JP7047816B2 - Manufacturing method of low phosphorus steel - Google Patents
Manufacturing method of low phosphorus steel Download PDFInfo
- Publication number
- JP7047816B2 JP7047816B2 JP2019117202A JP2019117202A JP7047816B2 JP 7047816 B2 JP7047816 B2 JP 7047816B2 JP 2019117202 A JP2019117202 A JP 2019117202A JP 2019117202 A JP2019117202 A JP 2019117202A JP 7047816 B2 JP7047816 B2 JP 7047816B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphorus
- ore
- treatment
- hot metal
- lump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Description
本発明は、鉄鋼製造プロセス用原料として用いられるリン含有物質を、この物質中のリンを予め低減させたものについて、各プロセスでの処理において用いることで、低リン鋼の製造を行う方法に関する。 The present invention relates to a method for producing low phosphorus steel by using a phosphorus-containing substance used as a raw material for a steel manufacturing process in which phosphorus in this substance is reduced in advance in the treatment in each process.
[定義]
以下、この明細書中において、「P」「P2O5」などアルファベットで記した場合はその化学式の物質を表し、「リン」とカナで記した場合は、形態を問わずその物質に含まれるリンを表す。
[Definition]
Hereinafter, in this specification, when it is written in alphabets such as "P" and "P 2 O 5 ", it means a substance having the chemical formula, and when it is written in "phosphorus" and kana, it is included in the substance regardless of its form. Represents phosphorus.
また、この明細書中で気体の体積を「リットル」の単位で表す場合は、温度273K、雰囲気圧力が1atmの標準状態に換算して示す。また、圧力の単位atmは、1.01325×106Paである。そして、物質中のP含有量をmass%で表す場合には、形態を問わずその物質に含まれるリンの含有率を示した。また、質量の単位tはメートル法による。 Further, when the volume of gas is expressed in the unit of "liter" in this specification, it is converted into a standard state where the temperature is 273 K and the atmospheric pressure is 1 atm. The unit of pressure atm is 1.01325 × 106 Pa. When the P content in the substance is expressed in mass%, the content of phosphorus contained in the substance is shown regardless of the form. The unit of mass t is based on the metric system.
高炉で溶製される溶銑は、鉄鉱石等の製鉄原料成分(固体酸化物)に由来するリン(P)を不可避に含んでいるのが普通である。そのリンは、鋼材にとっては有害成分であると考えられている。このことから、鉄鋼製品の材料特性を向上させるために、一般には、製銑から製鋼段階にかけて脱リン処理するのが普通である。例えば、その脱リン処理としては、溶銑中あるいは溶鋼中のリンを、酸素ガスや酸化鉄などの酸素源によって酸化させてP2O5とし、その後、このP2O5をCaOを主成分とするスラグ中に移行させることによって除去する方法である。なお、溶銑中あるいは溶鋼中のリンは、酸素ガスなどによって酸化されてスラグ中に移行するが、その際、鉄もまた酸化されることから、該スラグ中には鉄も酸化鉄の形態で移行することになる。 The hot metal melted in a blast furnace usually contains phosphorus (P) derived from an iron-making raw material component (solid oxide) such as iron ore inevitably. The phosphorus is considered to be a harmful component for steel materials. For this reason, in order to improve the material properties of steel products, it is common to perform dephosphorization treatment from the ironmaking to the steelmaking stage. For example, as the dephosphorization treatment, phosphorus in hot metal or molten steel is oxidized with an oxygen source such as oxygen gas or iron oxide to obtain P 2 O 5 , and then this P 2 O 5 is composed of CaO as a main component. It is a method of removing by migrating into the slag. In addition, phosphorus in the hot metal or molten steel is oxidized by oxygen gas or the like and transferred to the slag, but at that time, iron is also oxidized, so that iron is also transferred to the slag in the form of iron oxide. Will be done.
近年、環境対策および省資源の観点から、製鋼スラグのリサイクル使用を含めて、製鋼スラグの発生量を削減する試みがある。例えば、溶銑予備(脱リン)処理(溶銑を転炉にて脱炭精錬する前に、該溶銑中のリンを予め除去する処理)した溶銑の脱炭精錬時に発生するスラグ(転炉スラグ)というのは、造滓剤用CaO源や鉄源として用いる他、焼結原料として用いることで高炉にリサイクルすること、あるいは溶銑予備処理工程のCaO源としてリサイクルする試みがある。 In recent years, from the viewpoint of environmental measures and resource saving, there have been attempts to reduce the amount of steelmaking slag generated, including the recycling of steelmaking slag. For example, it is called slag (converter slag) generated during decarburization and refining of hot metal that has undergone hot metal preliminary (dephosphorization) treatment (treatment that removes phosphorus in the hot metal in advance before decarburizing and refining the hot metal in a converter). In addition to being used as a CaO source for slag-making agents and an iron source, there are attempts to recycle it into a blast furnace by using it as a sintering raw material, or as a CaO source in a hot metal pretreatment process.
脱リンのための溶銑予備処理をした溶銑(以下、「脱リン溶銑」という)、特に鉄鋼製品のリン濃度レベルまで脱リンした脱リン溶銑は、これを転炉で脱炭精錬した場合、このときに発生する転炉スラグは、リンをほとんど含有していないものになる。従って、このような転炉スラグを高炉へリサイクルさせたとしても、溶銑のリン濃度の増加(ピックアップ)を危惧する必要はない。しかしながら、予備脱リン処理時に発生したスラグ、または予備脱リン処理されていない溶銑(通常溶銑)、あるいは予備脱リン処理されていても脱リン処理後のリン濃度が鉄鋼製品のリン濃度レベルまで低下していないような脱リン溶銑(転炉で脱炭精錬したときに発生するリン含有量の多い転炉スラグ)の場合、これを高炉に酸化物の形態でリサイクルすると、そのリンが、高炉内で還元されることから、溶銑中のリン含有量が増加し、溶銑脱リンの負荷が却って増加するという問題が起こる。 Hot metal pre-treated for dephosphorization (hereinafter referred to as "dephosphorized hot metal"), especially dephosphorized hot metal dephosphorized to the phosphorus concentration level of steel products, is this when decarburized and refined in a converter. The converter slag that sometimes occurs is one that contains almost no phosphorus. Therefore, even if such converter slag is recycled to the blast furnace, there is no need to worry about an increase in the phosphorus concentration (pickup) of the hot metal. However, the slag generated during the pre-phosphorus removal treatment, the hot metal not pre-dephosphorused (normally hot metal), or the phosphorus concentration after the pre-phosphorus removal treatment is reduced to the phosphorus concentration level of the steel product even if the pre-phosphorus treatment is performed. In the case of dephosphorized hot metal (converter slag with a high phosphorus content generated when decarburized and refined in a converter), if this is recycled to a blaster in the form of oxide, the phosphorus will be transferred to the blaster. Therefore, the phosphorus content in the hot metal increases, and the load of hot metal dephosphorization increases.
このように、製鉄プロセスで用いられる主原料あるいは副原料中には、一般に、多くのリンが含まれており、こうしたリン含有物質に含まれるリン濃度やその使用量によっては、最終的に得られる鉄鋼製品中のリンの含有量が多くなることが知られている。即ち、リンは、鉄鋼製品としての品質に悪影響を及ぼすため、リンの含有量を抑制することが求められる。そのためには、リン含有量の低い主原料あるいは副原料の使用が求められる。ただし、そうした原料を用いるためにはコスト増を招く。そこで、従来、製鉄用主原料あるいは副原料からなるリン含有物質から、リンを事前に除去する技術が提案されている。 As described above, a large amount of phosphorus is generally contained in the main raw material or the auxiliary raw material used in the steelmaking process, and finally obtained depending on the phosphorus concentration contained in the phosphorus-containing substance and the amount used thereof. It is known that the phosphorus content in steel products increases. That is, since phosphorus adversely affects the quality of steel products, it is required to suppress the phosphorus content. For that purpose, it is required to use a main raw material or an auxiliary raw material having a low phosphorus content. However, using such raw materials causes an increase in cost. Therefore, conventionally, a technique for removing phosphorus in advance from a phosphorus-containing substance composed of a main raw material or an auxiliary raw material for steelmaking has been proposed.
例えば、特許文献1では、CaO含有量が25mass%以下かつCaO/(SiO2+Al2O3)比が5以下の鉄鉱石、含チタン鉄鉱石、含ニッケル鉱石、含クロム鉱石、あるいはこれらの鉱石を主成分とする混合物に対し、Ar,He,N2,CO,H2,炭化水素の一種もしくはこれらの混合ガスを1600℃以上で接触させることにより、リンを除去する方法を提案している。
For example, in
また、特許文献2には、リン含有量の高い鉄鉱石を0.5mm以下に粉砕し、これに水を加えてパルプ濃度を35mass%前後とし、溶剤にH2SO4またはHClを添加してpH2.0以下で反応させることにより、リン鉱物を分解溶出すると共に、ついで磁力選別により磁鉄鉱等の磁着物を採取し、非磁着物たるSiO2やAl2O3等をスライムとして沈降分離すると共に、このとき液中に溶出したPを消石灰または生石灰を添加してpH5.0~10.0の範囲内で中和することにより、リン酸カルシウムとして分離回収するという方法が開示されている。 Further, in Patent Document 2, iron ore having a high phosphorus content is crushed to 0.5 mm or less, water is added thereto to make the pulp concentration about 35 mass%, and H 2 SO 4 or HCl is added to the solvent. By reacting at pH 2.0 or less, phosphorus minerals are decomposed and eluted, and then magnetite and other magnetic deposits are collected by magnetic force sorting, and non-magnetic deposits such as SiO 2 and Al 2 O 3 are settled and separated as slime. At this time, a method is disclosed in which P eluted in the liquid is separated and recovered as calcium phosphate by adding slaked lime or quick lime to neutralize the pH in the range of 5.0 to 10.0.
また、特許文献3には、微生物アスペルギルス エスピー KSC-1004株あるいは微生物フザリウム エスピー KSC-1005株を用いることにより鉄鉱石の脱リンを行う方法が開示されている。 Further, Patent Document 3 discloses a method for dephosphorizing iron ore by using the microorganism Aspergillus SP KSC-1004 strain or the microorganism Fusarium SP KSC-1005 strain.
さらに、非特許文献1では、水蒸気圧を制御した水素-水蒸気混合ガスによる高リン鉄鉱石の還元についての研究報告がなされており、鉄鉱石から直接的に脱リンする方法が提案されている。
Further, Non-Patent
しかしながら、上記各従来技術には以下に述べるような、解決しなければならない幾つかの課題がある。即ち、特許文献1に開示の方法は、処理温度が1600℃以上と高温であり、多くのエネルギーを要するという課題がある。さらに、この方法は、鉱石を溶融状態で処理するため、容器の損耗や高温融体の取扱いが困難であるという課題もある。次に、特許文献2に開示の方法は、酸を用いた湿式処理であり、回収した磁着物を主原料として利用するための乾燥に時間とコストがかかるという課題がある。さらに、この方法は、事前に0.5mm以下に粉砕するのに時間とコストを要するという課題もある。また、特許文献3の方法は、特許文献2の方法と同様に湿式処理のため、リン除去後の鉱石を主原料として利用するための乾燥に時間とコストを要するという課題がある。さらに、非特許文献1は、鉱石中のリン除去率が最大で13%と低いという課題を抱えている。しかも、この方法は、反応ガスとして水素を利用するため、工業規模で安全に処理する設備等についての検討が必要であるところ、それがなされていないという課題もある。
However, each of the above-mentioned prior arts has some problems to be solved as described below. That is, the method disclosed in
そこで、本発明は、従来技術が抱えている前述の課題を解決するために開発した方法であり、その目的とするところは、鉄鋼製造プロセス用原料として用いられるリン含有物質中のリンを、予め脱リン処理してから該プロセスのいずれか少なくとも1以上の段階で用いるようにすることで、低リン鋼を有利に製造する方法を提案することにある。 Therefore, the present invention is a method developed in order to solve the above-mentioned problems of the prior art, and an object thereof is to previously obtain phosphorus in a phosphorus-containing substance used as a raw material for a steel manufacturing process. It is an object of the present invention to propose a method for advantageously producing low-phosphorus steel by dephosphorizing and using it at at least one step of the process.
従来技術が抱えている前述の課題を解決するために開発した本発明は、鉄鋼製造プロセス用原料のうち粒径が10mm以上の塊鉱石であるリン含有物質を、窒素分圧P
N2
(atm)が下記(1)式を満たし、かつ処理温度T(℃)および酸素分圧P
O2
(atm)が下記(2)式および下記(3)式を満たす処理雰囲気中にて窒素含有ガスと反応させることにより、該リン含有物質中のリンの少なくとも一部をPNガスとして除去して低リン含有物質とする脱リン処理を施した後、得られた該低リン含有物質を該鉄鋼製造プロセスのいずれか1以上の段階で用いることを特徴とする、低リン鋼の製造方法である。
記
Tm:融点(℃)
The present invention, which was developed to solve the above-mentioned problems of the prior art, is a phosphorus-containing substance which is a lump ore having a particle size of 10 mm or more among raw materials for a steel manufacturing process, and is subjected to nitrogen partial pressure PN2 (atm). Reacts with the nitrogen-containing gas in a treatment atmosphere in which the following formula (1) is satisfied and the treatment temperature T (° C.) and the oxygen partial pressure PO2 (atm) satisfy the following formulas (2) and (3). Thereby, after performing a dephosphorus treatment in which at least a part of phosphorus in the phosphorus-containing substance is removed as PN gas to obtain a low phosphorus-containing substance, the obtained low phosphorus-containing substance is used in any of the steel manufacturing processes. It is a method for producing low phosphorus steel, which is characterized by being used in one or more stages.
Record
Tm: Melting point (° C)
なお、本発明においては、
(1)前記低リン含有物質中のPの含有量が0.005mass%以上0.05mass%以下であること、
(2)前記鉄鋼製造プロセスが、高炉の製錬、溶銑の予備処理、転炉による予備脱リン処理、転炉による脱炭処理のいずれかであること、
がより好ましい実施形態である。
In the present invention, it should be noted that
( 1 ) The content of P in the low phosphorus-containing substance is 0.005 mass% or more and 0.05 mass% or less.
( 2 ) The steel manufacturing process is one of smelting of a blast furnace, preliminary treatment of hot metal, preliminary dephosphorization treatment by a converter, and decarburization treatment by a converter.
Is a more preferred embodiment.
本発明によれば、鉄鋼製造プロセス用原料として用いられる塊鉱石であるリン含有物質を、高炉での製錬、混銑車による溶銑予備処理、あるいは転炉などによる製鋼精錬などの各プロセス処理に先立って予め脱リン処理した原料、即ち該リン含有物質をそれの融解温度(融点)未満の温度に加熱して窒素含有ガスと反応させることにより、該リン含有物質中のリンを窒化リン(PN)のガスとして予め除去した原料(塊鉄鉱石)を用いることで、低リン鋼を安価な原料から製造することができる。
特に、本発明によれば、予備的に脱リンした原料を用いること、即ち、その原料を鉄鋼製造プロセスの上記のいずれか1以上の段階(プロセス)で用いることで、低リン鋼を容易にかつ確実に製造することができる。
しかも、本発明によれば、安価なリン含有物質の原料の使用量を増加させることができると共に、鉄鋼製造プロセスにおけるリン除去に要する精錬剤の使用量を削減することができるようになり、ひいてはスラグ発生量の低減を通じて鉄ロス量の低減をも図ることができる。
According to the present invention, the phosphorus-containing substance, which is a lump ore used as a raw material for a steel manufacturing process, is subjected to each process treatment such as smelting in a blast furnace, pretreatment of hot metal with a metallurgical wheel, or steelmaking smelting with a converter. By heating the raw material that has been previously dephosphorized, that is, the phosphorus-containing substance to a temperature lower than its melting temperature (melting point) and reacting it with a nitrogen-containing gas, phosphorus in the phosphorus-containing substance is converted into phosphorus nitride (PN). By using a raw material (lump iron ore) that has been removed in advance as the gas, low-phosphorus steel can be produced from an inexpensive raw material.
In particular, according to the present invention, low-phosphorus steel can be easily obtained by using a preliminarily dephosphorified raw material, that is, by using the raw material in any one or more of the above steps (processes) of the steel manufacturing process. And it can be manufactured reliably.
Moreover, according to the present invention, it is possible to increase the amount of a raw material used for an inexpensive phosphorus-containing substance and to reduce the amount of a refining agent required for removing phosphorus in a steel manufacturing process, which in turn makes it possible to reduce the amount of a refining agent used for removing phosphorus. It is also possible to reduce the amount of iron loss by reducing the amount of slag generated.
本発明の開発にあたり、発明者らは、鉄鋼製造プロセス用原料として、リン濃度が高く安価な鉄鉱石に着目し、そうした鉄鉱石のうち塊鉄鋼石(以下、単に「塊鉱石」という)を高炉での製錬、トピードカーによる溶銑予備処理、あるいは製鋼炉(転炉等)による予備処理、脱炭精錬用の原料として使用できるようにするために、該塊鉄鉱石から予めリンを除去した塊鉱石(以下、脱リン塊鉱石を粉砕してなる精錬剤(副原料)などとして使う場合を含める)を使用する方法についての研究を進めた。 In developing the present invention, the inventors focused on iron ore having a high phosphorus concentration and low cost as a raw material for a steel manufacturing process, and among such iron ores, lump iron ore (hereinafter, simply referred to as "lump ore") was used as a blast furnace. A lump ore from which phosphorus has been removed in advance from the lump iron ore so that it can be used as a raw material for smelting in, hot metal pretreatment with a topedo car, pretreatment with a steelmaking furnace (converter, etc.), and decarburization smelting. (Hereinafter, including the case where it is used as a smelting agent (auxiliary raw material) made by crushing dephosphorized lump ore), we proceeded with research on the method of using it.
鉄鋼製造時の製錬段階や製鋼精錬段階で用いられる鉄鉱石の多くは、海外、例えばオーストラリアやブラジルなどから輸入されることが多い。これらの国々の鉄鉱石鉱山では、採掘に大型の重機が用いられ、鉄道やトラック、船舶などにより我国鉄鋼会社の工場まで運搬される。そして、各工場内の原料使用設備までの運搬は、アンローダーや重機、コンベアー、ガスなどを使って搬送されている。このような採掘から運搬までの過程で、原料は不可避に破砕されて広い粒度分布を持つようになる。その内、10mm以上の鉄鉱石を塊鉱石、10mm未満の鉄鉱石を粉鉱石と称している。また、必要に応じて、ジョークラッシャーやロッドミルなどの破砕設備による粒度調整と、篩い器を用いた分級処理も行われる。 Most of the iron ore used in the smelting stage during steelmaking and the steelmaking refining stage is often imported from overseas, such as Australia and Brazil. In iron ore mines in these countries, large heavy machinery is used for mining and is transported to the factories of Japanese steel companies by railroads, trucks, ships, etc. Then, transportation to the equipment using raw materials in each factory is carried out using an unloader, heavy machinery, a conveyor, gas, or the like. In the process from mining to transportation, the raw materials are inevitably crushed and have a wide particle size distribution. Among them, iron ore of 10 mm or more is called lump ore, and iron ore of less than 10 mm is called powder ore. In addition, if necessary, particle size adjustment using a crushing facility such as a jaw crusher or a rod mill, and classification processing using a sieve are also performed.
鉄鉱石の運搬方法と諸設備への供給方法は、鉄鉱石等の粒度や強度などの性状と使用する設備により異なっている。例えば、10mm以上の塊鉱石については、コンベアーなどで連続的に運搬が可能な一方で、ガスによる搬送は困難である。また、塊鉱石の添加方法は自重による自然落下によることが多く、高炉や転炉ではそれぞれの上部からコンベアー等を用いて直接装入するか、あるいはこれらの上部に設けたホッパー等の貯蔵設備にコンベアー等を用いて貯蔵し、必要な時に必要量を切出して装入することとしている。 The method of transporting iron ore and the method of supplying it to various equipment differ depending on the properties such as the particle size and strength of iron ore and the equipment used. For example, lump ore of 10 mm or more can be continuously transported by a conveyor or the like, but it is difficult to transport by gas. In addition, the method of adding lump ore is often by free fall due to its own weight. It is stored using a conveyor or the like, and the required amount is cut out and charged when necessary.
なお、粒径(JIS-Z-8801-1で提案された公称目開きの篩を使って篩い分けされた大きさ)が10mm未満の大きさの粉鉱石については、ガスによる搬送が可能な一方で、コンベアーなどでの運搬では目詰まりを起こし、運搬効率が低下する。また、その粉鉱石については、これを自重により自然落下させると、製錬・精錬設備内での粉塵飛散による目詰まりや、ホッパー等の貯蔵設備内での棚吊り現象の発生を招き、添加した粉鉱石が集塵されて添加歩留りの低下を招くなどの問題が生じる。 It should be noted that powder ore having a particle size (size sifted using a nominal fouling sieve proposed in JIS-Z-8801-1) of less than 10 mm can be transported by gas. Therefore, transportation on a conveyor or the like causes clogging and reduces transportation efficiency. In addition, if the powdered ore was naturally dropped by its own weight, it would cause clogging due to dust scattering in the smelting and refining equipment and the phenomenon of shelving in storage equipment such as hoppers, and was added. Problems such as dust collection of powdered ore and a decrease in the addition yield occur.
この点、発明者らの研究によると、安価だがリン含有量の高い塊鉱石を用いた溶銑の製錬や鋼の精錬に際しては、これらの処理に先立って、リンを予め窒化処理によって除去した塊鉱石(粒径:10mm以上の大きさのリン含有物質)を用いることが推奨される。下記表1は、塊鉱石の成分組成の一例を示す。 In this regard, according to the research by the inventors, in the smelting of hot metal and the smelting of steel using inexpensive but high phosphorus content lump ore, the lump in which phosphorus was removed in advance by nitriding treatment prior to these treatments. It is recommended to use ore (particle size: phosphorus-containing substance having a size of 10 mm or more). Table 1 below shows an example of the component composition of the lump ore.
なお、表1では、該塊鉱石の鉄含有量を表すためにT.Feの濃度で記載したが、実際にはほぼ全てがFe2O3の形態で存在する。また、リンは、珪素(Si)およびアルミニウム(Al)に比較すると酸素との親和力が弱いことから、リン含有物質を、炭素や珪素、アルミニウムなどで還元すれば、リン含有物質中のP2O5は容易に還元されることが知られている。一方で、鉄酸化物Fe2O3は酸素との親和力がリンと同等であることから、リン含有物質を、炭素や珪素、アルミニウムなどで還元すると、同時にFe2O3も還元されることになる。 In Table 1, T.I. Although described in terms of the concentration of Fe, in reality, almost all of them exist in the form of Fe 2 O 3 . Further, since phosphorus has a weaker affinity for oxygen than silicon (Si) and aluminum (Al), if the phosphorus-containing substance is reduced with carbon, silicon, aluminum, etc., P 2 O in the phosphorus-containing substance can be obtained. 5 is known to be easily reduced. On the other hand, since the iron oxide Fe 2 O 3 has the same affinity for oxygen as phosphorus, when the phosphorus-containing substance is reduced with carbon, silicon, aluminum, etc., Fe 2 O 3 is also reduced at the same time. Become.
ただし、リンは鉄中への溶解度が高く、とくに還元によって生成したリンは、同時に還元により生成する鉄の中に迅速に溶解して、高リン含有鉄となる。このように、還元によるリンの除去方法は、リンの除去率が低く有効な方法ではない。 However, phosphorus has a high solubility in iron, and in particular, phosphorus produced by reduction is rapidly dissolved in iron produced by reduction at the same time to become high phosphorus-containing iron. As described above, the method for removing phosphorus by reduction is not an effective method because the removal rate of phosphorus is low.
そこで、発明者らは、この問題を解決すべく鋭意研究を重ねた。その結果、リンは、一窒化リン(PN)の気体として除去すれば、金属鉄が生成しない温度および酸素分圧での処理が可能となり、リンの鉄への吸着を抑制して低リン含有物質にすることが可能になることを見出した。 Therefore, the inventors have conducted extensive research to solve this problem. As a result, if phosphorus is removed as a gas of phosphorus pentanitride (PN), it can be treated at a temperature and oxygen partial pressure at which metallic iron does not form, and the adsorption of phosphorus to iron is suppressed, resulting in a low phosphorus-containing substance. Found that it would be possible.
即ち、発明者らは、リン含有物質中にP2O5として存在するリンを、所定の温度と雰囲気中で処理することにより、一窒化リン(PN)の気体として除去する下記の化学式1に示す反応(a)が、リン含有物質に含まれる鉄酸化物が還元されて金属鉄となる下記の化学式2に示す反応(b)よりも安定であることを熱力学検討によって知見した。
That is, the inventors have the following
化学式1として示す上記反応について、平衡が成り立つときの温度と酸素分圧の関係を図1に示す。そして、この図1には、比較のために、固体炭素と一酸化炭素ガスの平衡(化学式3に示す反応)により達成可能な温度と酸素分圧の関係を併せて示した。ここで、P2O5活量は0.001とし、N2分圧は0.9atmとし、PN分圧は0.001atmとして、C活量は1とし、CO分圧は1atmと仮定した。
FIG. 1 shows the relationship between the temperature and the oxygen partial pressure when equilibrium is established for the above reaction represented by
図1において、化学式1の反応(a)、化学式3の反応(c)は、それぞれの線より下側の温度と酸素分圧の領域において、反応(a)、反応(c)はそれぞれ右側に進行する。即ち、反応(a)によるリンの窒化除去を生じさせるためには、800℃では酸素分圧を2.2×10-19atm以下、1000℃では1.45×10-14atm以下、1200℃では4.66×10-11atm以下の酸素分圧とすることが必要である。
In FIG. 1, the reaction (a) of the
ここで、酸素分圧を低減させるためには、酸化物として安定な元素、例えばCaやMg、Al、Ti、Si、Cなどの単体を共存させることが有効であるが、金属元素の単体は高価である。そこで、本発明では、処理コスト低減の観点から、炭素(C)による酸素分圧の低減を図ることが好ましい。それは、図1の記載から分るように、724℃以上の温度において、固体炭素により達成される酸素分圧は、リンの窒化除去反応(a)を進行させるのに十分な値となることからもわかる。 Here, in order to reduce the oxygen partial pressure, it is effective to coexist a simple substance such as an element stable as an oxide, for example, Ca, Mg, Al, Ti, Si, C, etc., but a simple substance of a metal element is effective. It is expensive. Therefore, in the present invention, it is preferable to reduce the oxygen partial pressure due to carbon (C) from the viewpoint of reducing the processing cost. This is because, as can be seen from the description in FIG. 1, at a temperature of 724 ° C. or higher, the oxygen partial pressure achieved by solid carbon is a value sufficient to proceed with the nitriding removal reaction (a) of phosphorus. I also understand.
次に、上述した検討結果を踏まえ、リンの窒化除去の可否を確認する実験を行った。この実験では、リン含有物質として、とりあえず1~3mmの粒径に調整した鉄鉱石10gを用い、固体炭素として試薬カーボン(粒径:0.25mm未満)5gを用い、それぞれ別のアルミナ製ボート上に乗せて、小型の電気抵抗炉内に静置した。その炉内にArガスを1リットル/minで供給しながら所定温度(600~1400℃)まで加熱した後、Arガスの供給を停止し、そのArガスに代え一酸化炭素(CO)と窒素(N2)との混合ガス3リットル/minを供給し、60分間一定の温度に保持した。なお、一酸化炭素と窒素の混合ガスの比率は、窒素分圧PN2が0~1atmの範囲となるように変化させた。所定の時間経過後、一酸化炭素と窒素の混合ガスの供給を停止してArガス1リットル/minに切り替え、室温まで降温させた後に前記粉鉄鉱石を回収した。また、この実験では、試薬カーボンを静置した側が上流となるようにガスを供給し、一酸化炭素ガスと試薬カーボンが先に反応するようにした。
Next, based on the above-mentioned examination results, an experiment was conducted to confirm whether or not phosphorus could be removed from nitriding. In this experiment, 10 g of iron ore adjusted to a particle size of 1 to 3 mm was used as the phosphorus-containing substance, and 5 g of reagent carbon (particle size: less than 0.25 mm) was used as the solid carbon, and each was placed on a separate alumina boat. It was placed in a small electric resistance furnace and placed in a small electric resistance furnace. After heating the furnace to a predetermined temperature (600 to 1400 ° C.) while supplying Ar gas at 1 liter / min, the supply of Ar gas is stopped, and carbon monoxide (CO) and nitrogen (CO) and nitrogen ( A mixed gas of 3 liters / min with N 2 ) was supplied and kept at a constant temperature for 60 minutes. The ratio of the mixed gas of carbon monoxide and nitrogen was changed so that the nitrogen partial pressure PN2 was in the range of 0 to 1 atm. After a lapse of a predetermined time, the supply of the mixed gas of carbon monoxide and nitrogen was stopped, the gas was switched to
図2は、前記処理を1000℃にて実施した前後の鉄鉱石の組成分析結果から求めたリン除去率(ΔP={(実験前P濃度)-(実験後P濃度)}/(実験前P濃度))(%)と窒素分圧(PN2)(atm)の関係を示すものである。この図2からわかるように、窒素分圧(PN2)が0および1atmの場合を除き、リン含有物質からはリンが除去されており、特に、窒素分圧(PN2)が0.2~0.9atmのときに60%以上という高いリン除去率が得られている。なお、窒素分圧0.2atm未満でリン除去率が低い理由としては、窒素分圧が低すぎて所定の処理時間内では反応(a)によるリン除去が十分に進行しなかったためだと考えられる。また、窒素分圧0.9atm超えでは、COガスの供給量が少なく、鉄鉱石中の酸化鉄の熱分解により発生する酸素により酸素分圧が上昇し、リンの窒化除去反応(a)が抑制されたためだと考えられる。このことは、100%窒素ガス(PN2=1atm)の供給では、リンが除去できていないことからも理解できる。 FIG. 2 shows the phosphorus removal rate (ΔP = {(P concentration before experiment)-(P concentration after experiment)} / (P before experiment) obtained from the composition analysis results of iron ore before and after the above treatment was carried out at 1000 ° C. It shows the relationship between (concentration)) (%) and nitrogen partial pressure (PN2) (atm). As can be seen from FIG. 2, phosphorus is removed from the phosphorus-containing substances except when the nitrogen partial pressure (PN2) is 0 and 1 atm, and in particular, the nitrogen partial pressure ( PN2 ) is 0.2 to 0.2. A high phosphorus removal rate of 60% or more is obtained at 0.9 atm. The reason why the phosphorus removal rate is low when the nitrogen partial pressure is less than 0.2 atm is considered to be that the phosphorus removal by the reaction (a) did not proceed sufficiently within the predetermined treatment time because the nitrogen partial pressure was too low. .. Further, when the nitrogen partial pressure exceeds 0.9 atm, the supply amount of CO gas is small, the oxygen partial pressure rises due to the oxygen generated by the thermal decomposition of iron oxide in the iron ore, and the phosphorylation removal reaction (a) of phosphorus is suppressed. It is thought that it was done. This can be understood from the fact that phosphorus cannot be removed by supplying 100% nitrogen gas (PN2 = 1 atm).
次に、図3は、前記処理をCO=10vol%(PCO=0.1atm)、N2=90vol%(PN2=0.9atm)の混合ガスにて実施した実験前後の鉄鉱石の組成分析結果から求めたリン除去率(ΔP%)と処理温度(T℃)の関係を示す。この図3からわかるように、750~1300℃の温度域において、高いリン除去率が得られており、リンの窒化除去に好ましいことがわかる。なお、750℃未満でリン除去率が低い理由としては、図1に示したように、724℃以下ではリン窒化除去に必要な酸素分圧を固体炭素で達成できなかったことが一因と考えられる。また、1350℃および1400℃においては、鉄鉱石が半溶融~溶融して、回収した試料が一体化しており、その結果、鉄鉱石粒の隙間や気孔が消失し、ガスと接触する界面積が大幅に減少したのが原因と考えられる。この点について、示差熱分析法により測定した鉄鉱石の融点(Tm)は1370℃であり、その0.95倍の1300℃では高いリン除去率が得られたため、「0.95×Tm(℃)」以下とすることがリン除去のための反応界面積確保の上で好ましいと考えられる。 Next, FIG. 3 shows the composition of iron ore before and after the experiment in which the treatment was carried out with a mixed gas of CO = 10 vol% (P CO = 0.1 atm) and N 2 = 90 vol% (PN 2 = 0.9 atm). The relationship between the phosphorus removal rate (ΔP%) and the treatment temperature (T ° C.) obtained from the analysis results is shown. As can be seen from FIG. 3, a high phosphorus removal rate is obtained in the temperature range of 750 to 1300 ° C., and it can be seen that it is preferable for removing nitriding of phosphorus. As shown in FIG. 1, the reason why the phosphorus removal rate is low at less than 750 ° C. is considered to be that the oxygen partial pressure required for phosphorus nitriding removal could not be achieved with solid carbon at 724 ° C. or lower. Be done. Further, at 1350 ° C and 1400 ° C, the iron ore is semi-melted to melted, and the recovered sample is integrated. As a result, the gaps and pores of the iron ore grains disappear, and the boundary area in contact with the gas is increased. It is thought that the cause was a significant decrease. Regarding this point, the melting point (Tm) of iron ore measured by the differential thermal analysis method was 1370 ° C., and a high phosphorus removal rate was obtained at 1300 ° C., which is 0.95 times that, so that "0.95 x Tm (° C.)". ) ”And the following are considered to be preferable in terms of securing the reaction boundary area for removing phosphorus.
以上説明したように、リン含有物質である塊鉱石中のリンを脱リン窒化処理して低リン含有物質である低リン塊鉱石を得るためには、所定の温度での処理と窒素分圧PN2で規定される低酸素分圧環境となる窒素供給が必要と考えられる。このような処理をするための設備としては、電気炉、回転炉床炉、キルン炉、流動層型加熱炉などの原料予備処理設備において温度と雰囲気(窒素分圧)の制御が可能な設備であればよい。 As described above, in order to dephosphorylated phosphorus in a lump ore which is a phosphorus-containing substance to obtain a low-phosphorus lump ore which is a low phosphorus-containing substance, treatment at a predetermined temperature and nitrogen partial pressure P are performed. It is considered necessary to supply nitrogen, which is a low oxygen partial pressure environment specified by N2 . Equipment for such processing is equipment that can control the temperature and atmosphere (nitrogen partial pressure) in raw material pretreatment equipment such as electric furnaces, rotary hearth furnaces, kiln furnaces, and fluidized bed heating furnaces. All you need is.
また、本発明において、原料としての高いリン含有物質である塊鉱石中のリンを除去(低減)させて低リン含有物質である塊鉱石にする窒化脱リン処理を施すに当たり、酸素分圧を低減させて、所定の窒素分圧PN2として脱リンを図る方法としては、
(1)固体の還元剤と窒素ガスとを高温で接触させる、
(2)一酸化炭素、水素、炭化水素等の還元性ガスを窒素ガスに混合する、
(3)電圧を印加した固体電解質に窒素ガスを導入して酸素を除去する、
などの方法を採用することが好ましい。
Further, in the present invention, the oxygen partial pressure is reduced in performing the nitride dephosphorization treatment for removing (reducing) phosphorus in the lump ore, which is a high phosphorus-containing substance as a raw material, to form a lump ore, which is a low phosphorus-containing substance. As a method of dephosphorizing as a predetermined nitrogen partial pressure PN2,
(1) Bring the solid reducing agent into contact with nitrogen gas at high temperature.
(2) Mix reducing gas such as carbon monoxide, hydrogen, and hydrocarbon with nitrogen gas.
(3) Nitrogen gas is introduced into the solid electrolyte to which a voltage is applied to remove oxygen.
It is preferable to adopt such a method.
なお、前記塊鉱石などのリン含有物質は、前述した窒化脱リン処理によって、Pの含有量を、0.005mass%以上0.05mass%以下の低リン含有物質にすることがより好ましい。その理由は、前記処理に得られる該低リン含有物質中のPの含有量を0.005mass%未満にすることは95%以上の高いリン除去率が必要となり、処理時間・処理コストが増大するという課題があり、一方でその量が0.05mass%超では同程度のリン濃度の原料(粉鉱石)の購入価格と比べて処理コストの方が高くなるからである。原料(粉鉱石)の予備処理段階での脱リン処理によって得られるより好ましいPの含有量は、0.02mass%~0.04mass%である。 It is more preferable that the phosphorus-containing substance such as the lump ore has a P content of 0.005 mass% or more and 0.05 mass% or less as a low phosphorus-containing substance by the above-mentioned nitriding dephosphorization treatment. The reason is that if the content of P in the low phosphorus-containing substance obtained in the treatment is less than 0.005 mass%, a high phosphorus removal rate of 95% or more is required, and the treatment time and treatment cost increase. On the other hand, if the amount exceeds 0.05 mass%, the processing cost will be higher than the purchase price of the raw material (powder ore) having the same phosphorus concentration. The more preferable P content obtained by the dephosphorization treatment in the pretreatment step of the raw material (powder ore) is 0.02 mass% to 0.04 mass%.
本発明において、鉄鋼製造プロセス用原料であるリン含有物質の予備的に行われる窒化脱リン処理は、少なくとも高炉に装入する前までに、例えば、各種竪形炉、ロータリーキルン、回転炉床炉などを用いて予備処理することが好ましい。そして、得られた脱リン塊鉱石はそのまま高炉装入原料として使用する他、例えば転炉やトピードカーでの溶銑予備処理や転炉の製錬で用いる場合は予め脱リン窒化処理した塊鉱石を、その後粉砕して粉・粒状とした上で使用することができる。なお、これらによる処理によって、使用に供される塊鉱石(低リン含有物質)(P:0.005-0.05mass%)は、鉄鋼製造プロセスの各段階で使用される。 In the present invention, the preliminary nitriding and dephosphorizing treatment of a phosphorus-containing material, which is a raw material for a steel manufacturing process, is performed, for example, in various vertical furnaces, rotary kilns, rotary hearth furnaces, etc., at least before charging into a blast furnace. It is preferable to pre-treat using. Then, the obtained dephosphorized lump ore is used as it is as a raw material for charging into a blast furnace. After that, it can be crushed into powder or granules before use. The lump ore (low phosphorus-containing substance) (P: 0.005-0.05 mass%) used by these treatments is used at each stage of the steel manufacturing process.
以下、本発明の実施形態について、回転炉床炉による塊鉱石の窒化脱リン処理によって低リン塊鉱石を得る例(実施例1)、そして得られた低リン塊鉱石を用いて、高炉や転炉、トピードカーを使って鉄鋼を製造する例(実施例2~7)について説明する。 Hereinafter, with respect to the embodiment of the present invention, an example of obtaining a low-phosphorus lump ore by nitriding and dephosphorizing a lump ore with a rotary hearth furnace (Example 1), and using the obtained low-phosphorus lump ore for a blast furnace or a converter. An example of manufacturing steel using a furnace and a topeed car (Examples 2 to 7) will be described.
(塊鉱石の窒化脱リン処理)
5t/hr規模の回転炉床炉に塊鉱石を装入し、加熱バーナーに供給する燃料と酸素の量とその比率、さらに窒素ガスの供給量を調整して、処理温度、酸素分圧、窒素分圧を制御した窒化脱リン処理を施した。この設備(回転炉床炉)では装入から排出までの時間が30分となるように操業条件を設定し、炉内を移動する塊鉱石が15分時点まで移動した場所の雰囲気温度の測定とガス組成の分析を行った。炉内ガスについては、一酸化炭素(CO)および二酸化炭素(CO2)の濃度を赤外線ガス分析装置により測定し、その残りを窒素ガスとして扱った。また、酸素分圧については、CO/CO2比の測定値から、以下の式より算出した。
(Nitriding and dephosphorization of lump ore)
Mass ore is charged into a 5t / hr scale rotary hearth furnace, and the amount and ratio of fuel and oxygen supplied to the heating burner and the amount of nitrogen gas supplied are adjusted to handle the processing temperature, oxygen partial pressure, and nitrogen. A dephosphorization treatment with controlled partial pressure was applied. In this equipment (rotary hearth furnace), the operating conditions are set so that the time from charging to discharging is 30 minutes, and the ambient temperature of the place where the lump ore moving in the furnace has moved to the point of 15 minutes is measured. The gas composition was analyzed. Regarding the gas in the furnace, the concentrations of carbon monoxide (CO) and carbon dioxide (CO 2 ) were measured by an infrared gas analyzer, and the rest was treated as nitrogen gas. The oxygen partial pressure was calculated from the measured value of the CO / CO 2 ratio by the following formula.
この回転炉床炉を使った塊鉱石の窒化脱リン処理の条件および実施結果について、窒素分圧ごとに表2~表6に示した。それぞれの窒素分圧は0.2atm(表2)、0.5atm(表3)、0.9atm(表4)、0.15atm(表5)、0.95atm(表6)とした。 The conditions and results of the nitriding and dephosphorization treatment of the lump ore using this rotary hearth furnace are shown in Tables 2 to 6 for each nitrogen partial pressure. The nitrogen partial pressures were 0.2 atm (Table 2), 0.5 atm (Table 3), 0.9 atm (Table 4), 0.15 atm (Table 5), and 0.95 atm (Table 6), respectively.
上記の表2~6のうち、とくに表5から明らかなように、窒素分圧PN2が0.15atmにおいては、リン除去率は最大でも30%(比較例 NO.43~48)であった。このことはつまり、窒素分圧PN2が0.15atmにおいては、雰囲気ガス中の窒素の供給が不十分であり、リンの窒化反応(a)の進行が遅く今回の処理時間の30分程度では十分にリンが除去されないことを意味している。 Of the above Tables 2 to 6, as is particularly clear from Table 5, when the nitrogen partial pressure PN2 was 0.15 atm, the phosphorus removal rate was at most 30% (Comparative Examples No. 43 to 48). .. This means that when the nitrogen partial pressure PN2 is 0.15 atm, the supply of nitrogen in the atmospheric gas is insufficient, the progress of the phosphorus nitriding reaction (a) is slow, and the treatment time of this time is about 30 minutes. It means that phosphorus is not sufficiently removed.
また、表6から明らかなように、窒素分圧PN2が0.95atmにおいては、リンの除去は全く確認されなかった。その理由としては、雰囲気中のCOガス量が十分でなく、鉄鉱石の熱分解により生じる酸素、および鉄鉱石の装入口や装置の隙間から巻き込まれる空気に含まれる酸素を除去しきれなかった結果、窒化脱リン処理に必要な酸素分圧を確保できなかったためと考えられる。このことは、ガス分析においてCOガスがほとんど検出されていないことからもわかる。 Further, as is clear from Table 6, removal of phosphorus was not confirmed at all when the nitrogen partial pressure PN2 was 0.95 atm. The reason is that the amount of CO gas in the atmosphere was not sufficient, and the oxygen generated by the thermal decomposition of iron ore and the oxygen contained in the air entrained from the inlet of the iron ore and the gaps of the equipment could not be completely removed. It is probable that the oxygen partial pressure required for the nitriding and dephosphorizing treatment could not be secured. This can be seen from the fact that almost no CO gas is detected in the gas analysis.
一方で、表2~4に示す本発明例1~30においては、リン除去率が60%以上と高くなっている。このことから、高いリン除去率を得るためには、窒素分圧PN2(atm)は下記式(1)の関係を満たす必要があることがわかる。
(式1)
On the other hand, in Examples 1 to 30 of the present invention shown in Tables 2 to 4, the phosphorus removal rate is as high as 60% or more. From this, it can be seen that the nitrogen partial pressure PN2 (atm) must satisfy the relationship of the following formula (1) in order to obtain a high phosphorus removal rate.
(Equation 1)
次に、表2に示す処理温度と酸素分圧の関係を図4に示す。ここで、リン除去率が60%以上を示した例(本発明例1~10)を○で、リン除去率が10%未満の例(比較例1~11)を×でプロットした。 Next, FIG. 4 shows the relationship between the treatment temperature and the oxygen partial pressure shown in Table 2. Here, examples showing a phosphorus removal rate of 60% or more (Examples 1 to 10 of the present invention) are plotted with ◯, and examples with a phosphorus removal rate of less than 10% (Comparative Examples 1 to 11) are plotted with ×.
図4から明らかなように、処理温度と酸素分圧との関係では、下記式(2)、(3)を満たす時に高いリン除去率が得られていることがわかる。ここで、Tは処理温度(℃)、Tmは試料の融点(鉄鉱石:1370℃)である。
(式2)
(式3)
As is clear from FIG. 4, regarding the relationship between the treatment temperature and the oxygen partial pressure, it can be seen that a high phosphorus removal rate is obtained when the following equations (2) and (3) are satisfied. Here, T is the processing temperature (° C.), and Tm is the melting point of the sample (iron ore: 1370 ° C.).
(Equation 2)
(Equation 3)
上記式(2)、(3)の条件を外れた場合において、リン除去率が低い原因としては、以下の理由が考えられる。即ち、比較例1~3は、700℃以下での処理であり、CO-CO2平衡から決まる酸素分圧では、リンの窒化除去に必要な低酸素分圧を達成できなかったと考えられる。また、比較例9~11は、1400℃での処理であり、試料鉄鉱石の融点1370℃以上での処理であったため、試料が溶融して内部の気孔や粒間の隙間が消失した結果、界面積が大幅に低減したと考えられる。なお、比較例4~8は、(2)式の温度範囲を満たすが、酸素分圧が(3)式を満たさず、リンの窒化除去に必要な低酸素分圧を達成できなかったためと考えられる。 When the conditions of the above formulas (2) and (3) are not met, the following reasons can be considered as the cause of the low phosphorus removal rate. That is, it is considered that Comparative Examples 1 to 3 were the treatments at 700 ° C. or lower, and the low oxygen partial pressure required for the removal of nitriding of phosphorus could not be achieved by the oxygen partial pressure determined from the CO-CO 2 equilibrium. Further, Comparative Examples 9 to 11 were treated at 1400 ° C. and at a melting point of 1370 ° C. or higher of the sample iron ore, so that the sample melted and the internal pores and gaps between grains disappeared. It is considered that the boundary area has been significantly reduced. It is considered that Comparative Examples 4 to 8 satisfy the temperature range of Eq. (2), but the oxygen partial pressure does not satisfy Eq. (3), and the low oxygen partial pressure required for removing nitriding of phosphorus could not be achieved. Be done.
なお、同じ評価を表3、表4に記載の発明例11~30、比較例12~33に対して行うと、上記同様の結果となっており、上記式(2)および上記式(3)の条件を満たす時に60%以上の高いリン除去率が得られることがわかる。同様の設備を用い、処理時間を変更した場合にも、上記式(1)~(3)の条件を満たす時に、高いリン除去率が得られる。 When the same evaluation was performed on Invention Examples 11 to 30 and Comparative Examples 12 to 33 shown in Tables 3 and 4, the same results were obtained, and the above equations (2) and (3) were obtained. It can be seen that a high phosphorus removal rate of 60% or more can be obtained when the above conditions are satisfied. Even when the treatment time is changed by using the same equipment, a high phosphorus removal rate can be obtained when the conditions of the above formulas (1) to (3) are satisfied.
(窒化脱リン処理塊鉱石を用いた高炉の操業)
内容積5,000m3の高炉を用い、窒化脱リン処理を施した塊鉱石の内、10mm以上の篩い上の塊鉱石を装入原料として用いた高炉操業を行った(本発明例31~40)。高炉装入原料の20mass%を本発明に適合する処理を施した塊鉱石、75mass%を焼結鉱、5mass%をペレットとし、還元剤比が495kg/t-溶銑となるようにコークスを装入した。高炉に装入した窒化脱リン処理済み塊鉱石と未処理の塊鉱石、焼結鉱、ペレットのそれぞれの成分組成を表7に示す。高炉装入原料およびコークスは、コンベアーによって高炉上部まで運搬し、旋回シュートを介して高炉内に落下させることで装入した。出銑比が2.0t-溶銑/m3/日となるように熱風炉を介して1,120℃の空気を供給した。比較例として、本発明に適合する窒化脱リン処理をしていない塊鉱石の内、10mm以上の篩い上のみの塊鉱石を用いた操業を行った(比較例76)。
(Operation of blast furnace using nitriding and dephosphorized lump ore)
Using a blast furnace with an internal volume of 5,000 m 3 , a blast furnace was operated using a lump ore on a sieve of 10 mm or more as a charging raw material among the lump ores subjected to nitriding and dephosphorization treatment (Examples 31 to 40 of the present invention). ). 20 mass% of the raw material charged in the blast furnace is a lump ore that has been treated according to the present invention, 75 mass% is a sintered ore, 5 mass% is a pellet, and coke is charged so that the reducing agent ratio is 495 kg / t-hot metal. bottom. Table 7 shows the composition of each of the nitriding and dephosphorized lump ore and the untreated lump ore, sinter, and pellets charged in the blast furnace. The raw materials and coke charged into the blast furnace were transported to the upper part of the blast furnace by a conveyor and charged by dropping them into the blast furnace via a swivel chute. Air at 1,120 ° C. was supplied through a hot air furnace so that the hot metal output ratio was 2.0 t-hot metal / m 3 / day. As a comparative example, among the lump ores not subjected to the nitriding and dephosphorizing treatment suitable for the present invention, an operation was carried out using the lump ore only on a sieve of 10 mm or more (Comparative Example 76).
なお、塊鉱石の窒化脱リン処理としては、CO=10vol%(PCO=0.1atm)、N2=90vol%(PN2=0.9atm)の混合ガスを100リットル/分で供給し、1,000℃で1時間の処理を実施して窒化脱リン処理済みの塊鉱石とした。また、装入した塊鉱石のうちの窒化脱リン処理済み塊鉱石および未処理の塊鉱石の割合を表8に示す。 For the nitriding and dephosphorization treatment of the lump ore, a mixed gas of CO = 10 vol% (P CO = 0.1 atm) and N 2 = 90 vol% (PN 2 = 0.9 atm) was supplied at 100 liters / minute. Treatment at 1,000 ° C. for 1 hour was carried out to obtain nitrous dephosphorized lump ore. Table 8 shows the ratio of the nitriding and dephosphorized lump ore and the untreated lump ore among the charged lump ores.
表8に示した、溶銑P濃度と窒化脱リン処理済みの塊鉱石との配合割合との関係を図5に示す。この図5より明らかなように、窒化脱リン処理を施した塊鉱石を多く使用することで溶銑中のP濃度が低下し、その使用割合が多いほど溶銑P濃度の低下が大きかった。 FIG. 5 shows the relationship between the hot metal P concentration and the blending ratio of the nitriding and dephosphorized lump ore shown in Table 8. As is clear from FIG. 5, the P concentration in the hot metal decreased by using a large amount of the lump ore subjected to the nitriding and dephosphorizing treatment, and the larger the usage ratio, the greater the decrease in the hot metal P concentration.
(窒化脱リン処理塊鉱石を用いた転炉による脱リンのための溶銑予備処理)
280t規模の転炉において、溶銑の予備処理脱リンを実施する際の副原料として、窒化脱リン処理を施した塊鉱石の内、10mm以上の篩い上を用いて操業を行った(本発明例41~43)。溶銑装入量は280tとし、溶銑Si濃度に応じてスラグ塩基度(%CaO/%SiO2)が2.3となるように塊石灰添加量を調整した。ここで、塊鉱石および塊石灰は、転炉上部のホッパーに個別に格納しておき、必要量を切出して自然落下により炉内に装入した。操業は上吹きランスより気体酸素を吹き付け、予備処理後のC濃度が約3.0mass%となるように酸素吹き付け量を制御した。転炉に装入した溶銑成分と温度、予備処理後の溶銑成分と温度、および添加した塊石灰と塊鉱石の重量を表9に示す。使用した塊鉱石は、実施例2と同様のものであり、その成分組成は表7に示したとおりのものである。比較例として、塊鉱石を用いない操業および本発明技術による処理を未実施の塊鉱石の内、10mm以上の篩い上を用いた操業も行った(比較例77~80)。
(Preliminary hot metal treatment for dephosphorization by converter using nitriding dephosphorized lump ore)
In a 280-ton scale converter, operation was performed using a sieve of 10 mm or more among the nitrous ore subjected to nitriding and dephosphorization as an auxiliary raw material when performing pretreatment and dephosphorization of hot metal (example of the present invention). 41-43). The amount of hot metal charged was 280 tons, and the amount of lump lime added was adjusted so that the slag basicity (% CaO /% SiO 2 ) was 2.3 according to the hot metal Si concentration. Here, the lump ore and the lump lime were individually stored in the hopper at the upper part of the converter, and the required amount was cut out and charged into the furnace by free fall. In the operation, gaseous oxygen was blown from the top-blown lance, and the amount of oxygen blown was controlled so that the C concentration after the pretreatment was about 3.0 mass%. Table 9 shows the hot metal components and temperatures charged into the converter, the hot metal components and temperatures after pretreatment, and the weights of the added lump lime and lump ore. The lump ore used is the same as that of Example 2, and the composition thereof is as shown in Table 7. As a comparative example, an operation without using the lump ore and an operation using a sieve having a size of 10 mm or more among the lump ores not subjected to the treatment according to the technique of the present invention were also performed (Comparative Examples 77 to 80).
塊鉱石の添加量と溶銑予備処理前後のP濃度の変化量(ΔP濃度)の関係を図6に示す。図6から明らかなように、同じ鉄鉱石添加量であって、発明例の方がΔP濃度が大きくなっていることがわかる。これは塊鉱石中のP濃度が低いためだと考えられる。また、塊鉱石を添加していない比較例77と比べて、比較例78~80でΔP濃度が大きくなっている。これは塊鉱石が還元される際にエネルギーが消費されて溶銑温度の低下を招き、溶銑の脱リン反応が進行しやすい低温条件となったためだと考えられる。 FIG. 6 shows the relationship between the amount of lump ore added and the amount of change in P concentration (ΔP concentration) before and after the hot metal pretreatment. As is clear from FIG. 6, it can be seen that the ΔP concentration is higher in the invention example with the same amount of iron ore added. It is considered that this is because the P concentration in the lump ore is low. Further, the ΔP concentration is higher in Comparative Examples 78 to 80 as compared with Comparative Example 77 to which no lump ore is added. It is considered that this is because energy is consumed when the lump ore is reduced, which causes the temperature of the hot metal to drop, and the low temperature condition is such that the dephosphorization reaction of the hot metal easily proceeds.
(窒化脱リン処理塊鉱石を用いた転炉による脱炭処理)
280t規模の転炉において、脱炭処理する際の副原料として、実施例1で得られた窒化脱リン塊鉱石の内、10mm以上の篩い上を用いた操業を行った。装入する溶銑は、実施例3で得られた予備処理脱リンは未実施の溶銑(以下、「生銑」とも言う)と予備処理脱リン実施した溶銑(以下、「予備処理銑」とも言う)の2通りとした(生銑:本発明例44~46、予備処理銑:本発明例47~49)。溶銑装入量は280tとし、生銑を用いた操業ではスラグ中のSiO2量が12kg/tとなるように溶銑Si濃度に応じて珪石の添加を行った。一方、予備処理銑を用いた操業では、280tの溶銑に対して0.8tの珪石添加を行った。いずれの操業においても、スラグ塩基度(%CaO/%SiO2)が3.0となるように塊石灰添加量を調整した。ここで、塊鉱石、珪石、塊石灰は転炉上部のホッパーに個別に格納しておき、必要量を切出して自然落下により炉内に装入した。
(Decarburization treatment by converter using lump ore treated with nitriding dephosphorization)
In a 280 ton scale converter, an operation was carried out using a sieve of 10 mm or more among the nitrided dephosphorized ore obtained in Example 1 as an auxiliary raw material for the decarburization treatment. As for the hot metal to be charged, the hot metal obtained in Example 3 for which the pretreatment dephosphorization has not been carried out (hereinafter, also referred to as “raw pig iron”) and the hot metal for which the pretreatment dephosphorization has been carried out (hereinafter, also referred to as “pretreatment pig iron”). ) (Raw pig iron: Examples 44 to 46 of the present invention, Pretreatment pig iron: Examples 47 to 49 of the present invention). The amount of hot metal charged was 280 tons, and silica stone was added according to the hot metal Si concentration so that the amount of SiO 2 in the slag was 12 kg / t in the operation using raw hot iron. On the other hand, in the operation using the pretreated pig iron, 0.8 ton of silica stone was added to 280 tons of hot metal. In each operation, the amount of lump lime added was adjusted so that the slag basicity (% CaO /% SiO 2 ) was 3.0. Here, the lump ore, silica stone, and lump lime were individually stored in the hopper at the upper part of the converter, and the required amount was cut out and charged into the furnace by free fall.
そして、上吹きランスから気体酸素を吹き付け、処理後のC濃度が約0.05mass%となるように酸素の吹き付け量を制御した。転炉に装入した溶銑成分と温度、予備処理後溶銑の成分と温度、および添加した塊石灰と塊鉱石重量を表10、11に示す。使用した塊鉱石は、実施例2と同様のものであり、その成分組成は表7に示したとおりのものである。比較例として、塊鉱石を用いない操業および本発明に係る脱リン処理未実施の塊鉱石の内、10mm以上の篩い上を用いた操業も行った(生銑:比較例81~84、予備処理銑:85~88)。 Then, gaseous oxygen was sprayed from the top blowing lance, and the amount of oxygen sprayed was controlled so that the C concentration after the treatment was about 0.05 mass%. Tables 10 and 11 show the components and temperature of the hot metal charged in the converter, the components and temperature of the hot metal after the pretreatment, and the weight of the added lime and ore. The lump ore used is the same as that of Example 2, and the composition thereof is as shown in Table 7. As a comparative example, an operation using no lump ore and an operation using a sieve of 10 mm or more among the lump ores not subjected to the dephosphorization treatment according to the present invention were also performed (raw pig iron: Comparative Examples 81 to 84, preliminary treatment). Pig iron: 85-88).
図7、図8は、生銑および予備処理銑を転炉で脱炭処理したときにおける、塊鉱石の添加量と予備処理前後のP濃度変化量(ΔP濃度)の関係を、それぞれ示したものである。この図7、8から明らかなように、生銑、予備処理銑のいずれにおいても、同じ鉄鉱石添加量において、本発明例(例44~46、例47~49)の方がΔP濃度が大きくなっていることがわかる。これは塊鉱石中のP濃度が低位となっているためだと考えられる。また、塊鉱石を添加していない比較例81、85と比べて、比較例82~84、86~88でΔP濃度が大きくなっている。これは塊鉱石が還元される際にエネルギーが消費されて溶銑温度が低下し、溶銑の脱リン反応が進行しやすい低温条件となったためだと考えられる。 7 and 8 show the relationship between the amount of lump ore added and the amount of change in P concentration (ΔP concentration) before and after pretreatment when raw pig iron and pretreated pig iron are decarburized in a converter. Is. As is clear from FIGS. 7 and 8, in both the raw pig iron and the pretreated pig iron, the ΔP concentration is higher in the examples of the present invention (Examples 44 to 46 and Examples 47 to 49) at the same amount of iron ore added. You can see that it has become. It is considered that this is because the P concentration in the lump ore is low. Further, the ΔP concentration is higher in Comparative Examples 82 to 84 and 86 to 88 as compared with Comparative Examples 81 and 85 to which no lump ore is added. It is considered that this is because the hot metal temperature was lowered due to the consumption of energy when the lump ore was reduced, and the low temperature condition was such that the dephosphorization reaction of the hot metal was easy to proceed.
(混銑車にて溶銑の予備処理脱リンを行う際に脱リン塊鉱石の篩い上、篩い下の粉状鉱石を用いる例)
300t規模のトピードカー(混銑車とも言う)において、予備処理脱リンを実施する際の副原料として、本発明に適合する窒化脱リン処理を施した塊鉱石の篩い下、または篩い上の鉱石を破砕して10mm未満とした脱リン塊鉱石を破砕して得られた粉状鉱石を用いた予備脱リンの操業を行った(本発明例50~59)。溶銑装入量は300tとし、粉石灰2.5tと粉状鉱石12.0tを予め混合した精錬剤を、窒素ガスをキャリアガスとして、トピードカー内に挿入したインジェクションランスから供給した。表12は、トピードカーに装入した溶銑の成分と温度、予備処理後の溶銑成分と温度、および添加した精錬剤重量を示したものである。使用した塊鉱石は実施例2と同様の処理を実施したものであり、成分組成は表7に示したとおりのものである。比較例として、本発明に適合する処理を施していない未処理塊鉱石の篩い下、または篩い上を破砕して10mm未満とした粉状鉱石を用いた操業も行った(比較例89)。
(Example of using powdered ore on and under the sieving of dephosphorized lump ore when pre-treating hot metal with a torpedo wagon)
In a 300-ton scale topedo car (also referred to as a mixed iron car), as an auxiliary material when performing pretreatment dephosphorization, the ore under the sieve or on the sieve of the nitrided ore subjected to the nitride dephosphorization according to the present invention is crushed. Preliminary dephosphorization was performed using the powdery ore obtained by crushing the dephosphorized lump ore having a size of less than 10 mm (Examples 50 to 59 of the present invention). The amount of hot metal charged was 300 tons, and a refining agent in which 2.5 tons of powdered lime and 12.0 tons of powdered ore were mixed in advance was supplied from an injection lance inserted into a topedo car using nitrogen gas as a carrier gas. Table 12 shows the components and temperature of the hot metal charged in the topedo car, the hot metal components and temperature after the pretreatment, and the weight of the added refining agent. The lump ore used was treated in the same manner as in Example 2, and the composition of the components is as shown in Table 7. As a comparative example, an operation using an untreated lump ore that has not been treated according to the present invention under a sieve or a powdery ore obtained by crushing the top of the sieve to a size of less than 10 mm was also performed (Comparative Example 89).
表12に示したように、処理後P濃度と処理塊鉱石配合割合の関係を図9に示す。図9より明らかなように、窒化脱リン処理を施した塊鉱石を使用することでΔP濃度が増加し、使用割合が多いほどΔP濃度増加が大きかった。また、処理前後の温度には大きな差は見られなかった。 As shown in Table 12, the relationship between the treated P concentration and the treated lump ore mixing ratio is shown in FIG. As is clear from FIG. 9, the ΔP concentration increased by using the lump ore subjected to the nitriding and dephosphorizing treatment, and the greater the usage ratio, the greater the increase in the ΔP concentration. In addition, there was no significant difference in the temperature before and after the treatment.
(転炉による予備処理脱リンに際し、脱リン塊鉱石の篩い上・篩い下を用いる例)
280t規模の転炉において、予備処理脱リンを実施する際の副原料として、本発明に係る窒化脱リン処理を施してなる塊鉱石の篩い下または篩い上を破砕して10mm以下とした粉状鉱石を用いた操業を行った(本発明例60~62)。溶銑装入量は280tとし、溶銑Si濃度に応じてスラグ塩基度(%CaO/%SiO2)が2.3となるように塊石灰添加量を調整した。ここで、前記粉状鉱石は転炉脇のディスペンサータンクに格納されており、ArやN2などの不活性ガスによって搬送して、送酸用の上吹きランスから炉内に投射した。塊石灰は転炉上部のホッパーに格納しておき、必要量を切り出して自然落下により炉内に装入した。上吹きランスから気体酸素を吹き付け、予備処理後のC濃度が約3.0%となるように酸素吹き付け量を制御した。転炉に装入した溶銑成分と温度、予備処理後の溶銑成分と温度、および添加した塊石灰と粉鉱石重量を表13に示す。使用した塊鉱石は実施例2と同様の処理を施したものであり、成分組成は表7に示したとおりのものである。比較として、粉鉱石を用いない操業および本発明に係る脱リン処理未実施の粉鉱石を用いた操業も行った(比較例90~93)。
(Example of using the upper and lower sieving of dephosphorized lump ore for pretreatment dephosphorization by converter)
In a converter of 280 ton scale, as an auxiliary raw material when performing pretreatment dephosphorization, the lump ore subjected to the nitrided dephosphorization according to the present invention is crushed under the sieve or on the sieve into a powder of 10 mm or less. The operation using ore was carried out (Examples 60 to 62 of the present invention). The amount of hot metal charged was 280 tons, and the amount of lump lime added was adjusted so that the slag basicity (% CaO /% SiO 2 ) was 2.3 according to the hot metal Si concentration. Here, the powdered ore was stored in a dispenser tank beside the converter, was conveyed by an inert gas such as Ar or N 2 , and was projected into the furnace from a top-blown lance for acid feeding. The lump lime was stored in the hopper at the top of the converter, and the required amount was cut out and charged into the furnace by free fall. Gas oxygen was blown from the top blow lance, and the amount of oxygen blown was controlled so that the C concentration after the pretreatment was about 3.0%. Table 13 shows the hot metal components and temperature charged into the converter, the hot metal components and temperature after the pretreatment, and the weight of the added lump lime and powder ore. The lump ore used was treated in the same manner as in Example 2, and the composition of the components is as shown in Table 7. As a comparison, an operation using no powder ore and an operation using the powder ore not subjected to the dephosphorization treatment according to the present invention were also performed (Comparative Examples 90 to 93).
図10は、塊鉱石の添加量と予備処理前後のP濃度変化量(ΔP濃度)の関係を示すものである。図10から明らかなように、同じ塊鉄鉱石添加量において、本発明例に適合する例の方がΔP濃度が大きくなっている。これは塊鉱石中のP濃度が低くなっているためだと考えられる。また、塊鉱石を添加していない比較例90と比べて、比較例91~93でΔP濃度が大きくなっている。これは塊鉱石が還元される際にエネルギーが消費されて溶銑温度が低下し、溶銑の脱リン反応が進行しやすい低温条件となったためだと考えられる。 FIG. 10 shows the relationship between the amount of lump ore added and the amount of change in P concentration (ΔP concentration) before and after the pretreatment. As is clear from FIG. 10, at the same amount of lump iron ore added, the ΔP concentration is higher in the example conforming to the example of the present invention. It is considered that this is because the P concentration in the lump ore is low. Further, the ΔP concentration is higher in Comparative Examples 91 to 93 as compared with Comparative Example 90 to which no lump ore is added. It is considered that this is because the hot metal temperature was lowered due to the consumption of energy when the lump ore was reduced, and the low temperature condition was such that the dephosphorization reaction of the hot metal was easy to proceed.
(転炉による脱炭処理に際し、脱リン塊鉱石の篩い下、篩い上の粉を用いる例)
280t規模の転炉において、脱炭処理(精錬)を施す際の副原料として、本発明に係る窒化脱リン処理を施してなる塊鉱石の篩い下または篩い上を破砕して10mm以下とした粉状鉱石を用いて操業を行った。転炉内に装入する溶銑は、生銑、予備処理銑の2通りとした(生銑:本発明例63~65、予備処理銑:本発明例66~68)。溶銑装入量は280tとし、生銑を用いた操業ではスラグ中のSiO2量が12kg/tとなるように溶銑Si濃度に応じて珪石添加を行った。予備処理銑を用いた操業では、280tの溶銑に対して0.8tの珪石の添加を行った。いずれの操業においても、スラグ塩基度(%CaO/%SiO2)が3.0となるように塊石灰添加量を調整した。ここで、前記粉状鉱石は転炉脇のディスペンサータンクに格納しておき、ArやN2などの不活性ガスによって搬送して、送酸用の上吹きランスから炉内に投射した。珪石および塊石灰は転炉上部のホッパーに個別に格納しておき、必要量を切り出して自然落下により炉内に装入した。上吹きランスから気体酸素を吹き付け、処理後のC濃度が約0.05mass%となるように酸素吹き付け量を制御した。
(Example of using powder under and on the sieve of dephosphorized lump ore during decarburization treatment by converter)
In a 280 ton scale converter, as an auxiliary raw material for decarburization treatment (refining), the powder obtained by crushing the lump ore subjected to the nitriding and dephosphorization treatment according to the present invention to 10 mm or less. The operation was carried out using the state ore. There were two types of hot metal charged into the converter: raw pig iron and pre-treated pig iron (raw pig iron: Examples 63 to 65 of the present invention, pre-treated pig iron: Examples 66 to 68 of the present invention). The amount of hot metal charged was 280 tons, and in the operation using raw hot iron, silica stone was added according to the hot metal Si concentration so that the amount of SiO 2 in the slag was 12 kg / t. In the operation using the pretreatment pig iron, 0.8 ton of silica stone was added to 280 tons of hot metal. In each operation, the amount of lump lime added was adjusted so that the slag basicity (% CaO /% SiO 2 ) was 3.0. Here, the powdered ore was stored in a dispenser tank beside the converter, transported by an inert gas such as Ar or N 2 , and projected into the furnace from a top-blown lance for acid feeding. Silica stone and lump lime were individually stored in the hopper at the top of the converter, and the required amount was cut out and charged into the furnace by free fall. Gas oxygen was blown from the top blow lance, and the amount of oxygen blown was controlled so that the C concentration after the treatment was about 0.05 mass%.
前記転炉内に装入した溶銑成分と温度、脱炭処理後の溶銑・溶鉄の成分と温度、および添加した塊石灰と粉鉱石重量を表14、15に示す。使用した塊鉱石は実施例2と同様の処理を施したものであり、成分組成は表7に示したとおりのものである。比較例として、脱リン粉鉱石を用いない操業および本発明に係る脱リン処理未実施の粉鉱石を用いた操業も行った(生銑:比較例94~97、予備処理銑:比較例98~101)。 Tables 14 and 15 show the components and temperature of the hot metal charged into the converter, the components and temperature of the hot metal and molten iron after the decarburization treatment, and the weights of the added lump lime and powder ore. The lump ore used was treated in the same manner as in Example 2, and the composition of the components is as shown in Table 7. As a comparative example, an operation without dephosphorizing powder ore and an operation using powder ore not subjected to dephosphorization according to the present invention were also performed (raw pig iron: Comparative Examples 94 to 97, pretreated pig iron: Comparative Example 98 to). 101).
生銑および予備処理銑の脱炭処理における、鉱石の添加量と処理前後のP濃度変化量(ΔP濃度)の関係を、図11、12にそれぞれ示す。図11、12から明らかなように、生銑、予備処理銑のいずれにおいても、同じ鉄鉱石添加量において、本発明例の方がΔP濃度が大きくなっていることがわかる。これは粉鉱石中のP濃度が低いためだと考えられる。また、粉鉱石を添加していない比較例94、98と比べて、比較例95~97、99~101でΔP濃度が大きくなっている。これは粉鉱石が還元される際にエネルギーが消費されて溶銑温度が低下し、溶銑の脱リン反応が進行しやすい低温条件となったためだと考えられる。 The relationship between the amount of ore added and the amount of change in P concentration (ΔP concentration) before and after the treatment in the decarburization treatment of raw pig iron and pre-treated pig iron is shown in FIGS. 11 and 12, respectively. As is clear from FIGS. 11 and 12, it can be seen that the ΔP concentration in the example of the present invention is higher in both the raw pig iron and the pretreated pig iron at the same amount of iron ore added. It is considered that this is because the P concentration in the powder ore is low. Further, the ΔP concentration is higher in Comparative Examples 95 to 97 and 99 to 101 as compared with Comparative Examples 94 and 98 to which no powder ore is added. It is considered that this is because energy is consumed when the powdered ore is reduced and the temperature of the hot metal drops, resulting in a low temperature condition in which the dephosphorization reaction of the hot metal easily proceeds.
以上説明したとおり、鉄鋼の製錬・精錬において、リンを除去しようとすると、精錬剤としてCaOを含有する生石灰や消石灰、ドロマイトなどを添加するために、スラグが不可避に生成するが、その際、脱リン製・精錬は通常は酸化条件下で行われるので、同時に鉄も酸化されるため、スラグ中に鉄もまた不可避に取り込まれ、鉄ロスが生じて歩留りが低下する。また、鉄鋼精錬は1300~1700℃の高温で行われるので、スラグも同等の温度とする必要があることから、エネルギーロスも発生する。 As explained above, in the smelting and refining of steel, when trying to remove phosphorus, slag is inevitably generated due to the addition of quicklime, smelting lime, dolomite, etc. containing CaO as a refining agent. Since dephosphorization and refining are usually performed under oxidizing conditions, iron is also oxidized at the same time, so that iron is also inevitably taken into the slag, causing iron loss and reducing the yield. Further, since steel refining is performed at a high temperature of 1300 to 1700 ° C., the slag needs to be at the same temperature, so that energy loss also occurs.
一般的に、溶銑からP濃度0.001mass%相当のものまでリンを除去するためには、予備処理脱リンにおいては、CaO換算で200~250g/t-溶銑を添加する必要があり、鉄ロス量は75~100g/t-溶銑である。一方、転炉脱炭処理においては、CaO換算で約450g/t-溶銑を使用する必要があり、鉄ロス量は200g/t-溶銑になる。 Generally, in order to remove phosphorus from the hot metal to a P concentration equivalent to 0.001 mass%, it is necessary to add 200 to 250 g / t-hot metal in terms of CaO in the pretreatment dephosphorization, and iron loss. The amount is 75 to 100 g / t-hot metal. On the other hand, in the converter decarburization treatment, it is necessary to use about 450 g / t-hot metal in terms of CaO, and the amount of iron loss is 200 g / t-hot metal.
このように、鉄鋼精錬においてリンを除去するためには多量の副原料添加やエネルギーが必要である。この点、本発明では、鉄鋼製・精錬プロセス用原料として用いられるリン含有物質(塊鉱石)を窒素含有ガスと反応させて、該リン含有物質中のリンを窒化除去し、そうした原料を鉄鋼製・精錬プロセスのいずれかの段階において使用することで、リン濃度の効果的な低減がなされ、前述のような多量の副原料添加やエネルギーを必要とすることなく、低リン鋼の製造が可能となる。 As described above, in order to remove phosphorus in steel refining, a large amount of auxiliary raw material addition and energy are required. In this respect, in the present invention, a phosphorus-containing substance (lump ore) used as a raw material for a steel / refining process is reacted with a nitrogen-containing gas to remove phosphorus in the phosphorus-containing substance by nitriding, and such a raw material is made of steel. -By using it at any stage of the refining process, the phosphorus concentration can be effectively reduced, and it is possible to produce low phosphorus steel without the need for a large amount of auxiliary raw materials and energy as described above. Become.
本発明に係る技術は、例示した高炉や混銑車、転炉などを使う鉄鋼製造プロセスだけでなく、他の原料処理設備、溶銑製造用竪形炉、製鋼精錬炉などに用いても有効な方法である。 The technique according to the present invention is an effective method not only for a steel manufacturing process using an exemplified blast furnace, a torpedo wagon, a converter, etc., but also for other raw material processing equipment, a vertical furnace for hot metal manufacturing, a steelmaking smelting furnace, and the like. Is.
Claims (3)
記
Tm:融点(℃)
Of the raw materials for the steel manufacturing process, the phosphorus-containing substance, which is a lump ore with a particle size of 10 mm or more, has a nitrogen partial pressure PN2 (atm) that satisfies the following formula (1), and has a treatment temperature T (° C.) and an oxygen partial pressure. By reacting with a nitrogen - containing gas in a treatment atmosphere in which PO2 (atm) satisfies the following formulas (2) and (3), at least a part of phosphorus in the phosphorus-containing substance is removed as PN gas. A method for producing a low-phosphorus steel, which comprises using the obtained low-phosphorus-containing substance at any one or more stages of the steel production process after performing a dephosphorus treatment to obtain a low-phosphorus-containing substance.
Record
Tm: Melting point (° C)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019117202A JP7047816B2 (en) | 2019-06-25 | 2019-06-25 | Manufacturing method of low phosphorus steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019117202A JP7047816B2 (en) | 2019-06-25 | 2019-06-25 | Manufacturing method of low phosphorus steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021004380A JP2021004380A (en) | 2021-01-14 |
JP7047816B2 true JP7047816B2 (en) | 2022-04-05 |
Family
ID=74097043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019117202A Active JP7047816B2 (en) | 2019-06-25 | 2019-06-25 | Manufacturing method of low phosphorus steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7047816B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004250780A (en) | 2003-01-29 | 2004-09-09 | Jfe Steel Kk | Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material |
WO2019131128A1 (en) | 2017-12-26 | 2019-07-04 | Jfeスチール株式会社 | Method for removing phosphorus from phosphorus-containing substance |
JP2020020010A (en) | 2018-08-02 | 2020-02-06 | 日本製鉄株式会社 | Reduction method of high-phosphorus iron ore |
-
2019
- 2019-06-25 JP JP2019117202A patent/JP7047816B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004250780A (en) | 2003-01-29 | 2004-09-09 | Jfe Steel Kk | Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material |
WO2019131128A1 (en) | 2017-12-26 | 2019-07-04 | Jfeスチール株式会社 | Method for removing phosphorus from phosphorus-containing substance |
JP2020020010A (en) | 2018-08-02 | 2020-02-06 | 日本製鉄株式会社 | Reduction method of high-phosphorus iron ore |
Also Published As
Publication number | Publication date |
---|---|
JP2021004380A (en) | 2021-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102386946B1 (en) | Methods for Removal of Phosphorus from Phosphorus-Containing Materials | |
US3936296A (en) | Integrated fluidized reduction and melting of iron ores | |
JP2013167015A (en) | Method for preliminary treatment of molten iron | |
EP0079182A1 (en) | Improvements in or relating to the production of steel | |
TWI797457B (en) | Method for removing phosphorus from phosphorus-containing substances, method for producing raw materials for metal smelting or metal refining, and method for producing metals | |
JP7047816B2 (en) | Manufacturing method of low phosphorus steel | |
US20150329929A1 (en) | An Efficient Process in the Production of Iron and Steel from Iron Ore | |
JP7067532B2 (en) | A method for dephosphorizing a manganese oxide-containing substance, a method for producing a low-phosphorus-containing manganese oxide-containing substance, and a method for producing steel using the manganese oxide-containing substance. | |
JP7047817B2 (en) | Manufacturing method of low phosphorus steel | |
JP7047815B2 (en) | Manufacturing method of low phosphorus steel | |
US4010023A (en) | Manufacture of alumina for use in the basic oxygen furnace | |
TW201829787A (en) | Molten pig iron pretreatment method and method for producing ultra-low phosphorus steel | |
JP7040499B2 (en) | Phosphorus removal method from phosphorus-containing substances and steel manufacturing method | |
US4236699A (en) | Apparatus for wet-post treatment of metallized iron ore | |
JP4701752B2 (en) | Hot metal pretreatment method | |
JP5655345B2 (en) | Hot phosphorus dephosphorization method | |
JP6798654B1 (en) | A method for removing phosphorus from a phosphorus-containing substance, a method for producing a raw material for metal smelting or a raw material for metal refining, and a method for producing a metal. | |
JP4192503B2 (en) | Manufacturing method of molten steel | |
JP4779464B2 (en) | Method for producing low phosphorus hot metal | |
JP6578981B2 (en) | How to remove hot metal | |
JP4466145B2 (en) | Hot metal desiliconization method | |
JP2023080726A (en) | metal manufacturing method | |
JP3787960B2 (en) | Smelting reduction smelting method | |
JP2009024240A (en) | Method for producing molten iron | |
JPH04318109A (en) | Method for improving strength in powdery coal pressurized compact |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220222 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220307 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7047816 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |