JPH04318109A - Method for improving strength in powdery coal pressurized compact - Google Patents

Method for improving strength in powdery coal pressurized compact

Info

Publication number
JPH04318109A
JPH04318109A JP8703491A JP8703491A JPH04318109A JP H04318109 A JPH04318109 A JP H04318109A JP 8703491 A JP8703491 A JP 8703491A JP 8703491 A JP8703491 A JP 8703491A JP H04318109 A JPH04318109 A JP H04318109A
Authority
JP
Japan
Prior art keywords
coal
powdery
powdered
smelting reduction
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8703491A
Other languages
Japanese (ja)
Inventor
Masatoshi Kuwabara
桑原 正年
Hiroyuki Katayama
裕之 片山
Katsuaki Kobayashi
小林 勝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8703491A priority Critical patent/JPH04318109A/en
Publication of JPH04318109A publication Critical patent/JPH04318109A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To provide the manufacturing method for powdery coal pressurized compact, which does not pulverize in storing and conveying processes up to charging into a smelting reduction furnace for executing stable smelting reduction operation and at the time of rapid heating in the smelting reduction furnace. CONSTITUTION:At the time of pressurize-compacting the powdery coal containing >=15% volatile matter, powdery iron oxide-containing material is mixed at >=5% and <=40%, or further additionally, <=20% powdery material made-up to have <=3% volatile matter by heating the coal is mixed at >=5% and <=40%. In the smelting reduction process for producing iron by using the powdery ore and general powdery coal, without using expensive binder, efficient supply of the powdery coal is executed and problem of crack due to rapid heating of the coal is solved, and large industrial and economical effects are obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、鉄鉱石あるいはその予
備還元物から溶融還元によって溶融鉄合金を製造する方
法において、粉石炭を有効に使用するための粉石炭加圧
成形物の強度向上方法に関するものである。
[Industrial Application Field] The present invention is a method for improving the strength of pulverized coal compacted products for effectively using pulverized coal in a method for producing molten iron alloy from iron ore or its pre-reduced product by smelting reduction. It is related to.

【0002】0002

【従来の技術】大量生産製鉄法としては現在、高炉法が
用いられている。高炉法は生産性、熱効率などの点で優
れたプロセスであるが、問題は鉄鉱石に対して焼結のよ
うな塊成化工程が必要なこと、また石炭に対してコーク
ス化工程が必要なことである。特に、高炉法で要求され
る強度の大きいコークスを得るためには、資源的に制約
のある、いわゆる原料炭と呼ばれる粘結性の優れた石炭
を用いて、室炉式コークス炉で乾留しなければならない
。また、室炉式コークス炉は非常に高価な設備であるか
ら、その更新には莫大な費用が必要である。
BACKGROUND OF THE INVENTION At present, the blast furnace method is used as a mass production iron manufacturing method. The blast furnace method is an excellent process in terms of productivity and thermal efficiency, but the problem is that iron ore requires an agglomeration process such as sintering, and coal requires a coking process. That's true. In particular, in order to obtain the high-strength coke required by the blast furnace method, resource-constrained coal with excellent caking properties called so-called coking coal must be carbonized in an indoor coke oven. Must be. Moreover, since the indoor coke oven is a very expensive piece of equipment, a huge amount of money is required to update it.

【0003】これに対して溶融還元法は、上記のような
現行高炉法に内在する問題点を解決するために開発され
ている新プロセスである。溶融還元法の一つとして、ガ
スを上底吹き可能な冶金炉を使用し、炉内に存在する多
量のスラグを利用する方法が開発されつつあり、すでに
いくつかの問題点が解決されて、石炭に関する問題のみ
が残されていた。
On the other hand, the smelting reduction method is a new process that has been developed to solve the problems inherent in the current blast furnace method as described above. As one of the smelting reduction methods, a method is being developed that uses a metallurgical furnace that can blow gas from the top and bottom, and utilizes the large amount of slag that exists in the furnace, and some problems have already been solved. Only the issue of coal remained.

【0004】すなわち、高炉法に内在する問題点を解決
するための溶融還元法として、安価な一般炭を使用して
コークス化工程を必要としないプロセスを開発すること
が望まれているが、これまでは次のような理由でこの問
題の解決が困難であった。まず、石炭を篩い分けして塊
のもの(約10mm以上)を選び出し、これらを溶融還
元炉に投入する場合、石炭は急速加熱によって揮発分が
急激に気化するために熱割れし、平均粒径が3mm程度
のものに細粒化してしまう。その結果、次の2つの問題
を生じる。
[0004] In other words, it is desired to develop a process that uses inexpensive steam coal and does not require a coking process as a smelting reduction method to solve the problems inherent in the blast furnace method. Until now, it has been difficult to solve this problem for the following reasons. First, coal is sieved to select lumps (approximately 10 mm or more), and when these are fed into a melting and reduction furnace, coal cracks due to the rapid vaporization of volatile matter due to rapid heating, and the average particle size becomes fine particles of about 3 mm. As a result, the following two problems arise.

【0005】■炭材の飛散率が10%あるいはそれ以上
となること(炭材のうち2mm以下のものはある比率で
飛散する(例えば2mm以下のものの15%))。■炭
材が細かくなると、比表面積が大きくなるのでスラグに
巻き込まれにくくなり、メタルへの加炭が遅れることに
なって、安定操業ができなくなる。一方、粉石炭を溶融
還元炉に供給する場合には次の問題を生じる。
(2) The scattering rate of carbonaceous materials is 10% or more (carbonaceous materials with a diameter of 2 mm or less are scattered at a certain rate (for example, 15% of carbonaceous materials with a diameter of 2 mm or less). ■As the carbon material becomes finer, its specific surface area increases, making it less likely to get caught up in the slag, which delays carburization into the metal, making stable operation impossible. On the other hand, when powdered coal is supplied to a smelting reduction furnace, the following problem occurs.

【0006】■粉石炭を上から添加する方法では、溶融
還元炉からの排ガスに随伴して系外に排出される割合が
30%近い値になる。■粉石炭をメタルに吹き込む方法
では、吹き込みに伴ってメタルの攪拌が強くなりすぎる
結果、鉄系ダストの発生量が増える。■粉石炭に粘結剤
を添加して成形(例えばブリケット化)したものでは、
炉内で急速加熱されるときに、粘結剤がガス発生源にな
って細かく壊れてしまう。
[0006] In the method of adding powdered coal from above, the proportion of coal that is discharged out of the system along with the exhaust gas from the smelting reduction furnace is close to 30%. ■With the method of blowing powdered coal into metal, the metal is agitated too strongly as a result of the blowing, resulting in an increase in the amount of iron-based dust generated. ■Those made by adding a binder to powdered coal and forming it (for example, into briquettes),
When rapidly heated in the furnace, the binder becomes a source of gas and breaks into small pieces.

【0007】■また粉石炭に粘結剤を添加しないで成形
したものは炉内で急速加熱されるときには壊れにくいが
、冷間強度が弱いため溶融還元炉に投入されるまでの貯
蔵・搬送工程で再粉化がおこる。このように、粉石炭の
使用にも問題が多い。以上のように、従来の方法では石
炭の粉化は避けて通れない問題で、そのために安定した
溶融還元操業を行うことができなかった。
[0007]Also, powdered coal formed without adding a binder is less likely to break when rapidly heated in a furnace, but its cold strength is weak, so it is difficult to store and transport the coal until it is put into the melting reduction furnace. Re-pulverization occurs. As described above, there are many problems with the use of powdered coal. As described above, in the conventional method, coal pulverization is an unavoidable problem, and as a result, stable melting and reduction operations cannot be performed.

【0008】一般には、石炭は粉塊混合物の形で購入さ
れ、その中には粒径が4mm以下の粉石炭が30〜40
%含まれている。そのために上記の理由から使用上問題
の多い粉石炭の有効利用を図ることが溶融還元製鉄法に
おける大きな課題である。
[0008] Generally, coal is purchased in the form of a powder mixture, which contains 30 to 40 pieces of powder coal with a particle size of 4 mm or less.
%include. For this reason, a major challenge in the smelting reduction iron manufacturing method is to effectively utilize powdered coal, which has many problems in use for the above reasons.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記のよう
な知見に基づき、安定した溶融還元操業を行うために、
溶融還元炉に投入されるまでの貯蔵・搬送工程で粉化す
ることなく、かつ溶融還元炉内で急速加熱されたときに
粉化することのない、粉石炭加圧成形物の製造法を提供
することを目的とする。
[Problems to be Solved by the Invention] Based on the above knowledge, the present invention provides the following steps in order to perform stable melting reduction operation.
Provides a method for producing pressed coal powder that does not become powdered during the storage and transportation process before being put into a smelting reduction furnace, and also does not become pulverized when rapidly heated in a smelting reduction furnace. The purpose is to

【0010】0010

【課題を解決するための手段】本発明は、例えば図1の
ような、ガスを上底吹きできる冶金炉に鉄酸化物を含む
原料および炭材を添加しながら酸素ガスを供給し、酸化
鉄の溶融、還元を行って溶融鉄合金を製造する溶融還元
製鉄法において使用するための炭材として、揮発分を1
5%以上含有する粉石炭をロール成形するに際して、粉
状の酸化鉄含有物を5〜40%混合するか、あるいはさ
らに加えて、石炭を加熱して揮発分を3%以下にした粉
状物を20%以下混合することを特徴とする粉石炭加圧
成形物の冷間強度向上方法を要旨とする。
[Means for Solving the Problems] The present invention supplies oxygen gas to a metallurgical furnace in which gas can be blown from the top and bottom, as shown in FIG. The volatile content of 1
When rolling powdered coal containing 5% or more, 5 to 40% of powdered iron oxide-containing material is mixed or further added, and the coal is heated to reduce the volatile content to 3% or less. The subject matter is a method for improving the cold strength of a press-molded product of pulverized coal, which is characterized by mixing 20% or less of pulverized coal.

【0011】[0011]

【作用】まず、図2は気乾状態に乾燥した種々の銘柄の
粉石炭を0.3mm以下に粉砕し、ロールコンパクター
で加圧圧縮成形したもののうち、サイズが3〜10mm
の成形物についてI型ドラム試験を実施したときの、粉
発生率に及ぼす石炭揮発分含有量の影響を示す。粉発生
率は、成形物200gをI型ドラムで60回転した後の
2mm以下のものの重量百分率で示している。揮発分含
有量が15%未満の場合に粉発生率が多くなることがわ
かる。粘結剤を添加しないで粉状石炭を加圧圧縮したと
きに、加圧成形物の強度が使用した石炭の揮発分含有量
により変化する理由は次のように考えられる。石炭には
カルボキシル基、キノン基、水酸基などの官能基が含ま
れていて、それらの量は一般的には、揮発分含有量が増
えるほど多くなる。また、官能基は石炭表面にも存在す
る。これらの表面官能基の数は、石炭粒子径が小さくな
るほど(比表面積が大きくなるので)多くなる。粉石炭
が加圧圧縮されて、近接する石炭粒子の距離が非常に小
さくなると、近接粒子のお互いの官能基同士の間でファ
ン・デル・ワールス力が生じる。この力が石炭粒子同士
を固着させていると考えられる。揮発分含有量が15%
未満の石炭の場合に成形物の強度が低下するのは、表面
官能基の数が少なくて成形物の強度を維持するために必
要なファン・デル・ワールス力が発現できないためであ
ると考えられる。
[Operation] First, Figure 2 shows powdered coal of various brands dried in an air-dried state, pulverized to 0.3 mm or less, and then compressed and molded using a roll compactor, the size of which is 3 to 10 mm.
The influence of the coal volatile content on the powder generation rate is shown when the I-type drum test is conducted on the molded product. The powder generation rate is expressed as the weight percentage of 200 g of molded product having a particle diameter of 2 mm or less after 60 revolutions using an I-type drum. It can be seen that the powder generation rate increases when the volatile content is less than 15%. The reason why the strength of the press-formed product changes depending on the volatile content of the coal used when powdered coal is pressurized without adding a binder is considered to be as follows. Coal contains functional groups such as carboxyl groups, quinone groups, and hydroxyl groups, and the amount of these groups generally increases as the volatile content increases. Functional groups also exist on the coal surface. The number of these surface functional groups increases as the coal particle size becomes smaller (because the specific surface area becomes larger). When pulverized coal is compressed under pressure and the distance between adjacent coal particles becomes very small, van der Waals forces occur between the functional groups of adjacent particles. It is thought that this force causes the coal particles to stick together. Volatile content is 15%
The reason why the strength of the molded product decreases in the case of coal with less than .

【0012】次に、図3は粒度が0.3mm以下の粉石
炭(揮発分含有量36%)に粒度が0.2mm以下の粉
状酸化鉄含有物(T.Fe:61.5%,M.Fe:7
.6%,FeO:27.6%,C:4.5%)を配合し
て、ロールコンパクターで加圧成形した成形物のI型ド
ラム試験による粉発生率に及ぼす粉状酸化鉄含有物配合
割合の影響を示す。粉発生率は、粉状酸化鉄含有物配合
割合が5%以上40%以下の場合に、粉状酸化鉄含有物
を配合しない場合と比較して低く抑えられることがわか
る。 これは、粉石炭の粒度より細かく、かつ粒度構成が異な
る粉状酸化鉄含有物を配合することにより、粉石炭・酸
化鉄含有物混合物の空隙率が小さくなったために、成形
圧力が各粒子に対してより効率よく作用して成形物の強
度が上昇すること、一方、酸化鉄含有物の配合量が多す
ぎると、粉石炭の表面官能基の数が相対的に減少して成
形物の強度が維持できなくなるという2つの効果の組合
わせによって決まるものである。
Next, FIG. 3 shows powdered coal (volatile content 36%) with a particle size of 0.3 mm or less and powdered iron oxide containing material (T.Fe: 61.5%, with a particle size of 0.2 mm or less). M.Fe:7
.. 6%, FeO: 27.6%, C: 4.5%), and the effect of the blending ratio of powdered iron oxide-containing substances on the powder generation rate according to the I-type drum test of the molded product that was pressure-formed with a roll compactor. Show the impact of It can be seen that the powder generation rate can be suppressed to a lower level when the powdery iron oxide containing material is blended at a ratio of 5% or more and 40% or less, compared to when the powdery iron oxide containing material is not blended. This is because the porosity of the powdered coal/iron oxide-containing mixture is reduced by blending the powdered iron oxide-containing material, which is finer than the particle size of powdered coal and has a different particle size structure, so that the compacting pressure is applied to each particle. On the other hand, if the content of iron oxide-containing substances is too large, the number of surface functional groups on the pulverized coal will be relatively reduced, increasing the strength of the molded product. This is determined by the combination of two effects: that it becomes impossible to maintain the

【0013】図4は粒度が0.3mm以下の粉石炭(揮
発分含有量36%)に粒度が0.2mm以下の粉状酸化
鉄含有物(上記図3の場合と同組成)を30%、さらに
石炭を加熱して揮発分含有量を3%にした0.2mm以
下の粉状物(以下、粉状加熱炭と略称)を配合して、ロ
ールコンパクターで加圧成形した成形物のI型ドラム試
験による粉発生率に及ぼす粉状加熱炭配合割合の影響を
示す。 粉状加熱炭の配合割合が20%以下の範囲であれば、何
も添加しない粉石炭だけの成形物の場合と比較して、粉
発生率を低く抑えることができる。
FIG. 4 shows pulverized coal (volatile content 36%) with a particle size of 0.3 mm or less and 30% powdered iron oxide containing material with a particle size of 0.2 mm or less (same composition as in FIG. 3 above). , and a powder material of 0.2 mm or less (hereinafter abbreviated as powder heated coal) made by heating coal to a volatile content of 3% (hereinafter abbreviated as powdered heated coal) was added, and the molded product was press-formed using a roll compactor. The influence of the blending ratio of heated charcoal powder on the powder generation rate is shown in the mold drum test. If the mixing ratio of powdered heated coal is within a range of 20% or less, the powder generation rate can be kept low compared to the case of a molded product made of only powdered coal without any addition.

【0014】図5は粒度が0.3mm以下の粉石炭(揮
発分含有量36%)に粒度が0.2mm以下の粉状酸化
鉄含有物を30%、さらに0.2mm以下の粉状加熱炭
を20%配合して、ロールコンパクターで加圧成形した
成形物のI型ドラム試験による粉発生率に及ぼす粉状加
熱炭の揮発分含有量の影響を示す。粉状加熱炭を添加配
合した場合に成形物の強度が大きくなる理由としては、
石炭を加熱して揮発分含有量を3%以下にしたものは、
粒表面の凹凸が複雑になり、それが石炭粒の中に混じる
ことによって成形物の中でくさび効果を果たすためと考
えられる。
FIG. 5 shows pulverized coal (volatile content 36%) with a particle size of 0.3 mm or less, 30% of powdered iron oxide containing material with a particle size of 0.2 mm or less, and powder heating to a particle size of 0.2 mm or less. This figure shows the influence of the volatile content of heated charcoal powder on the powder generation rate in an I-type drum test of a molded product containing 20% charcoal and pressure-molded using a roll compactor. The reason why the strength of molded products increases when powdered heated carbon is added is as follows.
Coal heated to reduce the volatile content to 3% or less is
It is thought that this is because the irregularities on the grain surface become complex, and when mixed into the coal grains, they create a wedge effect in the molded product.

【0015】図6は粒度が0.3mm以下の粉石炭(揮
発分含有量36%)に粒度が0.2mm以下の粉状酸化
鉄含有物(前記図3の場合と同組成)を30%、さらに
石炭を加熱して揮発分含有量を3%以下にした0.2m
m以下の粉状加熱炭を配合して、ロールコンパクターで
加圧成形した成形物のI型ドラム試験による粉発生率に
及ぼす成形物厚みの影響を示す。成形物厚みが3〜8m
mの時に、粉発生率を最も低く抑えることができる。
FIG. 6 shows pulverized coal with a particle size of 0.3 mm or less (volatile content 36%) mixed with 30% powdered iron oxide containing material with a particle size of 0.2 mm or less (same composition as in FIG. 3). , 0.2m in which the coal was further heated to reduce the volatile content to 3% or less.
This figure shows the influence of the thickness of a molded product on the powder generation rate in an I-type drum test of a molded product that is pressure-molded using a roll compactor after blending powdered heated coal of less than m. Thickness of molded product is 3-8m
m, the powder generation rate can be suppressed to the lowest level.

【0016】このような粉状酸化鉄含有物あるいは/お
よび粉状加熱炭として、溶融還元工程で発生したダスト
を用いることができる。以上述べてきたように、適正条
件で粉石炭を成形したものは、冷間での強度が向上し、
かつ溶融還元炉に投入されて急速加熱を受けても粉化し
にくいことから、本発明の実施により、これまでの溶融
還元法の開発で問題とされていた石炭の問題、すなわち
飛散と加炭遅れ、および粉石炭の効果的供給の問題を解
決できるようになった。
[0016] As such powdered iron oxide-containing material and/or powdered heated coal, dust generated in the melting reduction process can be used. As mentioned above, powdered coal formed under appropriate conditions has improved cold strength,
In addition, it is difficult to powder even when put into a smelting reduction furnace and subjected to rapid heating. Therefore, by implementing the present invention, coal problems that have been problems in the development of conventional smelting reduction methods, namely scattering and carburization delay, can be solved. , and the problem of effective supply of powdered coal can now be solved.

【0017】[0017]

【実施例】図1に本発明を実施するのに用いる溶融還元
炉の設備の一例を示す。耐火物1を内張りした容器にお
いて、底には溶融メタルに窒素等のガスを吹き込んで攪
拌するための底吹き羽口2が設けられている。上吹きラ
ンス3は酸素ガスを炉内に供給するためのものである。 鉱石は炉肩に設けられた粉鉱石投入口4から炉内に供給
される。炉内には多量の溶融スラグ5が存在しており、
底吹き攪拌されているメタル浴6を上吹き酸素ジェット
から遮断していることが必要である。必要スラグ量は3
50kg/tメタル以上で、生成したメタル6とスラグ
5を炉を傾動して排出する際に残しメタル、残しスラグ
量を調整する。
EXAMPLE FIG. 1 shows an example of the equipment of a melting reduction furnace used to carry out the present invention. In a container lined with a refractory 1, a bottom blowing tuyere 2 is provided at the bottom for blowing a gas such as nitrogen into the molten metal to stir it. The top blow lance 3 is for supplying oxygen gas into the furnace. Ore is supplied into the furnace from a fine ore input port 4 provided on the furnace shoulder. A large amount of molten slag 5 exists in the furnace,
It is necessary that the bottom-blown agitated metal bath 6 be isolated from the top-blown oxygen jet. The required amount of slag is 3
When the metal 6 and slag 5 generated are discharged by tilting the furnace at 50 kg/t metal or more, the amounts of remaining metal and remaining slag are adjusted.

【0018】溶融還元炉の主要操業条件を表1に示す。Table 1 shows the main operating conditions of the smelting reduction furnace.

【0019】[0019]

【表1】[Table 1]

【0020】鉱石は予備還元鉱石を使用した。その成分
条件は表2のとおりである。これを溶融還元炉の炉肩に
ある粉鉱石投入口4から炉内に窒素ガスで搬送した。
[0020] Pre-reduced ore was used as the ore. The component conditions are shown in Table 2. This was conveyed into the furnace through a fine ore inlet 4 on the shoulder of the smelting reduction furnace using nitrogen gas.

【0021】[0021]

【表2】[Table 2]

【0022】一方、本実施例の操業には表3に示すよう
な各種条件でロール成形した炭材を使用した。いずれも
の場合も炉口7から炉内に投入した。その結果、炭材の
種類を変えた時の操業成績は表4に示すとおりになった
。したがって、本発明により、すなわち、粉石炭だけを
成形した炭材よりも粉状酸化鉄含有物あるいは、さらに
加えて粉状加熱炭を混合して成形した炭材を使用した場
合に好ましい結果が得られた。
On the other hand, in the operation of this example, carbonaceous material roll-formed under various conditions as shown in Table 3 was used. In both cases, the material was introduced into the furnace through the furnace opening 7. As a result, the operational results when changing the type of carbon material were as shown in Table 4. Therefore, according to the present invention, more preferable results can be obtained when using a powdered iron oxide-containing material or a carbon material formed by mixing powdered heated coal in addition to a carbon material formed from only powdered coal. It was done.

【0023】[0023]

【表3】[Table 3]

【0024】[0024]

【表4】[Table 4]

【0025】[0025]

【発明の効果】以上のように本発明は最も安価な原料で
ある粉鉱石と一般粉石炭を用いて鉄を製造する溶融還元
工程で、高価な粘結剤を用いずに、石炭に起因する問題
、すなわち粉石炭の効果的供給と石炭の急速加熱割れに
よる粉化の問題を解決したもので、工業的、経済的効果
が大きい。
[Effects of the Invention] As described above, the present invention is a smelting reduction process for producing iron using powdered ore and powdered coal, which are the cheapest raw materials, without using an expensive binder. This solution solves the problems of effective supply of powdered coal and pulverization due to rapid heating cracking of coal, and has great industrial and economical effects.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明を実施するのに用いる溶融還元設備の一
例を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of melting reduction equipment used to carry out the present invention.

【図2】粉石炭加圧成形物の粉発生率に及ぼす粉石炭の
揮発分含有量の影響を示す図である。
FIG. 2 is a diagram showing the influence of the volatile content of pulverized coal on the powder generation rate of pulverized coal press-molded products.

【図3】粉石炭加圧成形物の粉発生率に及ぼす粉状酸化
鉄含有物の配合割合の影響を示す図である。
FIG. 3 is a diagram showing the influence of the blending ratio of powdered iron oxide-containing substances on the powder generation rate of pulverized coal press-molded products.

【図4】粉石炭加圧成形物の粉発生率に及ぼす粉状加熱
炭の配合割合の影響を示す図である。
FIG. 4 is a diagram showing the influence of the blending ratio of heated pulverized coal on the powder generation rate of a pulverized coal press-molded product.

【図5】粉石炭加圧成形物の粉発生率に及ぼす粉状加熱
炭の揮発分含有量の影響を示す図である。
FIG. 5 is a diagram showing the influence of the volatile content of pulverized heated coal on the powder generation rate of pulverized coal press-molded products.

【図6】粉石炭加圧成形物の粉発生率に及ぼす加圧成形
物の厚みの影響を示す図である。
FIG. 6 is a diagram showing the influence of the thickness of the press-molded product on the powder generation rate of the press-molded product.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  揮発分を15%以上含有する粉石炭を
加圧成形するに際し、粉状の酸化鉄含有物を5%以上4
0%以下混合することを特徴とする粉石炭加圧成形物の
強度向上方法。
Claim 1: When press-molding powdered coal containing 15% or more of volatile matter, powdered iron oxide-containing material is added to 5% or more of 4
A method for improving the strength of a press-molded product characterized by mixing pulverized coal in an amount of 0% or less.
【請求項2】  請求項1記載の方法において、さらに
石炭を加熱して揮発分を3%以下にした粉状物を20%
以下混合することを特徴とする粉石炭加圧成形物の強度
向上方法。
2. In the method according to claim 1, 20% of the powdered material is obtained by further heating the coal to reduce the volatile content to 3% or less.
A method for improving the strength of a press-molded product of pulverized coal, characterized by mixing the following:
JP8703491A 1991-04-18 1991-04-18 Method for improving strength in powdery coal pressurized compact Withdrawn JPH04318109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8703491A JPH04318109A (en) 1991-04-18 1991-04-18 Method for improving strength in powdery coal pressurized compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8703491A JPH04318109A (en) 1991-04-18 1991-04-18 Method for improving strength in powdery coal pressurized compact

Publications (1)

Publication Number Publication Date
JPH04318109A true JPH04318109A (en) 1992-11-09

Family

ID=13903668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8703491A Withdrawn JPH04318109A (en) 1991-04-18 1991-04-18 Method for improving strength in powdery coal pressurized compact

Country Status (1)

Country Link
JP (1) JPH04318109A (en)

Similar Documents

Publication Publication Date Title
KR101138074B1 (en) Process for manufacturing molded products of direct-reduced iron and process for manufacturing pig iron
Bagatini et al. Mill scale and flue dust briquettes as alternative burden to low height blast furnaces
US9683276B2 (en) Mill scale briquetting
CN114317852B (en) 2500m 3 Low-carbon iron-making method of blast furnace gas carbon cycle
WO2009123115A1 (en) Process for production of reduced iron
Paknahad et al. Cold-Briquetted Iron and Carbon (CBIC), investigation of steelmaking behavior
KR100376506B1 (en) Method for agglomerating iron ore fines for coal based iron making using waste sludge
US3645717A (en) Process of producing sponge iron pellets
JPH04318109A (en) Method for improving strength in powdery coal pressurized compact
JPH1112619A (en) Production of reduced iron
US3169851A (en) Process for the oxidation of powders
US2861879A (en) Method for the production of iron from steel scrap
JPH0432505A (en) Iron-making method with smelting reduction
JP7047817B2 (en) Manufacturing method of low phosphorus steel
JP3379360B2 (en) Hot metal production method
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
JP7047816B2 (en) Manufacturing method of low phosphorus steel
JP7047815B2 (en) Manufacturing method of low phosphorus steel
JPH03183719A (en) Method for accelerating reduction of manganese ore in steel making stage
JP2000290709A (en) Method for charging raw material into blast furnace
JPH0428810A (en) Smelting reduction iron-making method
JPH03287708A (en) Smelting reduction iron making method
JPH03287709A (en) Smelting reduction iron making method
JPH01119631A (en) Smelting reduction furnace
JPH0483815A (en) Melting-reduction iron manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711