JP2012211363A - Method for producing carbon containing nonfired agglomerated ore for blast furnace - Google Patents

Method for producing carbon containing nonfired agglomerated ore for blast furnace Download PDF

Info

Publication number
JP2012211363A
JP2012211363A JP2011077564A JP2011077564A JP2012211363A JP 2012211363 A JP2012211363 A JP 2012211363A JP 2011077564 A JP2011077564 A JP 2011077564A JP 2011077564 A JP2011077564 A JP 2011077564A JP 2012211363 A JP2012211363 A JP 2012211363A
Authority
JP
Japan
Prior art keywords
carbon
blast furnace
crushing strength
reaction
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011077564A
Other languages
Japanese (ja)
Other versions
JP5454505B2 (en
Inventor
Koichi Yokoyama
浩一 横山
Kenichi Higuchi
謙一 樋口
Satoshi Kogure
聡 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011077564A priority Critical patent/JP5454505B2/en
Publication of JP2012211363A publication Critical patent/JP2012211363A/en
Application granted granted Critical
Publication of JP5454505B2 publication Critical patent/JP5454505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing carbon containing nonfired agglomerated ore for a blast furnace having a high content of interior carbon and high cold crushing strength and hot crushing strength by using a small amount of a hydraulic binder.SOLUTION: In the method for producing the carbon containing nonfired agglomerated ore for a blast furnace, the carbon containing nonfired agglomerated ore for a blast furnace is produced by adding water to a raw material including finely-powdered iron oxide, a finely-powdered carbonaceous material, and a hydraulic binder and performing mixing and pelletization, wherein the finely-powdered iron oxide having a particle diameter of 1,000 μm or more is less than 5 mass% and the content ratio of the finely-powdered iron oxide having a particle diameter of 125 μm or less is 40 mass% or less.

Description

本発明は、高炉用非焼成含炭塊成鉱の製造方法に関する。   The present invention relates to a method for producing an unfired carbon-containing agglomerated ore for a blast furnace.

従来、製鉄所は、各種集塵装置等から回収される多種の含鉄、含炭ダストを配合し、セメント系の時効性バインダーを添加して混錬、成型して非焼成のペレットやブリケットを製造し、高炉原料として使用してきた。   Conventionally, steel mills mix various types of iron-containing and carbon-containing dust collected from various dust collectors, add cement-based aging binders, knead and mold to produce non-fired pellets and briquettes It has been used as a blast furnace raw material.

これらの高炉用非焼成含炭塊成鉱は、高炉までの輸送及び高炉装入時の粉化に耐えるための一定の冷間圧潰強度が必要である。そのため、製鉄ダスト等を造粒機により造粒する際には、ダストの粒度分布を適正範囲に調整し、石灰石、セメントなどのバインダーに水分を添加し、造粒した後、養生し硬化させることにより強度を確保してきた。   These unfired carbon-containing agglomerated ores for blast furnaces must have a certain cold crushing strength to withstand transportation to the blast furnace and pulverization during blast furnace charging. Therefore, when granulating iron dust etc. with a granulator, adjust the dust particle size distribution to an appropriate range, add moisture to binders such as limestone and cement, granulate, and then cure and harden The strength has been secured.

また、これらの高炉用非焼成含炭塊成鉱は、高炉内で、高炉シャフト部の熱保存帯と還元反応平衡帯におけるガス条件と温度条件下で反応を受け劣化するので、順調な高炉操業のためには、一定の熱間圧潰強度が必要である。   In addition, these unfired carbon-containing agglomerated ores for blast furnaces deteriorate in response to the reaction under the gas and temperature conditions in the thermal preservation zone and reduction reaction equilibrium zone of the blast furnace shaft, so that smooth blast furnace operation is possible. For this purpose, a certain hot crushing strength is required.

また、これらの高炉用非焼成含炭塊成鉱は、内装するカーボンにより高炉内の還元反応を起こす結果、還元率が向上するため、高炉操業時の還元材比の低減のため、内装カーボンの増量が図られてきた。   In addition, these unburned carbon-containing agglomerated ores for blast furnaces cause a reduction reaction in the blast furnace due to the carbon contained in the blast furnace. As a result, the reduction rate is improved. Increases have been made.

以上のことより、高炉用非焼成含炭塊成鉱は、内装カーボン量が多く、かつ、冷間圧潰強度と熱間圧潰強度が高いものが望まれる。   From the above, it is desired that the unfired carbon-containing agglomerated ore for blast furnace has a large amount of interior carbon and high cold crush strength and hot crush strength.

高炉用非焼成含炭ペレットの冷間圧潰強度をあげる方法として、「微粉状鉄含有原料と微粉状炭材に水硬性バインダーを添加し、かつ、全原料中の炭素含有割合(T.C)が15〜25質量%となるように前記微粉状炭材の配合割合を調整し、さらに、水分を調整しつつ混合、造粒した後、養生処理することにより、冷間圧潰強度85kg/cm2(8300kN/m2)以上の高炉用非焼成含炭ペレットを製造する方法であって、前記養生処理は、前記造粒後のペレットを一次養生用ヤードで12〜48時間大気中に放置した後、該ペレットを二次養生用シャフト炉に装入し、該シャフト炉内で、60〜90℃の温度と5時間以上の処理時間で蒸気吹込処理を行い、その後、引き続き連続して、乾燥処理を行い、かつ前記蒸気吹込処理と前記乾燥処理の総処理時間が8時間以内となるようにする」発明がある(特許文献1)。 As a method of increasing the cold crushing strength of unfired carbon-containing pellets for blast furnaces, “addition of a hydraulic binder to a finely divided iron-containing raw material and finely divided carbonaceous material, and a carbon content ratio in all raw materials (TC) Is adjusted to a blending ratio of the pulverized carbonaceous material so that it is 15 to 25% by mass, further mixed and granulated while adjusting the moisture, and then subjected to a curing treatment to obtain a cold crushing strength of 85 kg / cm 2. (8300 kN / m 2 ) A method for producing unfired carbon-containing pellets for blast furnaces, wherein the curing treatment is performed after the pellets after granulation are left in the atmosphere for 12 to 48 hours in a primary curing yard. The pellet is charged into a shaft furnace for secondary curing, and steam blowing treatment is performed in the shaft furnace at a temperature of 60 to 90 ° C. and a treatment time of 5 hours or more. And before the steam blowing process The total processing time of the drying process should be within 8 hours "is the invention (Patent document 1).

この発明によれば、高炉用非焼成含炭ペレットが内装するカーボン量が多く、冷間圧潰強度の高い非焼成含炭ペレットを得ることができるが、成型後の一次養生後に、更に二次養生用シャフト炉において、蒸気吹込養生とその後の乾燥処理が必要となり、設備費及び処理費が高くなるという問題がある。又、この文献では、高炉用非焼成含炭塊成鉱の熱間圧潰強度についての言及はない。   According to the present invention, the amount of carbon incorporated in the blast furnace non-fired carbon-containing pellets is large, and a non-fired carbon-containing pellet having a high cold crushing strength can be obtained. In a shaft furnace for steam, steam blowing curing and subsequent drying treatment are required, and there is a problem that equipment costs and treatment costs increase. In this document, there is no mention of the hot crushing strength of the unfired carbon-containing agglomerated blast furnace.

又、高炉操業における還元材比の低減を目的とし、「含酸化鉄原料とカーボン系炭材を配合しバインダーを加えて混錬、成型、養生してなるカーボン内装非焼成塊成鉱において、鉄鉱石類の被還元酸素を還元し金属鉄とするために必要な理論炭素量の80〜120%のカーボンを含有し、かつ常温での圧潰強度7850kN/m2 以上となるようにバインダーを選択して混錬、成型、養生してなることを特徴とする高炉用のカーボン内装非焼成塊成鉱。」の発明が提案されている(特許文献2)。 In addition, for the purpose of reducing the ratio of reducing material in blast furnace operation, “in-carbon non-fired agglomerated minerals that are kneaded, molded, and cured by blending iron-containing raw material and carbon-based carbonaceous material and adding a binder. The binder is selected so that it contains 80 to 120% of the theoretical carbon required to reduce the reducible oxygen of stones to metallic iron, and the crushing strength at room temperature is 7850 kN / m 2 or more. An invention of a carbon-incorporated non-fired agglomerated blast furnace for a blast furnace characterized by being kneaded, molded and cured is proposed (Patent Document 2).

この方法によれば、一般に還元ガスの温度とガス組成(ηCO=CO2/(CO+CO2))との関係から、酸化鉄の還元反応の進行が制約される高炉シャフト部の熱保存帯と還元反応平衡帯においても、900〜1100℃の温度領域で、非焼成塊成鉱中の酸化鉄は、内装するカーボンにより還元反応を起こす結果、還元率が向上するため、高炉操業時の還元材比の低減効果が期待できる。 According to this method, the thermal preservation zone and reduction of the blast furnace shaft part, in which the progress of the reduction reaction of iron oxide is generally restricted from the relationship between the temperature of the reducing gas and the gas composition (ηCO = CO 2 / (CO + CO 2 )). Even in the reaction equilibrium zone, in the temperature range of 900 to 1100 ° C., the iron oxide in the uncalcined agglomerate undergoes a reduction reaction due to the carbon incorporated therein, and as a result, the reduction rate is improved, so the ratio of reducing materials during blast furnace operation The reduction effect can be expected.

しかしながら、この方法では、非焼成塊成鉱に内装するC含有量は、酸化鉱を還元し金属鉄とするために必要な理論炭素量(以下、C当量ということもある)で120%以下(全カーボン含有量(T.C)は約15質量%以下に相当する)に制限され、これ以上C含有量を増加すると、非焼成塊成鉱の冷間圧潰強度および熱間圧潰強度が損なわれるという問題がある。   However, in this method, the C content contained in the unfired agglomerated mineral is 120% or less in terms of the theoretical carbon amount (hereinafter sometimes referred to as C equivalent) necessary for reducing the oxide ore into metallic iron. The total carbon content (TC) is limited to about 15% by mass or less), and if the C content is further increased, the cold crushing strength and hot crushing strength of the unfired agglomerated minerals are impaired. There is a problem.

さらに、この方法では、炭材を内装した非焼成塊成鉱の冷間圧潰強度を維持するために、生石灰に代えて、早強ポルトランドセメントなどのセメント系のバインダーを使用するため、バインダーの添加量を増加させると吸熱反応であるセメントの脱水反応により高炉内のシャフト部での昇温速度が低下するだけでなく、低温での還元停滞域(低温熱保存帯)を発生させ、高炉用鉄原料として装入する焼結鉱の高炉内の還元粉化を助長させてしまう点が問題である。   Furthermore, in this method, in order to maintain the cold crushing strength of the unfired agglomerated minerals with the carbonaceous material, a cement-based binder such as early-strength Portland cement is used instead of quick lime. Increasing the amount not only reduces the rate of temperature rise at the shaft in the blast furnace due to the dehydration reaction of cement, which is an endothermic reaction, but also generates a reduction stagnation zone (low temperature thermal preservation zone) at low temperatures, which causes iron for blast furnaces. The problem is that the reduced ore in the blast furnace of the sintered ore charged as a raw material is promoted.

又、高炉法やDR法(直接還元法)に使用される炭材内装非焼成ブリケットの還元後の強度の低下を目的に、「成型、乾燥後の空隙率を15〜25%であるとする炭材内装非焼成ブリケット」の提案がある(特許文献3)。   In addition, for the purpose of reducing the strength after reduction of the unfired briquette containing carbonaceous materials used in the blast furnace method and DR method (direct reduction method), “the porosity after molding and drying is 15 to 25%. There is a proposal of “carbonized material non-fired briquette” (Patent Document 3).

この方法によれば、炭材内装非焼成ブリケットの高炉における還元時の強度低下を抑制できる効果がある程度期待できる。   According to this method, it can be expected to some degree that the carbon material-incorporated non-fired briquette can suppress a reduction in strength during reduction in a blast furnace.

しかしながら、炭材内装非焼成ブリケットの成型、乾燥後の空隙率は、原料や炭材の性状、粒度により影響され、空隙率を15〜25%の範囲にコントロールするのは難しく、原料等の制約を受けるという問題がある。   However, the porosity after molding and drying of the carbonaceous material-incorporated non-fired briquette is affected by the properties and particle size of the raw material and the carbonaceous material, and it is difficult to control the porosity within the range of 15 to 25%. There is a problem of receiving.

又、全鉄原料の粒度、微粉状炭材の配合割合を調整し、かつ、微粉状炭材のメジアン径を調整することにより、高炉用原料ペレットとして要求される50kg/cm2(4900kN/m2)以上の冷間強度を維持するとともに、高炉操業時の還元材比を大幅に低減できるだけの十分な炭素含有量を有し、還元後の圧潰強度7(690kN/m2)cm2以上を有する、非焼成含炭ペレット製造方法が提案されている(特許文献4)。 In addition, by adjusting the particle size of all iron raw materials, the blending ratio of fine powdered carbon materials, and adjusting the median diameter of fine powdered carbon materials, 50 kg / cm 2 (4900 kN / m) required as raw material pellets for blast furnaces. 2 ) While maintaining the above cold strength, it has sufficient carbon content to greatly reduce the reducing material ratio during blast furnace operation, and has a crushing strength of 7 (690 kN / m 2 ) cm 2 or more after reduction. An unfired carbon-containing pellet manufacturing method has been proposed (Patent Document 4).

この方法によれば、全原料中の粒度を2mm以下とし、全原料中炭素含有割合(T.C)が15〜25質量%となるように微粉状炭材の配合割合を調整し、炭材のメジアン径を100〜150μmとすることにより、冷間圧潰強度、還元後圧潰強度が良好であり、高い還元材比低減効果を有する非焼成含炭塊成鉱を製造することができる。   According to this method, the blending ratio of the fine carbonaceous material is adjusted so that the particle size in all raw materials is 2 mm or less, and the carbon content ratio (TC) in all raw materials is 15 to 25% by mass. By setting the median diameter of 100 to 150 μm, it is possible to produce a non-fired carbon-containing agglomerated mineral having good cold crushing strength and post-reduction crushing strength and having a high reducing material ratio reducing effect.

しかしながら、この方法では、全原料中の粒度を2mm以下とし、炭材のメジアン径を100〜150μmとしなければならず、原料と炭材の両面からの制約があり、又、早強セメントを10%以上添加することとなると、この非焼成含炭塊成鉱を高炉にて使用する量を増加させた場合、高炉に投入されるスラグ量も増加する問題がある。また、早強セメントは400〜500℃で脱水反応(吸熱反応)が進行するため、セメント10%を添加した含炭塊成鉱の過剰使用は高炉内の温度を低下させ、高炉内装入物の昇温遅れ、還元遅れが生じる問題がある。   However, in this method, the particle size in all raw materials must be 2 mm or less, the median diameter of the carbonaceous material must be 100 to 150 μm, and there are restrictions from both the raw material and the carbonaceous material. If the amount of non-fired carbon-containing agglomerated mineral used in the blast furnace is increased, the amount of slag charged into the blast furnace also increases. In addition, since the early strong cement undergoes a dehydration reaction (endothermic reaction) at 400 to 500 ° C., excessive use of the carbon-containing agglomerated mineral with 10% added cement lowers the temperature in the blast furnace, There is a problem that a temperature rise delay and a reduction delay occur.

特開2009−161791号公報JP 2009-161791 A 特開2003−342646号公報JP 2003-342646 A 特開昭62−290833号公報JP 62-290833 A 特開2008−95177号公報JP 2008-95177 A

高炉用非焼成含炭塊成鉱は、内装カーボン量が多く、かつ、冷間圧潰強度と熱間圧潰強度が高いものが望まれる。
冷間圧潰強度は水硬性バインダーを添加し、所定以上の強度をもたせることができるが、高炉内では水硬性バインダーは分解してしまい、熱間強度の維持の役に立たない。又、水硬性バインダーは高炉内の脱水反応(吸熱反応)により、過剰な使用は高炉内の温度を低下させ、高炉内装入物の昇温遅れ、還元遅れが生じるという課題がある。
The unfired carbon-containing agglomerated ore for blast furnace is desired to have a large amount of interior carbon and high cold crushing strength and hot crushing strength.
The cold crushing strength can be increased by adding a hydraulic binder, but the hydraulic binder is decomposed in the blast furnace and does not help maintain the hot strength. Further, the hydraulic binder has a problem that due to the dehydration reaction (endothermic reaction) in the blast furnace, excessive use lowers the temperature in the blast furnace, causing a delay in temperature rise and a reduction in reduction of the blast furnace interior.

本発明は、少ない水硬性バインダーの使用で、内装カーボン量が多く、かつ、冷間圧潰強度と熱間圧潰強度が高い高炉用非焼成含炭塊成鉱の製造方法を提供することを目的にする。   It is an object of the present invention to provide a method for producing a non-fired carbon-containing agglomerated mineral for blast furnaces that uses a small amount of hydraulic binder, has a large amount of interior carbon, and has high cold crushing strength and hot crushing strength. To do.

本発明者は、微粉用酸化鉄の粒径をコントロールすることで、冷間圧潰強度と熱間圧潰強度が高い高炉用非焼成含炭塊成鉱の製造が可能であることを見出した。   The present inventor has found that by controlling the particle size of iron oxide for fine powder, it is possible to produce a non-fired carbon-containing agglomerated ore for blast furnace having high cold crushing strength and hot crushing strength.

本発明は、この知見に基づいて上記の課題を解決するためになされたものであり、その要旨とするところは、以下のとおりである。   The present invention has been made to solve the above-mentioned problems based on this finding, and the gist thereof is as follows.

(1)微粉状酸化鉄と、微粉状炭材と、水硬性バインダーを有する原料に水分を添加して混合、造粒することにより、高炉用非焼成含炭塊成鉱を製造する方法であって、微粉状酸化鉄は、粒径1,000μm以上が5質量%未満で、かつ、粒径125μm以下の含有割合が40質量%以下であることを特徴とする高炉用非焼成含炭塊成鉱の製造方法。
(2)前記微粉状酸化鉄は、粒径250μm以上の含有割合が10質量%以下であることを特徴とする(1)に記載の高炉用非焼成含炭塊成鉱の製造方法。
(3)前記高炉用非焼成含炭塊成鉱が、前記原料の全質量に対し10%以上の前記微粉状炭材を有する非焼成含炭ペレット及び非焼成含炭ブリケットのいずれかであることを特徴とする前記(1)及び(2)のいずれかに記載の高炉用非焼成含炭塊成鉱の製造方法。
(1) It is a method for producing an unfired carbon-containing agglomerated mineral for a blast furnace by adding water to a raw material having a finely divided iron oxide, a finely divided carbonaceous material, and a hydraulic binder, and mixing and granulating it. The pulverized iron oxide has a particle size of 1,000 μm or more and less than 5% by mass, and the content ratio of the particle size of 125 μm or less is 40% by mass or less. Manufacturing method of ore.
(2) The method for producing a non-fired carbon-containing agglomerated mineral for blast furnace according to (1), wherein the fine powdered iron oxide has a particle size of 10% by mass or less with a particle size of 250 μm or more.
(3) The non-fired carbon-containing agglomerated ore for blast furnace is either a non-fired carbon-containing pellet or a non-fired carbon-containing briquette having 10% or more of the finely divided carbonaceous material with respect to the total mass of the raw material. The method for producing an unfired carbon-containing agglomerated mineral for a blast furnace according to any one of (1) and (2).

本発明は、少ない水硬性バインダーの使用で、内装するカーボン量が多く、かつ、冷間圧潰強度と熱間圧潰強度が高い高炉用非焼成含炭塊成鉱の製造方法を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a method for producing an unfired carbon-containing agglomerated blast furnace for blast furnaces with a small amount of hydraulic binder, a large amount of carbon incorporated, and a high cold crushing strength and hot crushing strength. .

高炉用非焼成含炭塊成鉱の反応後圧潰強度の測定装置を示す図。The figure which shows the measuring apparatus of the crush strength after reaction of the non-baking carbon-containing agglomerated mineral for blast furnaces. 高炉用非焼成含炭塊成鉱の反応後圧潰強度の測定条件を示す図。The figure which shows the measurement conditions of the crush strength after reaction of the non-baking carbon-containing agglomerated mineral for blast furnaces. 高炉用非焼成含炭塊成鉱の反応後の試料断面を示す図。The figure which shows the sample cross section after reaction of the non-baking carbon-containing agglomerated mineral for blast furnaces.

本発明は、微粉状酸化鉄と、微粉状炭材と、水硬性バインダーを有する原料に水分を添加して混合、造粒することにより、高炉用非焼成含炭塊成鉱を製造する方法で、粒径125μm以下の微粉状酸化鉄の含有割合を減少させること、さらに125〜250μmの範囲のそれを増加させることを特徴としている。ここに、酸化鉄および炭材ともに微粉状としたのは、ペレタイジングまたはブリケッティングにより成形が可能な粒度であって、たとえば2mm以下を意味する。特に、酸化鉄を有する原料において、粒径1mm以上の比率が5%未満であるとしたのは、炭材原料に比べてその配合比率が多いことから成形性に重要な影響を及ぼし、その比率が5%を超えると円滑に造粒を行えなくなることに由来する。   The present invention is a method for producing a non-fired carbon-containing agglomerated blast furnace for blast furnace by adding water to a raw material having a finely divided iron oxide, a finely divided carbonaceous material, and a hydraulic binder, and mixing and granulating it. The method is characterized by reducing the content of finely divided iron oxide having a particle size of 125 μm or less and further increasing it in the range of 125 to 250 μm. Here, both the iron oxide and the carbonaceous material are in a fine powder form, which means a particle size that can be formed by pelletizing or briquetting, for example, 2 mm or less. In particular, in the raw material having iron oxide, the ratio of the particle size of 1 mm or more is less than 5% because the blending ratio is larger than that of the carbonaceous raw material, which has an important influence on the formability. If the content exceeds 5%, the granulation cannot be performed smoothly.

かかる条件を満たせば、微粉状鉄含有原料と、微粉状炭材と、水硬性バインダーを有する原料に水分を添加して混合、造粒する造粒設備は、特に限定する必要はなく、原料の混錬、加水、造粒、製品篩の機能を有するものであればよく、混錬機、造粒機などは、特に限定されるものではない。   If these conditions are satisfied, the granulation equipment for adding water to the raw material having finely divided iron-containing raw material, finely divided carbonaceous material, and hydraulic binder, mixing, and granulating is not particularly limited. What is necessary is just to have a function of kneading, hydration, granulation, and a product sieve, and a kneading machine, a granulator, etc. are not specifically limited.

本発明に係る高炉用非焼成含炭塊成鉱には、例えば、非焼成含炭ペレット、非焼成含炭ブリケット等がある。
ペレットとしては、例えば、ディスクペレタイザーにより球状に成型するものがあり、ブリケットとしては、くぼみの型を備え相対する一対の成型ロールで成型する左右対称のピロー型ブリケットやアーモンド型ブリケットがあるがこれらに限定されるものではない。
Examples of the non-fired carbon-containing agglomerated blast furnace according to the present invention include non-fired carbon-containing pellets and non-fired carbon-containing briquettes.
Examples of pellets include those formed into a spherical shape by a disk pelletizer, and examples of briquettes include symmetric pillow-type briquettes and almond-type briquettes that have a hollow mold and are formed by a pair of opposed forming rolls. It is not limited.

成型直後の生の非焼成含炭塊成鉱は、その後の高炉までの輸送及び高炉装入時の粉化に耐えるための一定の強度が必要である。そのため、成型後の生の高炉用非焼成含炭塊成鉱は、セメント等の無機バインダーと水との水硬反応を進めるために養生する。養生後の冷間圧潰強度としては、非焼成含炭ペレット(直径約10〜15mm)では、5000kN/m2以上が好ましく、非焼成含炭ブリケット(約20〜25cc)では、1000N/サンプル以上が好ましい。   The raw non-calcined agglomerated agglomerates immediately after molding must have a certain strength to withstand the subsequent transportation to the blast furnace and pulverization during charging of the blast furnace. Therefore, the raw unfired carbon-containing agglomerated mineral for blast furnace after curing is cured to promote a hydraulic reaction between an inorganic binder such as cement and water. The cold crushing strength after curing is preferably 5000 kN / m 2 or more for non-fired carbon-containing pellets (diameter of about 10 to 15 mm), and 1000 N / sample or more for non-fired carbon-containing briquettes (about 20 to 25 cc). .

圧潰強度の測定は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて、試料1個に対して、規定の加圧速度で圧縮荷重をかけることにより、破壊した時の荷重値を測定する。   The crushing strength is measured in accordance with JIS M8718 “Iron Ore Pellet Crushing Strength Test Method” by applying a compressive load to one sample at a specified pressure rate to measure the load value when it breaks. .

非焼成含炭塊成鉱は、高炉内では、高炉シャフト部の熱保存帯と還元反応平衡帯におけるガス条件と温度条件下で反応を受け劣化するが、順調な高炉操業のためには、一定の熱間圧潰強度の維持が必要である。反応後の熱間圧潰強度としては、非焼成含炭ペレット(直径約10〜15mm)では、700kN/m2以上が好ましく、非焼成含炭ブリケット(約20〜25cc)では、100N/サンプル以上が好ましい。 Unfired carbon-containing agglomerated ore deteriorates in the blast furnace due to the reaction under the gas and temperature conditions in the thermal preservation zone and the reduction reaction equilibrium zone of the blast furnace shaft, but for steady blast furnace operation, it remains constant. It is necessary to maintain the hot crushing strength. The hot crush strength after the reaction is preferably 700 kN / m 2 or more for non-fired carbon-containing pellets (diameter of about 10 to 15 mm), and 100 N / sample or more for non-fired carbon-containing briquettes (about 20 to 25 cc). preferable.

熱間圧潰強度の測定は、高炉内の還元反応を荷重化で模擬できる還元試験装置を用い、高炉シャフト部の熱保存帯と還元反応平衡帯における還元ガス組成(CO36%、CO2;14%、N2;50%)及び温度(900〜1100℃)とほぼ同じ条件で還元試験を実施し、非焼成含炭塊成鉱の反応後の圧潰強度をJIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて行う。 The hot crushing strength is measured by using a reduction test apparatus that can simulate the reduction reaction in the blast furnace by applying a load, and the reducing gas composition (CO 36%, CO 2 ; 14%) in the thermal preservation zone and reduction reaction equilibrium zone of the blast furnace shaft portion. , N2; 50%) and temperature (900 to 1100 ° C.) under almost the same conditions, the reduction test was performed, and the crushing strength after the reaction of the unfired carbon-containing agglomerated ore was measured according to JIS M8718 “Iron ore pellet crushing strength test method”. Follow the same procedure.

前記微粉状鉄含有原料としては、鉄鉱石を所定の粒度に粉砕したものの使用ができる。より現実的には、ペレットフィード、製鉄プロセスにおいて多量に発生するダストを集塵機などで回収した含鉄ダストやスラッジ、スケール等がある。これらの微粉状鉄含有原料は、1mm以上はほとんどなく、粒径250μm以下が全体の80%以上を占める。   As the finely divided iron-containing raw material, a material obtained by pulverizing iron ore to a predetermined particle size can be used. More realistically, there are iron-containing dust, sludge, scale, and the like that are collected by a dust collector or the like in a pellet feed and a large amount of dust generated in the iron making process. These pulverized iron-containing raw materials are hardly 1 mm or more, and a particle size of 250 μm or less occupies 80% or more of the whole.

本発明は、前記微粉状鉄含有原料の中の粒径125μm以下の含有割合を減少させることで、還元過程で生成する鉄のネットワーク化を促進することによって、非焼成含炭塊成鉱の熱間圧潰強度を向上させることを特徴としている。又、前記微粉状鉄含有原料の中の粒径250μm以上の含有割合を減少させることで、成形時の塊成鉱の緻密化を図り、非焼成含炭塊成鉱の冷間圧潰強度と熱間圧潰強度を向上させることを特徴としている。即ち、前記微粉状鉄含有原料の粒径を125μm〜250μmに制御することにより、冷間圧潰強度と熱間圧潰強度の優れた高炉用非焼成含炭塊成鉱を製造することである。   The present invention reduces the content ratio of the particle size of 125 μm or less in the pulverized iron-containing raw material, thereby promoting the networking of iron produced in the reduction process, thereby increasing the heat of the unfired carbon-containing agglomerated ore. It is characterized by improving the interlaminar crushing strength. In addition, by reducing the content ratio of the particle size of 250 μm or more in the finely divided iron-containing raw material, the compacted agglomerated ore at the time of molding is made compact, and the cold crushing strength and heat It is characterized by improving the interlaminar crushing strength. That is, by controlling the particle size of the pulverized iron-containing raw material to 125 μm to 250 μm, an unfired carbon-containing agglomerated mineral for blast furnaces with excellent cold crushing strength and hot crushing strength is produced.

前記微粉状炭材としては、所定粒度に粉砕した粉コークス、粉石炭、及びコークスダスト並びに粉コークスを含有する高炉一次灰などの粉状の固形炭材などがある。
微粉状炭材の配合量は、原料全質量に対し、10%以上が好ましく、これによって含炭塊成鉱中の酸化鉄を含炭塊成鉱中に内在する炭材のみで概ね還元でき、その結果迅速に還元できる。さらに、15%以上がより好ましく、18%以上が特に好ましい。これは、含炭塊成鉱中の酸化鉄を還元してもなお余剰の炭素分のガス化により、高炉内にて、非焼成ペレット以外の鉄原料(例えば焼結鉱)の還元を促進し、省エネルギー化が低CO2化が期待できる。残留する炭素分がその近傍存在する焼結鉱の還元を促進するためである。
Examples of the finely powdered carbon material include powdered coke pulverized to a predetermined particle size, powdered coal, coke dust, and powdered solid carbon material such as blast furnace primary ash containing powdered coke.
The blending amount of the finely powdered carbon material is preferably 10% or more with respect to the total mass of the raw material, whereby iron oxide in the carbon-containing agglomerated mineral can be generally reduced only by the carbon material inherent in the carbon-containing agglomerated mineral, As a result, it can be reduced quickly. Furthermore, 15% or more is more preferable, and 18% or more is particularly preferable. This promotes the reduction of iron raw materials other than non-fired pellets (for example, sintered ore) in the blast furnace by gasifying excess carbon even if iron oxide in the carbon-containing agglomerated mineral is reduced. Energy saving can be expected to reduce CO 2 . This is because the remaining carbon content promotes the reduction of the sintered ore in the vicinity thereof.

従来から、ペレット中の酸化鉄を還元するのに必要な理論上の炭素量に対する炭素含有量の比を「炭素等量」と定義し、炭素による酸化鉄の還元度の目安としている。従来は、高炉用原料として要求される冷間圧潰強度4900kN/m2以上を維持するためには、炭素含有量を15質量%(炭素当量で1.2に相当)に制限せざるを得なかった(特許文献2参照)。しかし、本発明では、前記微粉状鉄含有原料の粒径を125μm〜250μmに制御することにより、微粉状鉄含有原料に15%以上の微粉状炭材を添加することもできる。   Conventionally, the ratio of the carbon content to the theoretical carbon amount required to reduce iron oxide in the pellet is defined as “carbon equivalent”, which is a measure of the degree of reduction of iron oxide by carbon. Conventionally, in order to maintain the cold crushing strength of 4900 kN / m 2 or more required as a blast furnace raw material, the carbon content has to be limited to 15% by mass (corresponding to 1.2 in terms of carbon equivalent). (See Patent Document 2). However, in the present invention, by controlling the particle size of the finely divided iron-containing raw material to 125 μm to 250 μm, 15% or more of finely powdered carbon material can be added to the finely divided iron-containing raw material.

前記水硬性バインダーとは、原料中に含有する水分や添加水分との水和反応により硬化することにより造粒物の冷間圧潰強度を高める機能を有するバインダーを意味する。水硬性バインダーとしては、高炉水砕スラグを主成分とする微粉末とアルカリ刺激剤からなる時効性バインダーや、ポルトランドセメント、アルミナセメント、高炉セメント等があるが、これらに限定されるものではない。   The hydraulic binder means a binder having a function of increasing the cold crushing strength of the granulated product by being cured by a hydration reaction with moisture contained in the raw material or added moisture. Examples of the hydraulic binder include, but are not limited to, an aging binder composed of fine powder mainly composed of blast furnace granulated slag and an alkali stimulator, Portland cement, alumina cement, blast furnace cement, and the like.

水硬性バインダーを添加することにより、高炉用非焼成含炭塊成鉱の必要な冷間圧潰強度は維持できる。例えば、高炉用非焼成含炭ペレットの場合、一般的に全原料質量に対し、10質量%程度の水硬性バインダーが添加される。
しかし、水硬性バインダーの添加は、高炉のスラグ量を増加し、必要エネルギーの増加、発生CO2量の増加をもたらす。又、水硬性バインダーは高炉内の400〜500℃にて吸熱反応を伴って脱水反応が進行するため、バインダーの過度な添加は高炉内の低温化を招き、高炉の効率が低下する。
By adding the hydraulic binder, the necessary cold crushing strength of the unfired carbon-containing agglomerated ore for blast furnace can be maintained. For example, in the case of a non-fired carbon-containing pellet for a blast furnace, generally about 10% by mass of a hydraulic binder is added to the total mass of the raw material.
However, the addition of a hydraulic binder increases the amount of slag in the blast furnace, leading to an increase in required energy and an increase in the amount of generated CO 2 . In addition, since the hydraulic binder undergoes a dehydration reaction with an endothermic reaction at 400 to 500 ° C. in the blast furnace, excessive addition of the binder causes a low temperature in the blast furnace, and the efficiency of the blast furnace decreases.

本発明では、前記微粉状鉄含有原料の粒径を125μm〜250μmに制御することにより、従来に比べ、より少ない水硬性バインダーの添加量で冷間圧潰強度と熱間圧潰強度の優れた高炉用非焼成含炭塊成鉱を製造することができる。   In the present invention, by controlling the particle size of the pulverized iron-containing raw material to 125 μm to 250 μm, the blast furnace excellent in cold crushing strength and hot crushing strength with a smaller amount of hydraulic binder added than before. Unfired carbon-containing agglomerated minerals can be produced.

次に、本発明の実施例について説明するが、本発明は、これに限られるものではない。   Next, examples of the present invention will be described, but the present invention is not limited thereto.

原料は、微粉状鉄含有原料として、焼結ダスト及び種々の粒度構成を有する微粉状鉄鉱石を混合したものを用い、微粉状炭材として、高炉一次灰及びコークスダストを用いた。微粉状鉄含有原料と微粉状炭材にポルトランドセメントを添加し、混練後、ディスクペレタイザーにより、ペレット(平均粒径13mm)を造粒した。それらの配合比率を表1に示す。
The raw material used was a mixture of sintered dust and fine powdered iron ore having various particle size configurations as the finely divided iron-containing raw material, and blast furnace primary ash and coke dust were used as the finely divided carbonaceous material. Portland cement was added to the finely divided iron-containing raw material and finely divided carbonaceous material, and after kneading, pellets (average particle size 13 mm) were granulated by a disk pelletizer. Their blending ratio is shown in Table 1.

微粉状鉄含有原料の粒度は、焼結ダストに予め125〜250μm及び250〜1000μmに粒度調整した微粉状鉄鉱石を、所定の全体粒度となるように混合して調整した。
実施例1、2および3は、本発明例であって、その微粉状酸化鉄の粒度は、粒径125μm以下の含有割合がそれぞれ10、30及び40質量%に調整された。
比較例では、粒径125μm以下の含有割合が50%と規定の範囲を超えたものである。
The particle size of the finely divided iron-containing raw material was adjusted by mixing fine dusty iron ore, which had been previously adjusted to a particle size of 125 to 250 μm and 250 to 1000 μm, into the sintered dust so as to have a predetermined overall particle size.
Examples 1, 2, and 3 are examples of the present invention, and the particle size of the finely divided iron oxide was adjusted such that the content ratio of the particle size of 125 μm or less was 10, 30 and 40% by mass, respectively.
In the comparative example, the content ratio of the particle size of 125 μm or less is 50%, which exceeds the specified range.

各実施例及び比較例の原料を、ディスクペレタイザーを用いて水分8〜11質量%でペレットに造粒し、製品を14日自然養生した。養生後、直径10〜15mmの製品を篩出し、その冷間圧潰強度と熱間圧壊強度を測定した。   The raw materials of each Example and Comparative Example were granulated into pellets with a moisture content of 8 to 11% by mass using a disk pelletizer, and the product was naturally cured for 14 days. After curing, a product having a diameter of 10 to 15 mm was sieved, and its cold crushing strength and hot crushing strength were measured.

冷間圧潰強度の測定は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて、試料1個に対して、規定の加圧速度で圧縮荷重をかけることにより、破壊した時の荷重値を測定し、強度指数は、単位断面積当たりの荷重値(kN/m2)とした。
1200℃まで反応させた後の圧潰強度を測定した。
The cold crushing strength is measured in accordance with JIS M8718 “Iron Ore Pellet Crushing Strength Test Method” by applying a compressive load to a single sample at a specified pressure rate to determine the load value at the time of failure. The strength index was measured and the load value per unit cross-sectional area (kN / m 2 ) was used.
The crushing strength after reacting to 1200 ° C. was measured.

熱間圧潰強度は、高炉炉内の温度とガス条件を模擬した反応後圧潰強度を測定した。図1に高炉用非焼成含炭塊成鉱の反応後圧潰強度の測定装置を示す。反応内管1(Φ73mm)と反応外管2の間に所定の反応性ガスを入口3から流入し、反応管底より、反応管内に導入する。反応管の下部にアルミナボール5を敷き詰め、その上に、焼結鉱350gと非焼成含炭ペレット150gから成る試料6を充填する。試料は加熱装置7により加熱され、試料温度は、熱電対8により測定する。反応後のガスは反応後ガス出口4により反応内管1から、外部に排出される。図2に高炉用非焼成含炭塊成鉱の反応後圧潰強度の測定条件を示す。ガス組成と温度は、高炉のシャフト部における条件を模したものである。反応終了後に窒素冷却してから試料を取り出して圧潰強度を測定した。反応後の圧潰強度は、JIS M8718「鉄鉱石ペレット圧潰強度試験方法」に準じて反応後の非焼成含炭ペレットの圧潰強度の測定行った。   As the hot crushing strength, the post-reaction crushing strength simulating the temperature and gas conditions in the blast furnace was measured. FIG. 1 shows an apparatus for measuring the post-reaction crush strength of a non-fired carbon-containing agglomerated blast furnace. A predetermined reactive gas flows from the inlet 3 between the inner reaction tube 1 (Φ73 mm) and the outer reaction tube 2 and is introduced into the reaction tube from the bottom of the reaction tube. Alumina balls 5 are spread on the lower part of the reaction tube, and a sample 6 comprising 350 g of sintered ore and 150 g of unfired carbon-containing pellets is filled thereon. The sample is heated by the heating device 7, and the sample temperature is measured by the thermocouple 8. The gas after the reaction is discharged from the reaction inner pipe 1 to the outside through the gas outlet 4 after the reaction. FIG. 2 shows the measurement conditions for the post-reaction crush strength of the unfired carbon-containing agglomerated blast furnace. The gas composition and temperature simulate the conditions in the shaft portion of the blast furnace. After completion of the reaction, the sample was taken out after cooling with nitrogen, and the crushing strength was measured. The crushing strength after the reaction was measured according to JIS M8718 “Iron ore pellet crushing strength test method”.

実施例及び比較例の冷間圧潰強度及び反応後圧潰強度の測定結果を表2に示す。実施例1〜4から分かるように、−125μmの比率の上昇とともに、冷間圧壊強度は改善するものの、反応後圧壊強度は低下し、比較例1に及んで反応後圧壊強度が所要の700kN/m2を下回った。また、250〜1000μmを10%とさらに制限して、125〜250μmを増加させた実施例4、5では、それぞれ実施例2,3に比較して、冷間、反応後圧壊強度ともに改善する更に好ましい結果が得られた。ちなみに、比較例2に示すように、1000μmを超える粗大な粒子が混在するような粒度が大きい原料では、冷間、反応後圧壊強度とも満足なものが得られなかった。以上、本発明を実施した場合には、比較例と比較して、冷間圧壊強度及び反応後圧壊強度ともに優れた強度有する含炭塊成鉱が得られた。
図3(A)に比較例1における反応後の試料断面写真を示す。粒径125μm以下の含有割合が多いので、ウスタイト、金属鉄への還元は均一に進行しているが、反応後の金属鉄が強固に結合したメタルネットワークは見られない。図3(B)に実施例1における反応後の試料断面写真を示す。粒径125μm以下及び粒径250μm以上の含有割合が少なく、125μm〜250μmの酸化鉄Bを配合したことにより、還元後の金属鉄同士が強固なメタルネットワークを形成しており、非焼成含炭ペレットの反応後強度の飛躍的向上を裏付けている。
Table 2 shows the measurement results of cold crushing strength and post-reaction crushing strength of Examples and Comparative Examples. As can be seen from Examples 1 to 4, although the cold crushing strength is improved with an increase in the ratio of −125 μm, the post-reaction crushing strength is decreased, and the post-reaction crushing strength is 700 kN / Below m 2 . Further, in Examples 4 and 5 in which 250 to 1000 μm was further limited to 10% and 125 to 250 μm was increased, both cold and post-reaction crushing strength were further improved as compared with Examples 2 and 3, respectively. Favorable results have been obtained. Incidentally, as shown in Comparative Example 2, a raw material having a large particle size in which coarse particles exceeding 1000 μm were mixed could not obtain a satisfactory cold and post-reaction crushing strength. As mentioned above, when this invention was implemented, the carbon containing agglomerated mineral which has the intensity | strength excellent in both the cold crushing strength and the crushing strength after reaction was obtained compared with the comparative example.
FIG. 3A shows a cross-sectional photograph of the sample after the reaction in Comparative Example 1. Since the content ratio is 125 μm or less, the reduction to wustite and metallic iron proceeds uniformly, but no metal network in which the metallic iron after the reaction is firmly bonded is observed. FIG. 3B shows a sample cross-sectional photograph after the reaction in Example 1. By containing iron oxide B having a particle size of 125 μm or less and a particle size of 250 μm or less and containing 125 μm to 250 μm of iron oxide B, metal iron after reduction forms a strong metal network, and non-fired carbon-containing pellets This confirms the dramatic improvement in strength after reaction.

少ない水硬性バインダーの使用で、内装カーボン量が多く、かつ、冷間圧潰強度と熱間圧潰強度が高い高炉用非焼成含炭塊成鉱の製造方法を提供することができる。   By using a small hydraulic binder, it is possible to provide a method for producing a non-fired carbon-containing agglomerated blast furnace ore for blast furnaces that has a large amount of interior carbon and high cold crush strength and hot crush strength.

1…反応内管、2…反応外管、3…反応性ガス入口、4…反応後ガス出口、5…アルミナボール、6…試料、7加熱装置、8…熱電対   DESCRIPTION OF SYMBOLS 1 ... Inner tube, 2 ... Outer tube, 3 ... Reactive gas inlet, 4 ... Post-reaction gas outlet, 5 ... Alumina ball, 6 ... Sample, 7 Heating device, 8 ... Thermocouple

Claims (3)

微粉状酸化鉄と、微粉状炭材と、水硬性バインダーを有する原料に水分を添加して混合、造粒することにより、高炉用非焼成含炭塊成鉱を製造する方法であって、微粉状酸化鉄は、粒径1,000μm以上が5質量%未満で、かつ、粒径125μm以下の含有割合が40質量%以下であることを特徴とする高炉用非焼成含炭塊成鉱の製造方法。   A method for producing an unfired carbon-containing agglomerated mineral for a blast furnace by adding water to a raw material having a finely divided iron oxide, a finely divided carbonaceous material, and a hydraulic binder, and mixing and granulating. The iron oxide has a particle size of 1,000 μm or more and less than 5% by mass, and the content ratio of the particle size of 125 μm or less is 40% by mass or less. Method. 前記微粉状酸化鉄は、粒径250μm以上の含有割合が10質量%以下であることを特徴とする請求項1に記載の高炉用非焼成含炭塊成鉱の製造方法。   The method for producing an unfired carbon-containing agglomerated mineral for blast furnace according to claim 1, wherein the fine powdered iron oxide has a content ratio of a particle size of 250 µm or more of 10 mass% or less. 前記高炉用非焼成含炭塊成鉱が、前記原料の全質量に対し10%以上の前記微粉状炭材を有する非焼成含炭ペレット及び非焼成含炭ブリケットのいずれかであることを特徴とする請求項1及び請求項2のいずれかに記載の高炉用非焼成含炭塊成鉱の製造方法。   The non-fired carbon-containing agglomerated mineral for blast furnace is any one of non-fired carbon-containing pellets and non-fired carbon-containing briquettes having 10% or more of the pulverized carbonaceous material with respect to the total mass of the raw material. The manufacturing method of the non-baking carbon-containing agglomerated mineral for blast furnaces in any one of Claim 1 and Claim 2 to do.
JP2011077564A 2011-03-31 2011-03-31 Method for producing unfired carbon-containing agglomerated blast furnace Active JP5454505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077564A JP5454505B2 (en) 2011-03-31 2011-03-31 Method for producing unfired carbon-containing agglomerated blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011077564A JP5454505B2 (en) 2011-03-31 2011-03-31 Method for producing unfired carbon-containing agglomerated blast furnace

Publications (2)

Publication Number Publication Date
JP2012211363A true JP2012211363A (en) 2012-11-01
JP5454505B2 JP5454505B2 (en) 2014-03-26

Family

ID=47265553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077564A Active JP5454505B2 (en) 2011-03-31 2011-03-31 Method for producing unfired carbon-containing agglomerated blast furnace

Country Status (1)

Country Link
JP (1) JP5454505B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175094A1 (en) 2013-04-24 2014-10-30 住友金属鉱山株式会社 Method for producing hematite for iron manufacturing
WO2015001893A1 (en) 2013-07-03 2015-01-08 住友金属鉱山株式会社 Iron manufacturing-use hematite production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175094A1 (en) 2013-04-24 2014-10-30 住友金属鉱山株式会社 Method for producing hematite for iron manufacturing
WO2015001893A1 (en) 2013-07-03 2015-01-08 住友金属鉱山株式会社 Iron manufacturing-use hematite production method

Also Published As

Publication number Publication date
JP5454505B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP2008095177A (en) Method for producing carbon-containing non-calcined pellet for blast furnace
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP4603628B2 (en) Blast furnace operation method using carbon-containing unfired pellets
JP5803540B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP6228101B2 (en) Manufacturing method of carbon material interior ore
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP4842403B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2015137379A (en) Non-burning carbonaceous material interior ore for blast furnace and manufacturing method therefor
JP2009161791A5 (en)
JP6326074B2 (en) Carbon material interior ore and method for producing the same
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP5835144B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP6992644B2 (en) Method for producing uncalcined agglomerate for blast furnace and method for producing pozzolan-reactive iron-containing raw material
JP5447410B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP6939667B2 (en) Charcoal lumber interior ore and its manufacturing method
JPS60248831A (en) Manufacture of uncalcined lump ore
JP2007231329A (en) Nonfired agglomerated ore for iron manufacture
JPS60184642A (en) Manufacture of unfired lump ore
OA20236A (en) Process for the production of iron ore fines agglomerate and the agglomerated product.
JP2019104947A (en) Ore containing carbon and production method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R151 Written notification of patent or utility model registration

Ref document number: 5454505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350