上含有する粉状石炭と、結晶水LOIを3質量%以上含有する粉状鉄鉱石とを混合して混合原料となす混合工程と、
この混合原料の全部または一部をペレットに造粒する造粒工程と、
このペレットと前記混合原料の残部とを350〜550℃に加熱して加熱原料となす加熱工程と、
この加熱原料を熱間成形して成形物となす熱間成形工程と、
この成形物を不活性ガス雰囲気下にて560〜750℃で10min以上加熱処理して高炉原料用塊成化物となす熱処理工程と、を備え、
前記粉状鉄鉱石の平均粒径d50が5〜70μmで、かつ、該粉状鉄鉱石の平均粒径d50(以下、「Do」という。)と、前記粉状石炭の平均粒径d50(以下、「Dc」という。)の比率Do/Dcが0.1〜2.0であることを特徴とする高炉原料用塊成化物の製造方法。
Gieseler maximum fluidity MF is 0.3 to 2.5 in log MF, pulverized VM containing 10 mass% or more, sulfur coal containing 0.3 mass% or more, and 3 mass of crystal water LOI A mixing step of mixing powdered iron ore containing at least 5% into a mixed raw material,
A granulation step of granulating all or part of this mixed raw material into pellets;
A heating step of heating the pellet and the remainder of the mixed raw material to 350 to 550 ° C. to form a heated raw material;
A hot forming step of hot forming the heated raw material into a molded product;
A heat treatment step of heat-treating the molded product at 560 to 750 ° C. for 10 minutes or more under an inert gas atmosphere to obtain an agglomerated material for a blast furnace raw material,
An average particle diameter d 50 of 5~70μm of the powdery iron ore, and the average particle size d 50 of the powder-like iron ore (hereinafter referred to. "Do") and an average particle diameter d of the powdery coal 50 (hereinafter referred to as “Dc”), the ratio Do / Dc is 0.1 to 2.0.
前記熱処理工程の後に、前記高炉原料用塊成化物を酸素濃度5容量%以下の雰囲気下にて300℃以下まで冷却する冷却工程を備えた請求項1または2に記載の高炉原料用塊成化物の製造方法。   The blast furnace raw material agglomerated product according to claim 1 or 2, further comprising a cooling step of cooling the agglomerated material for blast furnace raw material to 300 ° C or lower in an atmosphere having an oxygen concentration of 5% by volume or lower after the heat treatment step. Manufacturing method. 前記粉状石炭が、2種類以上の石炭を配合してなる請求項1〜3のいずれか1項に記載の高炉原料用塊成化物の製造方法。   The method for producing an agglomerated product for a blast furnace raw material according to any one of claims 1 to 3, wherein the powdered coal is a mixture of two or more types of coal.
JP2011014186A 2011-01-26 2011-01-26 Method for producing agglomerates for blast furnace raw materials Active JP5624486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011014186A JP5624486B2 (en) 2011-01-26 2011-01-26 Method for producing agglomerates for blast furnace raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011014186A JP5624486B2 (en) 2011-01-26 2011-01-26 Method for producing agglomerates for blast furnace raw materials

Publications (2)

Publication Number Publication Date
JP2012153947A true JP2012153947A (en) 2012-08-16
JP5624486B2 JP5624486B2 (en) 2014-11-12

Family

ID=46835983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011014186A Active JP5624486B2 (en) 2011-01-26 2011-01-26 Method for producing agglomerates for blast furnace raw materials

Country Status (1)

Country Link
JP (1) JP5624486B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241577A (en) * 2005-03-07 2006-09-14 Kobe Steel Ltd Method for manufacturing carbonaceous-material-containing agglomerate
JP2007063605A (en) * 2005-08-30 2007-03-15 Kobe Steel Ltd Method for manufacturing carbonaceous-material-containing agglomerate
JP2007211296A (en) * 2006-02-09 2007-08-23 Kobe Steel Ltd Agglomerate including carbonaceous material to be used for vertical furnace, and production method therefor
JP2010236081A (en) * 2009-03-12 2010-10-21 Kobe Steel Ltd Method of manufacturing carbonaceous material-containing agglomerate
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241577A (en) * 2005-03-07 2006-09-14 Kobe Steel Ltd Method for manufacturing carbonaceous-material-containing agglomerate
JP2007063605A (en) * 2005-08-30 2007-03-15 Kobe Steel Ltd Method for manufacturing carbonaceous-material-containing agglomerate
JP2007211296A (en) * 2006-02-09 2007-08-23 Kobe Steel Ltd Agglomerate including carbonaceous material to be used for vertical furnace, and production method therefor
JP2010236081A (en) * 2009-03-12 2010-10-21 Kobe Steel Ltd Method of manufacturing carbonaceous material-containing agglomerate
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032532A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for blast furnace raw material
JP2011032531A (en) * 2009-07-31 2011-02-17 Kobe Steel Ltd Method for producing agglomerate for raw material for blast furnace

Also Published As

Publication number Publication date
JP5624486B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
KR100710943B1 (en) Process for producing particulate iron metal
WO2010117008A1 (en) Method for producing metallic iron
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
TW201120222A (en) Method for producing briquettes, method for producing reduced metal, and method for separating zinc or lead
JP5411615B2 (en) Manufacturing method of carbonized material agglomerates
JP5588372B2 (en) Method for producing agglomerates for blast furnace raw materials
RU2596730C2 (en) Method of producing reduced iron agglomerates
JP5624486B2 (en) Method for producing agglomerates for blast furnace raw materials
TWI392744B (en) Producing method of direct reduced iron
JP5588371B2 (en) Method for producing agglomerates for blast furnace raw materials
JP6294152B2 (en) Manufacturing method of granular metallic iron
JP5613576B2 (en) Method for producing agglomerates for blast furnace raw materials
JP2012082493A (en) Process for production of reduced iron
JP2011063835A (en) Method for improving strength of agglomerated raw material for blast furnace
JP5613575B2 (en) Method for producing agglomerates for blast furnace raw materials
JP4267390B2 (en) Method for producing ferro-coke for blast furnace
JP6414903B2 (en) Production method of carbon interior ore
JP2011032532A (en) Method for producing agglomerate for blast furnace raw material
JP2011032531A (en) Method for producing agglomerate for raw material for blast furnace
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP2014062321A (en) Method of manufacturing reduced iron agglomerated product
JP2020056052A (en) Smelting method for oxide ore
JP2012211363A (en) Method for producing carbon containing nonfired agglomerated ore for blast furnace
JP2023019428A (en) Smelting method for nickel oxide ore
JP2015074809A (en) Method for producing granular metal iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140926

R150 Certificate of patent or registration of utility model

Ref document number: 5624486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150