JP2004250780A - Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material - Google Patents

Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material Download PDF

Info

Publication number
JP2004250780A
JP2004250780A JP2003272505A JP2003272505A JP2004250780A JP 2004250780 A JP2004250780 A JP 2004250780A JP 2003272505 A JP2003272505 A JP 2003272505A JP 2003272505 A JP2003272505 A JP 2003272505A JP 2004250780 A JP2004250780 A JP 2004250780A
Authority
JP
Japan
Prior art keywords
metal
powdery waste
substance
containing powdery
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003272505A
Other languages
Japanese (ja)
Inventor
Takashi Matsui
貴 松井
Yoshiaki Hara
義明 原
Akio Asanuma
明夫 浅沼
Nobuaki Saito
信昭 斎藤
Shigeaki Goto
滋明 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003272505A priority Critical patent/JP2004250780A/en
Publication of JP2004250780A publication Critical patent/JP2004250780A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of easily agglomerating metal-containing powdery waste such as steel manufacturing dust in a high yield with prescribed quality in a short time without depending on weather. <P>SOLUTION: At the time of agglomerating steel manufacturing dust, metal-containing powdery waste, a material having latent hydraulic properties and one or more of alkali stimulants selected from the oxides, hydroxides, carbonates and silicates of alkali metals and the oxides, hydroxides, carbonates and silicates of alkaline-earth metals are kneaded, and the kneaded material is hardened by the latent hydraulic properties of the material having latent hydraulic properties. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、含金属粉状廃棄物の塊成化物に係り、また特に、塊成化後の含金属粉状廃棄物をシャフト炉、または転炉で処理可能な強度に歩留りよく塊成化する含金属粉状廃棄物の塊成化方法、およびその含金属粉状廃棄物の処理方法に関する。   The present invention relates to agglomerates of metal-containing powdery wastes, and more particularly to agglomeration of metal-containing powdery wastes after agglomeration to a strength that can be processed in a shaft furnace or a converter with good yield. The present invention relates to a method for agglomerating metal-containing powdery waste and a method for treating the metal-containing powdery waste.

製鉄所において発生するダストには、製鋼ダストなどのように、鉄の他に有用な金属を含有しているものがある。また、メッキ工程や圧延工程、酸洗工程などでも、同様に有用な金属を含有するメッキスラッジや圧延スラッジ、酸洗スラッジが発生する。   Some dusts generated in steelworks contain useful metals other than iron, such as steelmaking dusts. Also, in a plating step, a rolling step, a pickling step, etc., similarly, plating sludge, rolled sludge, and pickling sludge containing useful metals are generated.

たとえば、ステンレス製造時に発生するダストには、鉄の他、Cr、Ni等の非常に有用な金属の酸化物が含有されているが、このままの状態で、シャフト炉、または転炉に投入して再利用しようとしても、ほとんどが飛散して再びダストとなり効率的に利用することができない。そこで、有用な金属を含有している製鋼ダストを塊成化し、塊成化後の製鋼ダストをシャフト炉、または転炉で処理できれば資源の有効利用になるばかりでなく、環境保全にも役立つ。   For example, dust generated during the production of stainless steel contains, in addition to iron, oxides of very useful metals such as Cr and Ni. Even if they try to reuse them, most of them scatter and become dust again and cannot be used efficiently. Therefore, if the steelmaking dust containing a useful metal can be agglomerated and the agglomerated steelmaking dust can be treated in a shaft furnace or a converter, not only will the resources be effectively used, but also the environment will be protected.

この有用な金属を含有している含金属粉状廃棄物から金属を回収することは、資源の有効利用や環境保全のうえからも非常に重要な技術であり、これまでに多様な研究が行われている。   Recovering metals from metal-containing powdery wastes containing useful metals is a very important technology from the viewpoint of effective use of resources and environmental conservation, and various studies have been conducted so far. Has been done.

ところで、回収された製鋼ダストは粉粒状で、水分を含有している。そのため、一般に有用な金属を含有している製鋼ダストに、ベントナイトや石灰等のバインダーとなる物質を混合し、ペレタイザー等で塊成化した後、塊成化後の製鋼ダストを転炉タイプの炉で溶融還元することが行われている。   Incidentally, the collected steelmaking dust is in the form of powder and granules, and contains moisture. Therefore, a binder material such as bentonite or lime is mixed with steelmaking dust generally containing a useful metal, agglomerated with a pelletizer, etc., and the steelmaking dust after agglomeration is converted into a converter type furnace. Smelting reduction.

しかしながら、上記従来の塊成化技術は、石灰等のバインダー効果を発揮する物質を添加し、混合物をペレタイザー等で塊成化する方法では、設備コスト、バインダーの購入コストがかかるため、塊成化コストが高いという問題があった。   However, in the conventional agglomeration technique described above, a method of adding a material exhibiting a binder effect such as lime and agglomerating the mixture with a pelletizer or the like requires equipment cost and binder purchase cost. There was a problem that the cost was high.

また、製鋼ダストを塊成化するに際し、水硬性のある普通のポルトランドセメントを用いた場合には、ポルトランドセメント比率を10質量%とすると、製鋼ダストとの混練物が混練の翌日には完全に固化し、硬化体の強度が高くなりすぎて、粉砕により大きさが5〜50mmの範囲に調整するのが困難であり、また、ポルトランドセメント比率を5質量%まで低下すると、混練物が混練の翌日には固化するものの、硬化体を粉砕する際に大きさが5mm未満の粉の発生率が高くなって、大きさ; 5〜50mmの塊成化品の歩留りが60%を下回ってしまう欠点がある。このために、製鋼ダストを塊成化するに際し、普通のポルトランドセメントは、用いることができない。   In addition, when using ordinary Portland cement having hydraulic properties when agglomerating steelmaking dust, if the Portland cement ratio is 10% by mass, the material kneaded with steelmaking dust is completely removed the day after kneading. It hardens and the strength of the cured product becomes too high, it is difficult to adjust the size to a range of 5 to 50 mm by pulverization, and if the Portland cement ratio is reduced to 5% by mass, The following day, though solidified, the rate of generation of powder with a size of less than 5 mm increases when the cured product is crushed, and the yield of agglomerates with a size of 5 to 50 mm is less than 60% There is. For this reason, when agglomerating steelmaking dust, ordinary Portland cement cannot be used.

そこで、特開2001−316731号公報には、有用な金属鉄を含有している製鉄ダストである製鋼ダストと、製鉄工程で発生するダストやスラッジなどの粉体とを混合し、この混合物を大気中に保持して、混合物中の金属鉄を酸化させることにより塊成化する方法が開示されている(特許文献1)。   Japanese Patent Application Laid-Open No. 2001-316731 discloses that steelmaking dust, which is ironmaking dust containing useful metallic iron, is mixed with powder such as dust and sludge generated in the ironmaking process, and this mixture is air-mixed. There is disclosed a method of agglomerating by holding the steel inside and oxidizing metallic iron in the mixture (Patent Document 1).

この方法の場合、結合反応により塊成化効果を発揮するものとして、製鉄所内で発生する製鋼ダストを用いているので、バインダーなどの外部購入コストがかからず、ペレタイザー等で塊成化する設備も必要としない利点がある。
特開2001−316731号公報
In the case of this method, since the steelmaking dust generated in the steel mill is used as a material that exhibits the agglomeration effect by the binding reaction, the cost for external purchase of the binder and the like is not required, and the equipment for agglomerating with a pelletizer or the like. There are also advantages that do not require.
JP 2001-316731 A

しかしながら、特開2001−316731号公報に記載の、製鉄工程で発生するダストやスラッジなどの粉体と、金属鉄を含有している製鋼ダストとを混合して、製鉄粉体を塊成化する方法は、製鋼ダストに含まれる金属鉄の、大気中での酸化発熱反応を利用しているために、金属鉄を全量酸化させる結合反応期間として3週間程度の期間が必要であり、製鉄粉体を塊成化する塊成化期間が長くかかる欠点があった。   However, as described in JP-A-2001-316731, powder such as dust or sludge generated in the iron-making process, and steel-making dust containing metallic iron are mixed to agglomerate the iron-made powder. Since the method uses an exothermic oxidation reaction of metallic iron contained in steelmaking dust in the atmosphere, a period of about three weeks is required as a bonding reaction period for oxidizing the entire amount of metallic iron. There is a disadvantage that the agglomeration period for agglomerating the product is long.

また、この方法では混合物中の金属鉄の酸化反応を利用するために、露天で保持する場合には、雨水等の有無により酸化の進行が大きく異なり、その結果、塊成化する期間にバラツキが生じる事が多く、さらに混合物の中でも場所により塊成化の程度にバラツキが生じるといった問題がある。   In addition, in this method, since the oxidation reaction of metallic iron in the mixture is used, the progress of oxidation is greatly different depending on the presence or absence of rainwater, etc., when held in the open air, and as a result, variation occurs during the period of agglomeration. In many cases, there is a problem that the degree of agglomeration varies from place to place in the mixture.

本発明者らは特開2001−316731号公報に記載に記載されたような、製鉄ダストを大気中に暴露して、混合物中の金属鉄の酸化発熱反応を利用する塊成化方法では、気候の影響を強く受けてしまい、塊成化品にバラツキが生じやすく、一方、所定の強度と所定の歩留りの両方を達成しようとすると、気候の変化に応じた余分な作業が生じるために、工業的に実施することは困難と考えた。   The present inventors have disclosed an agglomeration method that utilizes the oxidative exothermic reaction of metallic iron in a mixture by exposing iron-making dust to the atmosphere as described in JP-A-2001-316731. Agglomerated products are likely to vary, while trying to achieve both the specified strength and the specified yield requires extra work in response to changes in the climate. It was considered difficult to implement it in a practical manner.

また、上記従来の塊成化技術は、石灰等のバインダー効果を発揮する物質を添加し、混合物をペレタイザー等の設備を使用して塊成化することにより塊成化を行うため、塊成化コストがかかるという問題がある。   In addition, the conventional agglomeration technique described above involves adding a substance exhibiting a binder effect, such as lime, and agglomerating the mixture using equipment such as a pelletizer to perform agglomeration. There is a problem that costs are high.

本発明は、上記方針に基づいたもので、上記従来技術の問題点を解消し、製鋼ダスト等の含金属粉状廃棄物を、気候に依らず安定して、歩留りよく、所定の品質で短期間でかつ簡易に塊成化する方法を提供することを目的とする。   The present invention is based on the above-mentioned policy, and solves the above-mentioned problems of the prior art, and stabilizes metal-containing powdery waste such as steelmaking dust, regardless of climate, with good yield, at a predetermined quality and for a short time. It is an object of the present invention to provide a method for agglomerating easily and easily.

本発明は、以下の通りである。   The present invention is as follows.

(1) 含金属粉状廃棄物と潜在水硬性を有する物質、およびアルカリ金属の酸化物、水酸化物、炭酸塩、珪酸塩、アルカリ土類金属の酸化物、水酸化物、炭酸塩、珪酸塩から選ばれた1種以上のアルカリ刺激剤とからなり、前記潜在水硬性を有する物質の水硬性により硬化したことを特徴とする含金属粉状廃棄物の塊成化物。   (1) Pulverulent metal-containing waste and substances having latent hydraulic properties, and oxides, hydroxides, carbonates, silicates, and alkaline earth metal oxides, hydroxides, carbonates, and silicates of alkali metals An agglomerate of metal-containing powdery waste, comprising at least one alkali stimulant selected from salts and cured by the hydraulic property of the substance having latent hydraulic property.

(2) 含金属粉状廃棄物と、潜在水硬性を有する物質、およびアルカリ金属の酸化物、水酸化物、炭酸塩、珪酸塩、アルカリ土類金属の酸化物、水酸化物、炭酸塩、珪酸塩から選ばれた1種以上のアルカリ刺激剤と更に炭素含有物質を含み、前記潜在水硬性を有する物質の水硬性により硬化したことを特徴とする(1)に記載の含金属粉状廃棄物の塊成化物。   (2) metal-containing powdery waste, substances having latent hydraulic properties, and alkali metal oxides, hydroxides, carbonates, silicates, alkaline earth metal oxides, hydroxides, carbonates, The metal-containing powdery waste according to (1), further comprising one or more alkali stimulants selected from silicates and a carbon-containing substance, and cured by the hydraulic property of the substance having latent hydraulic property. Agglomeration of material.

(3) 含金属粉状廃棄物を塊成化するに際し、前記含金属粉状廃棄物と、潜在水硬性を有する物質、およびアルカリ金属の酸化物、水酸化物、炭酸塩、珪酸塩、アルカリ土類金属の酸化物、水酸化物、炭酸塩、珪酸塩から選ばれた1種以上のアルカリ刺激剤と、水との混錬物を作成し、硬化させることを特徴とする含金属粉状廃棄物の塊成化方法。   (3) When agglomerating the metal-containing powdery waste, the metal-containing powdery waste, a substance having latent hydraulic property, and an oxide, hydroxide, carbonate, silicate, or alkali of an alkali metal are used. A metal-containing powder which is prepared by kneading at least one alkali stimulant selected from the group consisting of oxides, hydroxides, carbonates and silicates of earth metals with water and hardening the mixture. Agglomeration method of waste.

(4) 含金属粉状廃棄物を塊成化するに際し、前記含金属粉状廃棄物と、潜在水硬性を有する物質、およびアルカリ金属の酸化物、水酸化物、炭酸塩、珪酸塩、アルカリ土類金属の酸化物、水酸化物、炭酸塩、珪酸塩から選ばれた1種以上のアルカリ刺激剤と炭素含有物質と水との混練物を作成し、硬化させることを特徴とする含金属粉状廃棄物の塊成化方法。   (4) When agglomerating the metal-containing powdery waste, the metal-containing powdery waste, a substance having latent hydraulic property, and an oxide, hydroxide, carbonate, silicate, or alkali of an alkali metal are used. A metal-containing material comprising kneading a kneaded product of at least one alkali stimulant selected from the group consisting of oxides, hydroxides, carbonates and silicates of earth metals, a carbon-containing substance and water, and curing the mixture. Agglomeration method of powdery waste.

(5) 上記(3)に記載の含金属粉状廃棄物の塊成化方法において、前記含金属粉状廃棄物と前記潜在水硬性を有する物質の合計量を 100質量部としたとき、その内の潜在水硬性を有する物質の量を8質量部以上とし、さらに前記アルカリ刺激剤を外掛けで0.4 質量部以上加えるとともに、前記水を外掛けで9〜20質量部加えて混練し、混錬物とすることを特徴とする含金属粉状廃棄物の塊成化方法。   (5) In the method for agglomerating metal-containing powdery waste according to (3), when the total amount of the metal-containing powdery waste and the substance having latent hydraulic property is 100 parts by mass, The amount of the substance having latent hydraulic property is 8 parts by mass or more, and the alkali stimulant is externally added by 0.4 parts by mass or more, and the water is externally added by 9 to 20 parts by mass and kneaded. A method for agglomerating metal-containing powdery waste, characterized in that it is made into a wrought product.

(6) 上記(4)に記載の含金属粉状廃棄物の塊成化方法において、前記含金属粉状廃棄物と前記炭素含有物質および前記潜在水硬性を有する物質の合計量を 100質量部としたとき、その内の潜在水硬性を有する物質の量を8質量部以上とし、炭素含有物質を5質量部以下として、さらに前記アルカリ刺激剤を外掛けで0.4 質量部以上加えるとともに、前記水を外掛けで9〜20質量部加えて混練し、混錬物とすることを特徴とする含金属粉状廃棄物の塊成化方法。   (6) In the method for agglomerating metal-containing powdery waste according to (4), the total amount of the metal-containing powdery waste, the carbon-containing substance, and the substance having latent hydraulic property is set to 100 parts by mass. When the amount of the substance having latent hydraulic property is set to 8 parts by mass or more, the carbon-containing substance is set to 5 parts by mass or less, and the alkali stimulant is externally added by 0.4 parts by mass or more. And 9 to 20 parts by mass are added and kneaded to form a kneaded product.

(7) 上記(3)乃至(6)のいずれかに記載の含金属粉状廃棄物の塊成化方法において、前記混練物を作成するにあたり、前記潜在水硬性を有する物質と前記アルカリ刺激剤を混合して混合物とし、得られた混合物に前記含金属粉状廃棄物と前記水あるいはさらに前記炭素含有物質を加えて混練し、混錬物を作成することを特徴とする含金属粉状廃棄物の塊成化方法。   (7) In the method for agglomerating metal-containing powdery waste according to any one of the above (3) to (6), in preparing the kneaded material, the substance having latent hydraulicity and the alkali stimulant Are mixed to obtain a mixture, and the obtained metal-containing powdery waste and the water or further the carbon-containing substance are added to the obtained mixture and kneaded to prepare a kneaded product. How to agglomerate objects.

(8) 上記(3)乃至(7)のいずれかに記載の含金属粉状廃棄物の塊成化方法において、前記混練物を乾燥させた後、粗粉砕して放置し、強度発現後に本粉砕し、5〜50mmの粒径の塊状とすることを特徴とする含金属粉状廃棄物の塊成方法。   (8) In the method for agglomerating metal-containing powdery waste according to any one of the above (3) to (7), the kneaded material is dried, coarsely pulverized, and left to stand. A method for agglomerating metal-containing powdery waste, which is pulverized into a lump having a particle size of 5 to 50 mm.

(9) 上記(1)または(2)に記載の塊成化物を、内部に炭材の充填層を有するシャフト炉の炉頂から炉内へ装入し、前記含金属粉状廃棄物中の金属分をメタルとして回収することを特徴とする含金属粉状廃棄物の塊成化物の処理方法。   (9) The agglomerate according to the above (1) or (2) is charged into the furnace from the furnace top of a shaft furnace having a carbon material packed bed therein, and A method for treating agglomerates of metal-containing powdery waste, comprising recovering a metal component as metal.

本発明によれば、含金属粉状廃棄物を、気候に依らず安定して、歩留りよく、所定の品質で短期間でかつ簡易に塊成化することができる。また本発明で製造した塊成化物はシャフト炉の炉頂から装入する原料として好適に用いることができ、特に塊成化物中に炭素含有物質を添加して塊成化した塊成化物はシャフト炉において含金属粉状廃棄物中の燐が気化脱燐することによって、製造されるメタル中への燐の移行を抑制することができるため、燐含有量の多い含金属粉状廃棄物を本発明に基づいて炭素含有物質とともに塊成化して使用することで含金属粉状廃棄物中の燐をメタルへ移行させることなく、金属分のメタルへの回収が可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the metal-containing powdery waste can be agglomerated stably irrespective of climate, with good yield, with a predetermined quality, in a short period of time, and easily. The agglomerate produced by the present invention can be suitably used as a raw material to be charged from the top of a shaft furnace. In particular, the agglomerate obtained by adding a carbon-containing substance to the agglomerate is a shaft. Since phosphorus in the metal-containing powdery waste is vaporized and dephosphorized in the furnace, the transfer of phosphorus into the metal to be produced can be suppressed. By agglomerating and using together with the carbon-containing substance according to the present invention, it is possible to recover the metal component to the metal without transferring the phosphorus in the metal-containing powdery waste to the metal.

本発明では、潜在水硬性を有する物質の潜在水硬性を利用して含金属粉状廃棄物を塊成化する。潜在水硬性を有する物質には高炉スラグ等がある。潜在水硬性を有する物質は、水硬性を有する物質よりも水和速度が緩やかであり、特にアルカリ刺激剤と混合することで顕著な水硬性を示す。したがって、含金属粉状廃棄物と潜在水硬性を有する物質をアルカリ刺激剤と共に加えて混錬することで、ポルトランドセメントのような水硬性を有する物質と比べると、緩やかな硬化速度で硬化させることができる。このため、本発明においては、硬化が徐々に進むため、塊成化品が最大強度を発現する前に、より小さな動力で破砕を行うことができるうえ、容易に破砕できるために、微粉の発生を少なくでき、製鉄原料としての歩留りを高めることができる。   In the present invention, the metal-containing powdery waste is agglomerated using the potential hydraulic property of a substance having potential hydraulic property. Materials having latent hydraulic properties include blast furnace slag. The substance having latent hydraulic properties has a slower hydration rate than the substance having hydraulic properties, and exhibits remarkable hydraulic properties particularly when mixed with an alkali stimulant. Therefore, by adding a metal-containing powdery waste and a substance having latent hydraulic properties together with an alkali stimulant and kneading it, it is possible to cure at a slower curing rate than a hydraulic substance such as Portland cement. Can be. For this reason, in the present invention, since the hardening progresses gradually, the agglomerate can be crushed with less power before the agglomerate develops the maximum strength, and can be easily crushed, so that fine powder is generated. Can be reduced, and the yield as a steelmaking raw material can be increased.

一般的に、潜在水硬性を有する物質により含金属粉状廃棄物を塊成化する場合には、塊成化品が最大の強度に硬化するまでに2週間程度かかる。   Generally, when agglomerating a metal-containing powdery waste with a substance having latent hydraulic property, it takes about two weeks for the agglomerated product to harden to the maximum strength.

一方、水硬性のポルトランドセメントにより硬化させる場合には、1日程度で強固な硬化体となるため、混錬の翌日に破砕しようとしても強大な動力が必要であるばかりでなく、製鉄原料として好適に使用できる5〜50mm程度の粒径のものを得ようとすると、より微細な粉が多量に発生して製鉄原料としての歩留りが低くなってしまう。   On the other hand, when hardened with hydraulic Portland cement, it becomes a hard cured body in about one day, so not only strong power is required even if it is crushed on the next day of kneading, it is suitable as a raw material for iron making If a powder having a particle size of about 5 to 50 mm, which can be used for steelmaking, is to be obtained, a large amount of finer powder will be generated and the yield as a raw material for iron making will be reduced.

製鉄原料として塊状物を使用する場合、高炉や炭材充填層型溶融還元炉等のシャフト炉の場合、原料輸送時に粉化を防ぐために必要な強度に加えて炉内における原料降下時の粉化をある程度抑えるために強度が必要となる。このため高炉原料としては圧潰強度で4MPa 以上程度、炭材充填層型溶融還元炉では2MPa 以上程度が必要となる。また、転炉での使用の場合には炉内での粉化は考慮する必要がないため、1MPa 以上程度の圧潰強度があればよい。   In the case of using lump as a raw material for steelmaking, in the case of shaft furnaces such as blast furnaces and carbon material packed bed type smelting reduction furnaces, in addition to the strength necessary to prevent powdering during transport of raw materials, powdering when the raw materials fall in the furnace In order to suppress the occurrence to some extent, strength is required. Therefore, the blast furnace raw material requires a crushing strength of about 4 MPa or more, and a carbon material packed bed type smelting reduction furnace requires about 2 MPa or more. Further, in the case of use in a converter, it is not necessary to consider powdering in the furnace, so that it is sufficient that the crushing strength is about 1 MPa or more.

このような塊成化物の適用プロセスに応じて、塊成化物の圧潰強度や粒径を適宜決定することができる。   The crushing strength and particle size of the agglomerate can be appropriately determined according to the application process of the agglomerate.

本発明を用いて含金属粉状廃棄物から一般的な製鉄原料を得るために圧壊強度を4MPa 以上程度とするに当たっては、含金属粉状廃棄物と潜在水硬性を有する物質の合計量に対して潜在水硬性を有する物質の量が8質量%以上とし、さらにアルカリ刺激剤を含金属粉状廃棄物と潜在水硬性を有する物質の合計量に対して外掛けで0.4 質量%以上として混合して混合物とし、その混合物に、水を含金属粉状廃棄物と潜在水硬性を有する物質の合計量に対して9〜20質量%加えつつ、混錬した混錬物とすることが好ましい。   In order to obtain a general iron-making raw material from a metal-containing powdery waste using the present invention, the crushing strength is set to about 4 MPa or more, based on the total amount of the metal-containing powdery waste and the substance having latent hydraulic property. The amount of the substance having latent hydraulic property is not less than 8% by mass, and the alkali stimulant is mixed with the external waste to be 0.4% by mass or more based on the total amount of the powdered metal-containing waste and the substance having latent hydraulic property. It is preferable that the mixture is kneaded while adding 9 to 20% by mass of water to the mixture with respect to the total amount of the metal-containing powdery waste and the substance having latent hydraulic property.

含金属粉状廃棄物と潜在水硬性を有する物質の合計量に対して潜在水硬性を有する物質の量が8質量%以上とするのは、潜在水硬性を有する物質が8質量%未満であると、含金属粉状廃棄物全体を十分硬化させることが難しく、圧壊強度が4MPa 以上とならない場合があり、5〜50mm程度の製鉄原料として使用し易い大きさに破砕するに当たって強度が十分でないことによる粉の発生が増加して歩留りが低下するからである。   When the amount of the substance having latent hydraulicity is 8% by mass or more with respect to the total amount of the metal-containing powdery waste and the substance having latent hydraulicity, the substance having latent hydraulicity is less than 8% by mass. In addition, it is difficult to sufficiently cure the entire metal-containing powdery waste, the crushing strength may not be 4 MPa or more, and the strength is not enough to crush to a size of about 5 to 50 mm that is easy to use as a raw material for ironmaking. This is because the generation of powder due to the heat increases and the yield decreases.

潜在水硬性を有する物質には高炉スラグ微粉末等があり、この量を多くしても含金属粉状廃棄物の硬化を妨げることはなく、また、この物質自体は塊成化物を製鉄原料として使用する際に造滓材として有用に使用できるものであるため、使用量に上限を設ける必要はないが、塊成化物中に含まれる金属成分の配合量に下限がある場合には、塊成化物全体で金属成分の配合量が適合するべく、潜在水硬性を有する物質の上限を定めても良い。   Materials with latent hydraulic properties include blast furnace slag fine powder, etc., and increasing this amount does not prevent the hardening of metal-containing powdery waste, and this material itself is used as an agglomerate as a raw material for steelmaking. Since it can be usefully used as a slag-making material when used, it is not necessary to set an upper limit on the amount used, but if there is a lower limit on the amount of the metal component contained in the agglomerate, The upper limit of the substance having the potential hydraulic property may be determined so that the compounding amount of the metal component is compatible with the entire compound.

水を含金属粉状廃棄物と潜在水硬性を有する物質の合計量に対して9質量%以上加えて混錬するのは、水の量が9質量%未満程度とすると混錬が不充分となって塊成化しない部分ができてしまい、強度の低い粉が多くなって歩留りが低下するためである。一方、20質量%以上の水を加えて混錬すると、硬化後の強度が低下してしまい、圧壊強度が4MPa 以上とならない場合が生じるからである。   Kneading by adding water in an amount of 9% by mass or more based on the total amount of the metal-containing powdery waste and the substance having latent hydraulic property is not sufficient if the amount of water is less than about 9% by mass. This is because a portion that does not agglomerate is formed, and powder having a low strength increases to lower the yield. On the other hand, if 20% by mass or more of water is added and kneaded, the strength after curing is reduced, and the crushing strength may not be 4 MPa or more.

なお、含金属粉状廃棄物には、水分を含んだ状態で発生するものがあるが、本発明では配合を示す場合には、水分を除いた残部の質量を対象とする。   Some of the metal-containing powdery wastes are generated in a state of containing water, but in the present invention, in the case of indicating the composition, the mass of the remaining parts excluding the water is targeted.

アルカリ刺激剤を含金属粉状廃棄物と潜在水硬性を有する物質の合計量に対して外掛けで0.4 質量%以上とするのは、アルカリ刺激剤の量がこれ未満であると、潜在水硬性を有する物質の潜在水硬性を発揮するのに不充分であり、最終的な強度が低下すると共に、破砕時の粉化が大きくなり、塊成化品の歩留りが低下するからである。なお、アルカリ刺激剤は4質量%を超えて添加してもアルカリ刺激剤による潜在水硬性の促進効果は向上しないので、4質量%以下の添加量としたほうが良い。   The reason that the alkali stimulant is 0.4% by mass or more based on the total amount of the metal-containing powdery waste and the substance having latent hydraulic property is that if the amount of the alkaline stimulant is less than this, the potential hydraulic potential is reduced. This is because it is insufficient to exhibit the potential hydraulic property of the substance having the following, the final strength is reduced, the pulverization at the time of crushing is increased, and the yield of the agglomerated product is reduced. In addition, even if it adds more than 4 mass% of an alkali stimulant, since the promotion effect of the latent hydraulicity by an alkali stimulant does not improve, it is better to make it the addition amount 4 mass% or less.

また、本発明では、含金属粉状廃棄物と、潜在水硬性を有する物質と、アルカリ刺激剤と、水との混錬物を作成するに当たり、潜在水硬性を有する物質とアルカリ刺激剤とを予め混合して混合物としておき、その後含金属粉状廃棄物とこの混合物を混ぜながら水を添加して混錬物を作成するのが好適である。これは、アルカリ刺激剤は一般的に含金属粉状廃棄物や潜在水硬性を有する物質よりも密度が小さいため、これら3種の粉体を同時に混合しても均質に混合することが難しく、この結果、潜在水硬性を有する物質とアルカリ刺激剤との混合が不充分となりやすいため、結果として混錬物が塊成化したときに強度が不均一となって、製鉄原料として好適な5〜50mmの塊成化品の歩留りが低下するからである。   Further, in the present invention, in preparing a kneaded product of metal-containing powdery waste, a substance having latent hydraulic properties, an alkali stimulant, and water, a substance having latent hydraulic properties and an alkali stimulant are used. It is preferable to prepare a kneaded product by mixing the metal-containing powdery waste and this mixture in advance and adding water while mixing the mixture. This is because the alkali stimulant generally has a lower density than metal-containing powdery wastes and substances having latent hydraulic properties, so even if these three types of powders are mixed simultaneously, it is difficult to mix them homogeneously. As a result, the mixing of the substance having the potential hydraulic property and the alkali stimulant tends to be insufficient, and as a result, the strength becomes uneven when the kneaded material is agglomerated, and 5 to 5 which is suitable as a raw material for ironmaking. This is because the yield of the agglomerated product of 50 mm decreases.

塊成化物の歩留りを向上させるために、混練物を乾燥後に粗粉砕して放置し、強度発現後に本粉砕して、5〜50mmの塊成化物を篩い分けすることが望ましい。潜在水硬性を有する物質による硬化は約2週間程度の期間に亘って徐々に進み、強度もそれに応じて高くなる。したがって所定の強度までの強度発現後にクラッシャー等により本粉砕を行なうときに、たとえば製鉄原料に好適な粒径範囲である5〜50mmの大きさに粉砕しようとすると、粉砕のための動力が大きく時間も掛かるため、5mm以下の粉が発生して歩留りを低下させる。   In order to improve the yield of agglomerates, it is desirable that the kneaded material is dried and then coarsely pulverized and allowed to stand. Curing by the substance having latent hydraulic properties gradually progresses over a period of about two weeks, and the strength increases accordingly. Therefore, when the main pulverization is performed by a crusher or the like after the development of the strength up to a predetermined strength, for example, when the pulverization is performed to a size of 5 to 50 mm, which is a particle size range suitable for a steelmaking raw material, the power for the pulverization is large and the , And powder of 5 mm or less is generated, which lowers the yield.

これに対して、混練物を乾燥後まだ強度発現が十分でないときに、粗粉砕しておき、所定の粒径である5〜50mm程度のものを作っておき、これをさらに強度の発現するまで放置しておくと、強度発現後に本粉砕を必要とする塊成化物を減少させることができる。このとき、粗粉砕時にはまだ必要な強度にまで達していないため、粗粉砕時のクラッシャー等の動力も小さく、 また時間をかける必要もないため、5mm以下の粉の発生を少なくすることもできる。   On the other hand, when the strength has not yet been sufficiently developed after drying the kneaded material, the material is coarsely pulverized, and a particle having a predetermined particle size of about 5 to 50 mm is prepared. If left untreated, agglomerates that require main grinding after strength development can be reduced. At this time, since the required strength has not yet been reached at the time of coarse pulverization, the power of a crusher or the like at the time of coarse pulverization is small, and it is not necessary to take time, so that the generation of powder of 5 mm or less can be reduced.

こうして最終的な5〜50mmの塊成化物の歩留りとしては、乾燥後強度発現前に粗粉砕しておく方が向上させることができる。この粗粉砕のタイミングは乾燥後、所定の強度が発現する前が良いが、具体的には、所定の強度発現に混練後2週間程度必要な場合には、混練後3日から1週間程度の間に行なうことが望ましい。これよりも早く粗粉砕を行なうと乾燥が十分でない、あるいは強度が小さすぎるといった原因により5mm以下の粉が発生しやすい。1週間を超えて放置した後に粗粉砕を行なう場合は、強度が高いために、粗粉砕のためのクラッシャー等の動力が大きくなり、また粗粉砕時の粉の発生が増加するので、粗粉砕する効果が減じられるためである。   Thus, the final yield of the agglomerated product of 5 to 50 mm can be improved by coarsely pulverizing after drying and before developing the strength. The timing of this coarse pulverization is preferably after drying and before the development of a predetermined strength. Specifically, when the development of the predetermined strength requires about two weeks after kneading, the timing is about three days to one week after kneading. It is desirable to do it in between. If coarse grinding is performed earlier than this, powder of 5 mm or less is likely to be generated due to insufficient drying or insufficient strength. When coarse crushing is performed after being left for more than one week, since the strength is high, the power of a crusher or the like for coarse crushing is increased, and the generation of powder during coarse crushing is increased. This is because the effect is reduced.

さらに、本発明では、含金属粉状廃棄物と、潜在水硬性を有する物質と、アルカリ刺激剤と、水との混錬物を作成するにあたり、炭素含有物質を加えても良い。炭素含有物質としては、黒鉛などの炭素純度の高いものを使用しても良いし、石炭、コークス、高炉灰等の炭素分を50%以上含むような物質でも良い。樹脂廃棄物等の有機物も使用できるが、塊成化を阻害するのを防ぐため、粒径1mm以下にしておく必要がある。   Further, in the present invention, a carbon-containing substance may be added in preparing a kneaded product of metal-containing powdery waste, a substance having latent hydraulic properties, an alkali stimulant, and water. As the carbon-containing substance, a substance having a high carbon purity such as graphite may be used, or a substance containing 50% or more of a carbon content such as coal, coke, and blast furnace ash may be used. Organic substances such as resin waste can be used, but the particle size must be 1 mm or less in order to prevent agglomeration.

炭素含有物質の添加に当たっては、含金属粉状廃棄物と潜在水硬性を有する物質および炭素含有物質の合計量に対して、炭素含有物質を5質量%以下とすることが望ましい。5質量%を超えて炭素含有物質を添加すると、潜在水硬性を有する物質の硬化によって生成する塊成化物の強度が弱くなるためである。   When the carbon-containing substance is added, it is desirable that the carbon-containing substance is 5% by mass or less based on the total amount of the metal-containing powdery waste, the substance having latent hydraulic property, and the carbon-containing substance. This is because if the carbon-containing substance is added in excess of 5% by mass, the strength of the agglomerate produced by the curing of the substance having latent hydraulic properties will be weakened.

このように製造された塊成化物は、圧潰強度で4MPa 以上の高強度の塊成化物とすることができるので、シャフト炉の炉頂から装入する塊状原料として好適に使用できる。   Since the agglomerate produced in this way can be made into a high-strength agglomerate having a crushing strength of 4 MPa or more, it can be suitably used as a massive raw material charged from the top of a shaft furnace.

特に炭材充填型溶融還元炉では、シャフト部が1000〜1300℃程度の高温となるため、塊状原料中炭素分があると、塊状原料中に含まれる燐(燐酸化物)が炭素と反応して気化脱燐され炉内ガス流に乗って炉頂から排出される。この塊成化物中の燐をシャフト炉で製造する溶融金属と分離することが可能である。このため、塊成化物中に予め炭素含有物質を添加しておくことによって、塊成化物自身の炭素で燐酸化物の還元ができるので、極めて好適である。   Particularly in a carbon material-filled smelting reduction furnace, the shaft is heated to a high temperature of about 1000 to 1300 ° C. If there is carbon in the bulk material, phosphorus (phosphorus oxide) contained in the bulk material reacts with carbon. It is vaporized and dephosphorized and discharged from the furnace top along with the gas flow in the furnace. It is possible to separate the phosphorus in the agglomerate from the molten metal produced in the shaft furnace. For this reason, it is extremely preferable to add a carbon-containing substance to the agglomerate in advance, since the carbon of the agglomerate itself can reduce the phosphoric acid.

なお、本発明において、潜在水硬性を有する物質としては、例えば、高炉スラグを粉砕して製造した表2に示すような粒子径の高炉スラグ微粉末を用いることができ、潜在水硬性を有する物質として、高炉スラグ微粉末を用いるのが、取り扱いやすく、入手が容易であるから好ましい。アルカリ刺激剤としては、アルカリ金属の酸化物、水酸化物、炭酸塩、珪酸塩、アルカリ土類金属の酸化物、水酸化物、炭酸塩、珪酸塩から選ばれた1種以上を用いることができる。例えば、消石灰、生石灰、炭酸カルシウム、珪酸カルシウム、水酸化カリウム、炭酸カリウムなど種々のものが使用できる。特に、消石灰をアルカリ刺激剤として用いるのが取り扱いやすく、入手が容易で安価であるから好ましい。   In the present invention, as the substance having latent hydraulic properties, for example, blast furnace slag fine powder having a particle diameter as shown in Table 2 manufactured by pulverizing blast furnace slag can be used, and a substance having latent hydraulic properties can be used. It is preferable to use blast furnace slag fine powder because it is easy to handle and easily available. As the alkali stimulant, one or more selected from alkali metal oxides, hydroxides, carbonates, silicates, alkaline earth metal oxides, hydroxides, carbonates, and silicates may be used. it can. For example, various substances such as slaked lime, quicklime, calcium carbonate, calcium silicate, potassium hydroxide, potassium carbonate and the like can be used. In particular, it is preferable to use slaked lime as an alkali stimulant because it is easy to handle, easily available, and inexpensive.

〔実施例1〕塊成化する含金属粉状廃棄物としては、表1に示す組成の金属を含有している製鋼ダストを用いた。   [Example 1] Steelmaking dust containing metals having the compositions shown in Table 1 was used as the metal-containing powdery waste to be agglomerated.

Figure 2004250780
Figure 2004250780

これに潜在水硬性を有する物質として高炉スラグ微粉末と、アルカリ刺激剤として消石灰を混合した。高炉スラグ微粉末の割合は、製鋼ダストと高炉スラグ微粉末との合計量に対して5〜50質量%で変更した。消石灰については、製鋼ダストと潜在水硬性を有する物質との混合物に対して外掛けで、5質量%添加し、また水分については製鋼ダストと潜在水硬性を有する物質との混合物に対して外掛けで、15質量%で一定とした。   Fine blast furnace slag powder as a substance having a potential hydraulic property and slaked lime as an alkali stimulant were mixed with this. The proportion of the blast furnace slag fine powder was changed from 5 to 50% by mass based on the total amount of the steelmaking dust and the blast furnace slag fine powder. For slaked lime, 5% by mass is added to the mixture of steelmaking dust and the substance having latent hydraulicity, and for moisture, the mixture is added to the mixture of steelmaking dust and the substance having latent hydraulicity. And was fixed at 15% by mass.

製鋼ダストと、高炉スラグ微粉末と、アルカリ刺激剤との混合物に、水を加えて混練した。その後、型枠に入れて乾燥させた後、1週間後に粗粉砕し、さらに1週間乾燥させてからクラッシャーで粉砕し、塊成化品(大きさ; 5〜50mm)の圧潰強度と塊成化品(大きさ; 5〜50mm)の歩留りを測定した。   Water was added to a mixture of the steelmaking dust, the blast furnace slag fine powder, and the alkali stimulant, followed by kneading. After that, it is put in a mold and dried, and then coarsely pulverized one week later, further dried for one week, and then pulverized by a crusher, and the crushing strength and agglomeration of the agglomerate (size: 5 to 50 mm) The yield of the product (size; 5 to 50 mm) was measured.

塊成化品の目標強度は、塊成化品を利用する際に粉化しない圧潰強度として、下記測定により得た圧潰強度で4.0MPa以上とし、また、塊成化品(大きさ; 5〜50mm)の目標歩留りとしては、分級後の大きさ; 5〜50mmの塊成化品の重量/篩いにかけた全重量で求めた歩留りで60%以上とした。   The target strength of the agglomerated product is 4.0MPa or more in crushing strength obtained by the following measurement as the crushing strength that does not powder when using the agglomerated product. The target yield of 50 mm) was 60% or more in terms of the size after classification; the weight calculated from the weight of the agglomerated product of 5 to 50 mm / the total weight sieved.

圧潰強度は、塊成化品の内で目開き50mmの篩を通り、目開き20mmの篩上に残る塊状物から任意の20個の塊を代表サンプルとして選び、これをプレス機で圧下した時に破壊するまでの最大荷重を測定して、20個のデータの内最大値最小値を除く18個のデータの算術平均を求めて、これを圧潰強度とした。   When the crushing strength passes through a 50 mm sieve in the agglomeration product and selects any 20 lumps as a representative sample from the lumps remaining on the 20 mm mesh sieve, when this is pressed down with a press machine, The maximum load before breaking was measured, and the arithmetic average of 18 data excluding the maximum and minimum values of the 20 data was obtained, and this was defined as the crushing strength.

上記で求めた塊成化品(大きさ; 5〜50mm)の圧潰強度を図1に示し、塊成化品(大きさ; 5〜50mm)の歩留りを図2に示した。   The crushing strength of the agglomerated product (size: 5 to 50 mm) determined above is shown in FIG. 1, and the yield of the agglomerated product (size: 5 to 50 mm) is shown in FIG.

図1、図2から、潜在水硬性を有する物質として高炉スラグ微粉末比率を8質量%以上にすれば、塊成化品(大きさ; 5〜50mm)の目標圧潰強度と目標歩留りが達成できることが確認された。   From FIG. 1 and FIG. 2, the target crushing strength and target yield of the agglomerated product (size: 5 to 50 mm) can be achieved if the ratio of the blast furnace slag fine powder as the substance having latent hydraulic property is set to 8% by mass or more. Was confirmed.

塊成化物の目標強度はその使用先により適宜選択できるので、例えば転炉に使用する場合には、目標強度として1MPa 程度と設定して高炉スラグ微粉末量を調整することができる。   Since the target strength of the agglomerate can be appropriately selected depending on the place where it is used, for example, when used in a converter, the amount of the blast furnace slag fine powder can be adjusted by setting the target strength at about 1 MPa.

〔実施例2〕次に水分の適正範囲を調査するために、塊成化する含金属粉状廃棄物として実施例1と同じ組成の製鋼ダストを用い、これに潜在水硬性を有する物質として、高炉スラグ微粉末を混合した。   [Example 2] Next, in order to investigate an appropriate range of moisture, steelmaking dust having the same composition as in Example 1 was used as a metal-containing powdery waste to be agglomerated. Blast furnace slag fine powder was mixed.

高炉スラグ微粉末の割合は、製鋼ダストと高炉スラグ微粉末との合計量に対して8質量%とした。また、製鋼ダストと潜在水硬性を有する物質との混合物に対して外掛けで、消石灰を0.4 質量%とし、一方、水分を製鋼ダストと潜在水硬性を有する物質との混合物に対して外掛けで5〜30質量%の範囲で変更して実施例1と同様にして塊成化品の圧潰強度と塊成化品の歩留りを測定した。   The proportion of the blast furnace slag fine powder was 8% by mass based on the total amount of the steelmaking dust and the blast furnace slag fine powder. Also, slaked lime was adjusted to 0.4% by mass with respect to a mixture of steelmaking dust and a substance having latent hydraulicity, while moisture was adjusted with respect to a mixture of steelmaking dust and a substance having latent hydraulicity. The crushing strength of the agglomerated product and the yield of the agglomerated product were measured in the same manner as in Example 1 while changing the range of 5 to 30% by mass.

その結果を、図3、図4に示した。   The results are shown in FIGS.

図3、図4から、水分は、製鋼ダストと潜在水硬性を有する物質との混合物に対して外掛けで、9〜20質量%添加することにより、目標とする塊成化品の圧潰強度および塊成化品の歩留りの両方共に達成できることがわかった。   From FIGS. 3 and 4, the water is added to the mixture of the steelmaking dust and the substance having the potential hydraulic property by 9 to 20% by mass, and the crushing strength of the target agglomerated product and It has been found that both agglomerate yields can be achieved.

なお、塊成化品の圧潰強度は、水分比率の低下とともに増加していくが、逆に塊成化品の歩留りは低下する。この原因としては、大きさが5〜50mmに塊成化したものについては水分値が低いほど強度が強くなるが、水分低下とともに混練が不十分となり塊成化しない部分が生じるために、大きさが5〜50mmに塊成化する割合が低下するものと考えられる。   In addition, the crushing strength of the agglomerated product increases as the moisture ratio decreases, but the yield of the agglomerated product decreases. The reason for this is that, for those agglomerated to a size of 5 to 50 mm, the lower the moisture value, the stronger the strength.However, as the water content decreases, the kneading becomes insufficient and there is a portion that does not agglomerate. It is considered that the ratio of agglomeration to 5 to 50 mm decreases.

〔実施例3〕さらに歩留りを向上させることができる製鋼ダストの塊成化方法を確認した。含金属粉状廃棄物として製鋼ダストを用い、潜在水硬性を有する物質として高炉スラグ微粉末を用い、アルカリ刺激剤として消石灰を用いた。それらの組成は実施例1とほぼ同じであり、高炉スラグ微粉末の割合は、製鋼ダストと高炉スラグ微粉末との合計量に対して8質量%とし、水分は製鋼ダストと潜在水硬性を有する物質との混合物に対して外掛けで、15質量%で一定とした。   Example 3 A method of agglomerating steelmaking dust capable of further improving the yield was confirmed. Steelmaking dust was used as metal-containing powdery waste, blast furnace slag fine powder was used as a substance having latent hydraulic properties, and slaked lime was used as an alkali stimulant. Their composition is almost the same as in Example 1, the ratio of the blast furnace slag fine powder is 8% by mass with respect to the total amount of the steelmaking dust and the blast furnace slag fine powder, and the moisture has the steelmaking dust and the potential hydraulic property. It was constant at 15% by weight, based on the mixture with the substance.

高炉スラグ微粉末と消石灰を事前に混合し、これを製鋼ダストに混合する方法を事前混練ありとし、実施例1、2の方法を事前混練無しとして、実施例1、2と同様にして塊成化品の圧潰強度と塊成化品の歩留りを求め、その結果を表3に示した。また、製鋼ダスト、高炉スラグ微粉末および消石灰の粒子径および嵩密度を表2に示した。   The method of mixing blast furnace slag fine powder and slaked lime in advance and mixing this with steelmaking dust was performed with pre-kneading, and the method of Examples 1 and 2 was performed without pre-kneading, and agglomerated in the same manner as in Examples 1 and 2. The crushing strength of the product and the yield of the agglomerated product were determined, and the results are shown in Table 3. Table 2 shows the particle diameter and bulk density of steelmaking dust, blast furnace slag fine powder and slaked lime.

Figure 2004250780
Figure 2004250780

Figure 2004250780
Figure 2004250780

表3に示す結果から、事前混練有りとした場合には、事前混練無しに比べて、塊成化品の圧潰強度には大きな差は見られなかったが、塊成化品の歩留りが7%向上していることが確認された。   From the results shown in Table 3, there was no significant difference in the crushing strength of the agglomerated product when pre-kneading was performed as compared with the case without pre-kneading, but the yield of the agglomerated product was 7%. It has been confirmed that it has improved.

粒径および密度に差がある物質を混練する場合には、同時に混合して混練するよりも、高炉スラグ微粉末と消石灰を事前に混合し、これを製鋼ダストに混合して混練することによって、塊成化品の歩留りが顕著に向上することがわかる。   When kneading substances having a difference in particle size and density, rather than mixing and kneading at the same time, by mixing blast furnace slag fine powder and slaked lime in advance, mixing and kneading with steelmaking dust, It can be seen that the yield of agglomerated products is significantly improved.

〔実施例4〕含金属粉状廃棄物としてメッキスラッジを用いて塊成化物を作成した。メッキスラッジは表4に示すような組成のものである。なお、表4の組成はドライベースの質量%で示しているが、これに、油分が外掛けで0.05質量%含まれる。 また、水分も含んだ状態で発生するものである。この例では、水分は10質量%であった。   Example 4 An agglomerate was produced using plating sludge as metal-containing powdery waste. The plating sludge has the composition shown in Table 4. In addition, although the composition of Table 4 is shown by the mass% of a dry base, the oil content is contained 0.05% by mass on the outside. In addition, it is generated in a state containing moisture. In this example, the water content was 10% by mass.

Figure 2004250780
Figure 2004250780

このメッキスラッジに潜在水硬性を有する物質として高炉スラグ微粉末、アルカリ刺激剤として消石灰を添加した(実施例4-1)。また、メッキスラッジの一部をコークス粉に置き換えた配合(実施例4-2)も行い、これらに水を加えて混錬しそれぞれ塊成化物を作成した。それぞれの配合は表5に示す。水分は混錬物の状態で、メッキスラッジの固形分と高炉スラグ微粉末、あるいはこれにコークス粉を加えた固形物の合計量に対して20質量%になるように調整した。   Fine powder of blast furnace slag as a substance having latent hydraulic properties and slaked lime as an alkali stimulant were added to the plating sludge (Example 4-1). In addition, blending was carried out in which a part of the plating sludge was replaced with coke powder (Example 4-2), and water was added thereto and kneaded to form agglomerates. The respective formulations are shown in Table 5. The water content was adjusted to 20% by mass in the state of the kneaded material, based on the total amount of the solid content of the plating sludge and the blast furnace slag fine powder, or the solid content obtained by adding coke powder thereto.

Figure 2004250780
Figure 2004250780

この混錬物を型枠に入れて1週間乾燥させ、その後、粗粉砕してさらに1週間乾燥させたものをクラッシャーで本粉砕して篩い分けし、5〜50mmの塊成化品の歩留りを測定すると共に、その塊成化品の圧潰強度を調べた。また、それぞれの配合のものの一部は粗粉砕せずに2週間後に本粉砕し、歩留り測定を行なった。   This kneaded material is put into a mold and dried for one week, then coarsely pulverized and further dried for one week, and then crushed with a crusher, sieved, and the yield of agglomerated products of 5 to 50 mm is obtained. In addition to the measurement, the crushing strength of the agglomerated product was examined. In addition, a part of each of the blends was fully pulverized two weeks later without coarse pulverization, and the yield was measured.

塊成化品の歩留りは本粉砕後の塊成化物の目開き50mm,5mmの2段階で篩い分け、50mmの篩目を通って5mmの篩の上に残ったものを塊成化品としてこの塊成化品の質量を篩にかけた全塊成化物の質量で割った数値を%で求める。 歩留りの目標は60%とした。また、塊成化品の圧潰強度は、塊成化物をさらに目開き20mmで篩い分けし、この篩上の塊成化物から20個の塊を代表サンプルとして選び、 これをプレス機で圧下したときに破壊するまでの最大荷重を測定して、20サンプルのデータのうち最大値、最小値を除く18データの算術平均を求めて、圧潰強度とした。   The yield of the agglomerated product is sieved in two stages of 50 mm and 5 mm openings of the agglomerated product after the main pulverization, and what has remained on the 5 mm sieve through the 50 mm sieve is defined as the agglomerated product. The value obtained by dividing the mass of the agglomerated product by the mass of all agglomerated products obtained by sieving is obtained in%. The target for yield was 60%. The crushing strength of the agglomerated product was determined by further sieving the agglomerated product with a mesh of 20 mm, selecting 20 agglomerates from the agglomerated product on this sieve as a representative sample, and rolling it down with a press. The maximum load to failure was measured, and the arithmetic average of 18 data excluding the maximum and minimum values among the data of the 20 samples was obtained to obtain the crushing strength.

こうして求めた塊成化品の歩留りと圧潰強度を表6に、化学組成を表7に示した。実施例4-1、4-2のいずれの場合も塊成化品の歩留りが60%を超え、塊成化方法として好適であることが判る。また圧潰強度は4MPa 以上であるため、これらをシャフト炉の炉頂装入原料として使用することが問題ないことが判った。また、粗粉砕したものの方が、歩留りが4%程度向上した。   Table 6 shows the yield and crushing strength of the agglomerated product thus determined, and Table 7 shows the chemical composition. In all cases of Examples 4-1 and 4-2, the yield of the agglomerated product exceeds 60%, which indicates that it is suitable as an agglomeration method. In addition, since the crushing strength was 4 MPa or more, it was found that there was no problem in using them as furnace top charging materials for a shaft furnace. Further, the yield was improved by about 4% in the coarsely pulverized product.

Figure 2004250780
Figure 2004250780

Figure 2004250780
Figure 2004250780

この実施例4-1、4-2に係る塊成化品を、図5に概要を示す炭材充填層型溶融還元炉で使用した。炭材充填層型溶融還元炉1の仕様と操業条件をそれぞれ表8、9に示した。吹き込み原料はステンレス精錬で発生する製鋼ダスト(表1に代表的な組成を示す)を乾燥した粉状原料に造滓材として石灰石を加えたものである。この炭材充填層型溶融還元炉1に実施例4-1、4-2に係る塊成化品を炉頂からコークスと一緒に混合して装入した。   The agglomerates according to Examples 4-1 and 4-2 were used in a carbon material packed bed type smelting reduction furnace schematically shown in FIG. Tables 8 and 9 show the specifications and operating conditions of the carbon material packed bed type smelting reduction furnace 1. The blowing raw material is obtained by adding limestone as a slag-making material to a powdered raw material obtained by drying steelmaking dust (represented in Table 1) generated by stainless steel refining. The agglomerated products according to Examples 4-1 and 4-2 were charged into the carbon material packed bed type smelting reduction furnace 1 together with coke from the furnace top.

Figure 2004250780
Figure 2004250780

Figure 2004250780
Figure 2004250780

実施例4-1の塊成化品を炉頂から装入して10日間操業した後に塊成化品を実施例4-2に示すものに変更して10日間操業を行った。その結果、炭材充填層型溶融還元炉1の操業そのものは特に問題なく、操業を継続できた。また図6に、この操業において生産されたメタル中の燐濃度の推移を示すように、実施例4-1の塊成化品を使用した時期に比べて実施例4-2の塊成化品を使用した時期の方が生産されたメタル中の燐濃度が低下した。   After the agglomerated product of Example 4-1 was charged from the furnace top and operated for 10 days, the agglomerated product was changed to that shown in Example 4-2 and operated for 10 days. As a result, the operation itself of the carbon material packed bed type smelting reduction furnace 1 could be continued without any particular problem. FIG. 6 shows the change in the phosphorus concentration in the metal produced in this operation. As shown in FIG. 6, the agglomeration product of Example 4-2 was compared with the time when the agglomeration product of Example 4-1 was used. The concentration of phosphorus in the produced metal was lower when the metal was used.

これは、実施例4-2の塊成化品では、塊成化物中にコークス粉を添加してあるために、メッキスラッジとコークス粉とが混在した状態で塊状物となっているため、炭材充填層型溶融還元炉1のシャフトにおいて1000〜1300℃程度まで高温に曝されている間に、メッキスラッジ中の燐酸化物とコークス粉中の炭素とが、直接接触して燐が還元されて気化し、炉内ガスに同伴して溶融還元炉1の排ガス中へ移行したためと思われる。   This is because, in the agglomerated product of Example 4-2, since coagulated powder was added to the agglomerated product, the sludge was formed in a mixed state of plating sludge and coke powder. While the shaft of the smelting reduction furnace 1 is exposed to a high temperature of about 1000 to 1300 ° C., the phosphorus in the plating sludge and the carbon in the coke powder come into direct contact with each other to reduce phosphorus. It is considered that the gas was vaporized and moved into the exhaust gas of the smelting reduction furnace 1 together with the furnace gas.

このように、含金属粉状廃棄物と炭素含有物質、潜在水硬性を有する物質およびアルカリ刺激剤が硬化した含金属粉状廃棄物の塊成化物は炭材充填層型溶融還元炉1のようなシャフト炉へ炉頂から装入することで、含金属粉状廃棄物中の燐が炭素含有物質中の炭素により気化脱燐することによって、シャフト炉で生産されるメタル中の燐濃度を低減することができるという利点がある。   As described above, the agglomerates of the metal-containing powdery waste, the carbon-containing substance, the substance having latent hydraulic properties, and the metal-containing powdery waste obtained by curing the alkali stimulant are used as in the carbon material packed bed type smelting reduction furnace 1. Phosphorus in metal-containing powdery waste is vaporized and dephosphorized by carbon in carbon-containing material by charging the shaft furnace at the top, reducing the phosphorus concentration in the metal produced in the shaft furnace There is an advantage that can be.

潜在水硬性を有する物質として高炉スラグ粉末を用いた場合の、塊成化品の圧潰強度に対する効果を示したグラフである。It is the graph which showed the effect on the crushing strength of the agglomerate when blast furnace slag powder was used as a substance having latent hydraulic properties. 潜在水硬性を有する物質として高炉スラグ粉末を用いた場合の、塊成化品の歩留りに対する効果を示したグラフである。It is the graph which showed the effect on the yield of agglomerate when blast furnace slag powder was used as a substance having latent hydraulic properties. 潜在水硬性を有する物質として高炉スラグ粉末を用いた場合の、塊成化品の圧潰強度と水分添加率の関係を示したグラフである。4 is a graph showing the relationship between the crushing strength of the agglomerated product and the water addition rate when blast furnace slag powder is used as a substance having latent hydraulic properties. 潜在水硬性を有する物質として高炉スラグ粉末を用いた場合の、塊成化品の歩留りと水分添加率の関係を示したグラフである。4 is a graph showing the relationship between the yield of agglomerated products and the water addition rate when blast furnace slag powder is used as a substance having latent hydraulic properties. 炭材充填層型溶融還元炉の概要を示す配置図である。It is an arrangement view showing an outline of a carbon material packed bed type smelting reduction furnace. メタル中の燐濃度の推移を示すグラフである。4 is a graph showing a transition of a phosphorus concentration in a metal.

符号の説明Explanation of reference numerals

1 炭材充填層型溶融還元炉
2 固体還元材
3 上段羽口
4 下段羽口
5 送風機
6 熱風発生炉
7 原料吹込装置
8 炉頂装入装置
9 出銑口
REFERENCE SIGNS LIST 1 carbon material packed bed type smelting reduction furnace 2 solid reducing material 3 upper tuyere 4 lower tuyere 5 blower 6 hot air generator 7 raw material blowing device 8 furnace top charging device 9 taphole

Claims (9)

含金属粉状廃棄物と潜在水硬性を有する物質、およびアルカリ金属の酸化物、水酸化物、炭酸塩、珪酸塩、アルカリ土類金属の酸化物、水酸化物、炭酸塩、珪酸塩から選ばれた1種以上のアルカリ刺激剤を含み、前記潜在水硬性を有する物質の水硬性により硬化したことを特徴とする含金属粉状廃棄物の塊成化物。   Select from metal-containing powdery waste and substances with latent hydraulic properties, and alkali metal oxides, hydroxides, carbonates, silicates, alkaline earth metal oxides, hydroxides, carbonates, and silicates An agglomerate of metal-containing powdery waste, comprising one or more alkali stimulants obtained and hardened by hydraulic property of the substance having latent hydraulic property. 含金属粉状廃棄物と、潜在水硬性を有する物質、およびアルカリ金属の酸化物、水酸化物、炭酸塩、珪酸塩、アルカリ土類金属の酸化物、水酸化物、炭酸塩、珪酸塩から選ばれた1種以上のアルカリ刺激剤と更に炭素含有物質を含み、前記潜在水硬性を有する物質の水硬性により硬化したことを特徴とする請求項1に記載の含金属粉状廃棄物の塊成化物。   From metal-containing powdery waste, substances with latent hydraulic properties, and alkali metal oxides, hydroxides, carbonates, silicates, alkaline earth metal oxides, hydroxides, carbonates, and silicates The lump of metal-containing powdery waste according to claim 1, further comprising one or more selected alkali stimulants and a carbon-containing substance, and hardened by hydraulicity of the substance having latent hydraulicity. Immobilization. 含金属粉状廃棄物を塊成化するに際し、前記含金属粉状廃棄物と、潜在水硬性を有する物質、およびアルカリ金属の酸化物、水酸化物、炭酸塩、珪酸塩、アルカリ土類金属の酸化物、水酸化物、炭酸塩、珪酸塩から選ばれた1種以上のアルカリ刺激剤と、水との混錬物を作成し、硬化させることを特徴とする含金属粉状廃棄物の塊成化方法。   When agglomerating the metal-containing powdery waste, the metal-containing powdery waste, a substance having latent hydraulic property, and an oxide, hydroxide, carbonate, silicate, or alkaline earth metal of an alkali metal A metal-containing powdery waste, characterized in that a kneaded product of water and at least one alkali stimulant selected from oxides, hydroxides, carbonates and silicates is prepared and hardened. Agglomeration method. 含金属粉状廃棄物を塊成化するに際し、前記含金属粉状廃棄物と、潜在水硬性を有する物質、およびアルカリ金属の酸化物、水酸化物、炭酸塩、珪酸塩、アルカリ土類金属の酸化物、水酸化物、炭酸塩、珪酸塩から選ばれた1種以上のアルカリ刺激剤と炭素含有物質と水との混練物を作成し、硬化させることを特徴とする含金属粉状廃棄物の塊成化方法。   When agglomerating the metal-containing powdery waste, the metal-containing powdery waste, a substance having latent hydraulic property, and an oxide, hydroxide, carbonate, silicate, or alkaline earth metal of an alkali metal Metal-containing powdery waste, comprising kneading a mixture of at least one alkali stimulant selected from the group consisting of oxides, hydroxides, carbonates and silicates with a carbon-containing substance and water, and curing the mixture. How to agglomerate objects. 請求項3に記載の含金属粉状廃棄物の塊成化方法において、前記含金属粉状廃棄物と前記潜在水硬性を有する物質の合計量を 100質量部としたとき、その内の潜在水硬性を有する物質の量を8質量部以上とし、さらに前記アルカリ刺激剤を外掛けで0.4 質量部以上加えるとともに、前記水を外掛けで9〜20質量部加えて混練し、混錬物とすることを特徴とする含金属粉状廃棄物の塊成化方法。   The method for agglomerating metal-containing powdery waste according to claim 3, wherein when the total amount of the metal-containing powdery waste and the substance having latent hydraulic property is set to 100 parts by mass, latent water therein is contained. The amount of the substance having hardness is 8 parts by mass or more, and the alkali stimulant is externally added at 0.4 parts by mass or more, and the water is externally added at 9 to 20 parts by mass and kneaded to obtain a kneaded material. A method for agglomerating metal-containing powdery waste, comprising: 請求項4に記載の含金属粉状廃棄物の塊成化方法において、前記含金属粉状廃棄物と前記炭素含有物質および前記潜在水硬性を有する物質の合計量を 100質量部としたとき、その内の潜在水硬性を有する物質の量を8質量部以上とし、炭素含有物質を5質量部以下として、さらに前記アルカリ刺激剤を外掛けで0.4 質量部以上加えるとともに、前記水を外掛けで9〜20質量部加えて混練し、混錬物とすることを特徴とする含金属粉状廃棄物の塊成化方法。   In the agglomeration method of metal-containing powdery waste according to claim 4, when the total amount of the metal-containing powdery waste, the carbon-containing substance, and the substance having latent hydraulic property is 100 parts by mass, Among them, the amount of the substance having latent hydraulic property is set to 8 parts by mass or more, the carbon-containing substance is set to 5 parts by mass or less, and the alkali stimulant is externally added by 0.4 parts by mass or more, and the water is externally added. A method for agglomerating metal-containing powdery waste, comprising adding 9 to 20 parts by mass and kneading to obtain a kneaded product. 請求項3乃至6のいずれかに記載の含金属粉状廃棄物の塊成化方法において、前記混練物を作成するにあたり、前記潜在水硬性を有する物質と前記アルカリ刺激剤を混合して混合物とし、得られた混合物に前記含金属粉状廃棄物と前記水あるいはさらに前記炭素含有物質を加えて混練し、混錬物を作成することを特徴とする含金属粉状廃棄物の塊成化方法。   The method for agglomerating metal-containing powdery waste according to any one of claims 3 to 6, wherein, in preparing the kneaded material, the latent hydraulic material and the alkali stimulant are mixed to form a mixture. Agglomerating a metal-containing powdery waste, wherein the obtained mixture is mixed with the metal-containing powdery waste and the water or further the carbon-containing substance and kneaded to prepare a kneaded product. . 請求項3乃至7のいずれかに記載の含金属粉状廃棄物の塊成化方法において、前記混練物を乾燥させた後、粗粉砕して放置し、強度発現後に本粉砕し、5〜50mmの粒径の塊状とすることを特徴とする含金属粉状廃棄物の塊成方法。   The method for agglomerating metal-containing powdery waste according to any one of claims 3 to 7, wherein the kneaded material is dried, then coarsely pulverized and left, and after the strength is developed, the final pulverization is performed. A method for agglomerating metal-containing powdery waste, characterized in that the agglomeration has a particle size of: 請求項1または2に記載の塊成化物を、内部に炭材の充填層を有するシャフト炉の炉頂から装入し、前記含金属粉状廃棄物中の金属分をメタルとして回収することを特徴とする含金属粉状廃棄物中の塊成化物の処理方法。   3) charging the agglomerate according to claim 1 or 2 from the top of a shaft furnace having a packed bed of carbon material therein, and recovering a metal component in the metal-containing powdery waste as metal. A method for treating agglomerates in metal-containing powdery waste.
JP2003272505A 2003-01-29 2003-07-09 Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material Pending JP2004250780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272505A JP2004250780A (en) 2003-01-29 2003-07-09 Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003019877 2003-01-29
JP2003272505A JP2004250780A (en) 2003-01-29 2003-07-09 Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material

Publications (1)

Publication Number Publication Date
JP2004250780A true JP2004250780A (en) 2004-09-09

Family

ID=33032145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272505A Pending JP2004250780A (en) 2003-01-29 2003-07-09 Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material

Country Status (1)

Country Link
JP (1) JP2004250780A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179854A (en) * 2008-01-31 2009-08-13 Jfe Steel Corp Method for manufacturing iron-contained dust agglomerate
JP2021004381A (en) * 2019-06-25 2021-01-14 Jfeスチール株式会社 Production method of low phosphorus steel
JP2021004380A (en) * 2019-06-25 2021-01-14 Jfeスチール株式会社 Production method of low phosphorus steel
JP2021004379A (en) * 2019-06-25 2021-01-14 Jfeスチール株式会社 Production method of low phosphorus steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179854A (en) * 2008-01-31 2009-08-13 Jfe Steel Corp Method for manufacturing iron-contained dust agglomerate
JP2021004381A (en) * 2019-06-25 2021-01-14 Jfeスチール株式会社 Production method of low phosphorus steel
JP2021004380A (en) * 2019-06-25 2021-01-14 Jfeスチール株式会社 Production method of low phosphorus steel
JP2021004379A (en) * 2019-06-25 2021-01-14 Jfeスチール株式会社 Production method of low phosphorus steel
JP7047816B2 (en) 2019-06-25 2022-04-05 Jfeスチール株式会社 Manufacturing method of low phosphorus steel
JP7047817B2 (en) 2019-06-25 2022-04-05 Jfeスチール株式会社 Manufacturing method of low phosphorus steel
JP7047815B2 (en) 2019-06-25 2022-04-05 Jfeスチール株式会社 Manufacturing method of low phosphorus steel

Similar Documents

Publication Publication Date Title
TWI396749B (en) Producing method of reduced iron
JP2003129142A (en) Method for manufacturing agglomerated product of oxidized metal
EP2035590B1 (en) Process for recycling of steel industry iron-bearing by-products by treating pellets in direct reduction furnaces
CN104364399B (en) Process for producing hardened granules from iron-containing particles
US6921427B2 (en) Process for cold briquetting and pelletization of ferrous or non-ferrous ores or mineral fines by iron bearing hydraulic mineral binder
KR100718581B1 (en) Substituting for pig iron and manufacturing method thereof
JP2011063835A (en) Method for improving strength of agglomerated raw material for blast furnace
JP2004250780A (en) Agglomerated material of metal-containing powdery waste, method of agglomerating the same, and method of treating the agglomerated material
JP2009161791A5 (en)
JP2706142B2 (en) Recycling method of steelmaking dusts in electric furnace with scrap preheating furnace
JP2009030114A (en) Method for producing ore raw material for blast furnace
JP5729256B2 (en) Non-calcined hot metal dephosphorization method and hot metal dephosphorization method using non-fired hot metal dephosphorization material
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2003129140A (en) Method for manufacturing molded article designed for reducing rotary hearth
CZ297694B6 (en) Ingredient scrap briquette and process for producing thereof
JP5664210B2 (en) Agglomeration method of steelmaking dust
JPS6342315A (en) Smelting-reduction of ore
JP7368726B2 (en) Method for producing unfired coal-containing agglomerated ore for blast furnaces
JP3856943B2 (en) Method for producing reduced iron
Singh et al. Cold bond agglomerates of iron and steel plant byproducts as burden material for blast furnaces
JP2005187906A (en) Method for aggregating iron-making sludge
JP5861453B2 (en) Agglomeration method and recycling method of shredder dust
Singh et al. Use of cement-bonded agglomerates as burden material for blast furnaces
JP2005179771A (en) Method for agglomerating iron-making sludge
CZ304321B6 (en) Stabilized addition briquette and process for producing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080109