JP7040499B2 - Phosphorus removal method from phosphorus-containing substances and steel manufacturing method - Google Patents

Phosphorus removal method from phosphorus-containing substances and steel manufacturing method Download PDF

Info

Publication number
JP7040499B2
JP7040499B2 JP2019117366A JP2019117366A JP7040499B2 JP 7040499 B2 JP7040499 B2 JP 7040499B2 JP 2019117366 A JP2019117366 A JP 2019117366A JP 2019117366 A JP2019117366 A JP 2019117366A JP 7040499 B2 JP7040499 B2 JP 7040499B2
Authority
JP
Japan
Prior art keywords
phosphorus
nitrogen
gas
containing substance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019117366A
Other languages
Japanese (ja)
Other versions
JP2021004383A (en
Inventor
憲治 中瀬
令 山田
由枝 中井
直樹 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019117366A priority Critical patent/JP7040499B2/en
Publication of JP2021004383A publication Critical patent/JP2021004383A/en
Application granted granted Critical
Publication of JP7040499B2 publication Critical patent/JP7040499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

本発明は、金属の製錬段階や金属の精錬段階において主原料あるいは副原料として用いられるリン含有物質中のリンを予め低減させることにより、最終的な金属製品としての品質の向上を図るのに有効な、リン含有物質からのリンの除去方法に関し、リンを予め低減したリン含有物質を主原料あるいは副原料として使用する鋼の製造方法に関する。 INDUSTRIAL APPLICABILITY The present invention aims to improve the quality of a final metal product by reducing phosphorus in a phosphorus-containing substance used as a main raw material or an auxiliary raw material in advance in a metal smelting stage or a metal refining stage. The present invention relates to an effective method for removing phosphorus from a phosphorus-containing substance, and the present invention relates to a method for producing steel using a phosphorus-containing substance in which phosphorus has been reduced in advance as a main raw material or an auxiliary raw material.

[定義]
本明細書中において、「P」「P」などアルファベットで記した場合はその化学式の物質を表し、「リン」とカタカナで記した場合は、形態を問わずその物質に含まれるリンを表す。
[Definition]
In the present specification, when it is written in alphabets such as "P" and "P 2 O 5 ", it means a substance having the chemical formula, and when it is written in katakana as "phosphorus", it means phosphorus contained in the substance regardless of its form. Represents.

また、この明細書中で気体の体積を「リットル」の単位で表す場合は、温度273K、雰囲気圧力が1atmの標準状態に換算して示す。また、圧力の単位atmは、1.01325×10Paである。そして、物質中のP含有量をmass%で表す場合には、形態を問わずその物質に含まるリンの含有率を示した。 Further, when the volume of gas is expressed in the unit of "liter" in this specification, it is converted into a standard state where the temperature is 273 K and the atmospheric pressure is 1 atm. The unit of pressure atm is 1.01325 × 105 Pa. When the P content in the substance is expressed in mass%, the phosphorus content in the substance is shown regardless of the form.

高炉で溶製される溶銑は、鉄鉱石等の製鉄原料成分(固体酸化物)に由来するリン(P)を不可避に含んでいるのが普通である。そのリンは、鋼材にとっては有害成分と考えられていることから、鉄鋼製品の材料特性向上のためには、主として、製銑・製鋼工程において脱リン処理して低減させるのが普通である。たとえば、その脱リン処理としては、溶銑中あるいは溶鋼中のリンを、酸素ガスや酸化鉄などの酸素源によって酸化させてPとし、その後、このPを、CaOを主成分とするスラグ中に移行させることによって除去する方法がある。なお、溶銑中あるいは溶鋼中のリンは、酸素などのガスによって酸化されてスラグ中に除去されるが、その際、鉄もまた酸化されることから、たとえ酸素源として酸化鉄を使用しない場合であっても、該スラグ中には鉄も酸化鉄の形態で含まれることになる。 The hot metal melted in a blast furnace usually contains phosphorus (P) derived from an iron-making raw material component (solid oxide) such as iron ore inevitably. Since the phosphorus is considered to be a harmful component for steel products, in order to improve the material properties of steel products, it is usual to reduce the phosphorus by dephosphorus treatment mainly in the ironmaking and steelmaking processes. For example, as the dephosphorization treatment, phosphorus in hot metal or molten steel is oxidized with an oxygen source such as oxygen gas or iron oxide to obtain P 2 O 5 , and then this P 2 O 5 is mainly composed of CaO. There is a method of removing it by migrating it into the slag. In addition, phosphorus in hot metal or molten steel is oxidized by a gas such as oxygen and removed in slag, but iron is also oxidized at that time, so even if iron oxide is not used as an oxygen source. Even if there is, iron is also contained in the slag in the form of iron oxide.

近年、環境対策および省資源の観点から、製鋼スラグのリサイクル使用を含めて、製鋼スラグの発生量を削減する試みがある。例えば、予備脱リン処理(溶銑を転炉にて脱炭精錬する前に、予め溶銑中のリンを除去する処理)した溶銑を脱炭精錬時に発生するスラグ(以下、「転炉スラグ」という)というのは、造滓剤用のCaO源や鉄源として用いることができるほか、焼結原料として用いることで高炉にリサイクルすること、あるいは溶銑予備処理工程のCaO源としてリサイクルする試みがある。 In recent years, from the viewpoint of environmental measures and resource saving, there have been attempts to reduce the amount of steelmaking slag generated, including the recycling of steelmaking slag. For example, slag generated during decarburization and refining of hot metal that has been subjected to preliminary dephosphorization treatment (a treatment that removes phosphorus in the hot metal in advance before decarburizing and refining the hot metal in a converter) (hereinafter referred to as "converter slag"). This is because, in addition to being able to be used as a CaO source or iron source for slag-making agents, there are attempts to recycle it into a blast furnace by using it as a sintering raw material, or as a CaO source in a hot metal pretreatment step.

予備脱リンの処理をした溶銑(以下、「脱リン溶銑」という)、特に鉄鋼製品のリン濃度レベルまで予備脱リンした脱リン溶銑は、これを転炉で脱炭精錬した場合、このときに発生する転炉スラグには、リンをほとんど含有していないものになる。従って、例えば、このような転炉スラグを高炉へリサイクルしたとしても、溶銑のリン濃度の増加(ピックアップ)を危惧する必要はない。しかしながら、予備脱リン処理時に発生したスラグや予備脱リン処理されていない溶銑(以下、「通常溶銑」という)、あるいは予備脱リン処理されていても脱リン処理後のリン濃度が鉄鋼製品のリン濃度レベルまで低下していないような脱リン溶銑を、転炉で脱炭精錬したときに発生する転炉スラグ(リンの含有量が多いスラグ)の場合、これを高炉に酸化物の形態でリサイクルすると、そのリンが、高炉内で還元され、溶製された溶銑中のリン含有量が増加し、溶銑脱リンの負荷が却って増加するという問題が起こる。 Pre-dephosphorized hot metal (hereinafter referred to as "de-phosphorus hot metal"), especially dephosphorized hot metal that has been pre-dephosphorized to the phosphorus concentration level of steel products, is at this time when it is decarburized and refined in a converter. The generated converter slag contains almost no phosphorus. Therefore, for example, even if such converter slag is recycled to a blast furnace, there is no need to worry about an increase in the phosphorus concentration (pickup) of the hot metal. However, slag generated during the pre-phosphorus removal treatment, hot metal that has not been pre-dephosphorused (hereinafter referred to as "normal hot metal"), or even if the pre-phosphorus treatment has been performed, the phosphorus concentration after the pre-phosphorus treatment is the phosphorus concentration of steel products. In the case of converter slag (slag containing a large amount of phosphorus) generated when decarburized and refined dephosphorized hot metal that has not decreased to the concentration level, it is recycled into a blast furnace in the form of oxide. Then, the phosphorus is reduced in the blast furnace, the phosphorus content in the molten metal increases, and the load of hot metal dephosphorus increases.

また、鉄鋼製品の強度を向上させるには、マンガン(Mn)の添加が有効である。そこで、マンガン含有鋼を溶製する場合、溶鋼中のMn濃度を高めるために、マンガン鉱石や、炭素含有量が1.0~7.5mass%以下のフェロマンガン、炭素の含有量が2.0mass%以下のシリコンマンガン、炭素含有量が0.01mass%以下の金属マンガンなどのマンガン源が用いられる。ただし、マンガン鉱石を除く他のマンガン源は、炭素含有量が低くなるほど原料価格が上昇することが知られている。そこで、製造コストの低減を目的として、マンガン源として安価なマンガン鉱石を用いたマンガン含有鋼の溶製が行われている。しかしながら、安価なマンガン鉱石というのはリンを多く含有しており、これをマンガン源として使用すると、鋼材中のリン濃度が上昇し、品質を低下させるという問題があり、マンガン鉱石の使用は制限されているのが実情である。 Further, in order to improve the strength of the steel product, it is effective to add manganese (Mn). Therefore, when manganese-containing steel is melted, manganese ore, ferromanganese with a carbon content of 1.0 to 7.5 mass% or less, and a carbon content of 2.0 mass are used to increase the Mn concentration in the molten steel. A manganese source such as silicon manganese having a carbon content of 0.01 mass% or less and metallic manganese having a carbon content of 0.01 mass% or less is used. However, it is known that the raw material prices of other manganese sources other than manganese ore increase as the carbon content decreases. Therefore, for the purpose of reducing the manufacturing cost, manganese-containing steel is smelted using inexpensive manganese ore as a manganese source. However, cheap manganese ore contains a large amount of phosphorus, and if it is used as a manganese source, there is a problem that the phosphorus concentration in the steel material increases and the quality deteriorates, and the use of manganese ore is restricted. The reality is that it is.

このように、製鉄プロセスで用いられる主原料あるいは副原料中には、一般に、多くのリンが含まれており、こうしたリン含有物質に含まれるリン濃度やその使用量によっては、最終的に得られる鉄鋼製品中のリンの含有量が多くなる。リンの含有量というのは、鉄鋼製品としての品質に悪影響を及ぼすため、鉄鋼製品中のリン含有量を抑制することが求められ、そのためには、リン含有量の低い主原料あるいは副原料の使用が求められる。ただし、そのためにはコスト増を招く。そこで、従来、製鉄用主原料あるいは副原料からなるリン含有物質から、リンを事前に除去するいくつかの技術が提案されている。 As described above, a large amount of phosphorus is generally contained in the main raw material or the auxiliary raw material used in the steelmaking process, and finally obtained depending on the phosphorus concentration contained in the phosphorus-containing substance and the amount used thereof. The phosphorus content in steel products increases. Since the phosphorus content adversely affects the quality of the steel product, it is required to suppress the phosphorus content in the steel product, and for that purpose, the use of a main raw material or an auxiliary raw material having a low phosphorus content is used. Is required. However, this will increase costs. Therefore, conventionally, some techniques for removing phosphorus in advance from a phosphorus-containing substance composed of a main raw material or an auxiliary raw material for steelmaking have been proposed.

例えば、特許文献1では、CaO含有量が25mass%以下かつCaO/(SiO+Al)比が5以下の鉄鉱石、含チタン鉄鉱石、含ニッケル鉱石、含クロム鉱石、あるいはこれらの鉱石を主成分とする混合物と、Ar、He、N2、CO、H2、炭化水素の一種もしくはこれらの混合ガスを1600℃以上で接触させることにより、リンを除去する方法を提案している。 For example, in Patent Document 1, iron ore having a CaO content of 25 mass% or less and a CaO / (SiO 2 + Al 2 O 3 ) ratio of 5 or less, titanium-containing iron ore, nickel-containing ore, chromium-containing ore, or these ores. We propose a method for removing phosphorus by contacting a mixture containing the above-mentioned main component with Ar, He, N 2, CO, H 2, a kind of hydrocarbon or a mixed gas thereof at 1600 ° C. or higher.

また、特許文献2には、リン含有量の高い鉄鉱石を0.5mm以下に粉砕し、これに水を加えてパルプ濃度35mass%前後とし、溶剤にHSOまたはHClを添加してpH2.0以下で反応させてリン鉱物を分解溶出し、ついで磁力選別により磁鉄鉱等の磁着物を採取することで、非磁着物たるSiOやAl等をスライムとして沈降分離すると共に、このとき液中に溶出したPを消石灰または生石灰を添加してpH5.0~10.0の範囲内で中和し、リン酸カルシウムとして分離回収する方法が開発されている。 Further, in Patent Document 2, iron ore having a high phosphorus content is crushed to 0.5 mm or less, water is added thereto to make the pulp concentration around 35 mass%, and H 2 SO 4 or HCl is added to the solvent to pH 2. Phosphorus minerals are decomposed and eluted by reacting at 0.0 or less, and then magnetite and other magnetic deposits are collected by magnetic force sorting to settle and separate non-magnetic deposits such as SiO 2 and Al 2 O 3 as slime. A method has been developed in which P eluted in the liquid is neutralized in the range of pH 5.0 to 10.0 by adding slaked lime or quick lime, and separated and recovered as calcium phosphate.

また、特許文献3には、微生物アスペルギルス エスピー KSC-1004株あるいは微生物フザリウム エスピー KSC-1005株を用いることにより鉄鉱石の脱リンを行う方法が開発されている。 Further, Patent Document 3 has developed a method for dephosphorizing iron ore by using the microorganism Aspergillus SP KSC-1004 strain or the microorganism Fusarium SP KSC-1005 strain.

さらに、非特許文献1では、水蒸気圧を制御した水素-水蒸気混合ガスによる高リン鉄鉱石の還元についての研究報告がなされており、鉄鉱石から直接的に脱リンする方法を提案している。 Further, Non-Patent Document 1 reports on the reduction of high-phosphorus iron ore by a hydrogen-steam mixed gas in which the water vapor pressure is controlled, and proposes a method of directly dephosphorizing from iron ore.

特開昭54- 83603号公報Japanese Unexamined Patent Publication No. 54-8363 特開昭60-261501号公報Japanese Unexamined Patent Publication No. 60-261501 特開2000-119759号公報Japanese Unexamined Patent Publication No. 2000-119759

鉄と鋼Vol.100(2014)、 No.2、 p.325Iron and Steel Vol. 100 (2014), No. 2, p. 325

しかしながら、上記各従来技術には以下のような解決しなければならない課題がある。
即ち、特許文献1に開示の方法は、処理温度が1600℃以上と高温であり、多くのエネルギーを要するという課題がある。さらに、この方法は、鉱石を溶融状態で処理するため、容器の損耗や高温融体の取扱いが困難であるという課題もある。
However, each of the above-mentioned conventional techniques has the following problems to be solved.
That is, the method disclosed in Patent Document 1 has a problem that the processing temperature is as high as 1600 ° C. or higher and a large amount of energy is required. Further, since this method treats the ore in a molten state, there are problems that the container is worn and it is difficult to handle the high temperature melt.

次に、特許文献2に開示の方法は、酸を用いた湿式処理であり、回収した磁着物を主原料として利用するための乾燥に時間とコストを要するという課題がある。さらに、この方法は、事前に0.5mm以下に粉砕するのにも時間とコストを要するという課題もある。 Next, the method disclosed in Patent Document 2 is a wet treatment using an acid, and has a problem that it takes time and cost to dry the recovered magnetic substance as a main raw material. Further, this method has a problem that it takes time and cost to pulverize to 0.5 mm or less in advance.

また、特許文献3に開示の方法は、特許文献2に開示の方法と同様に湿式処理するため、リン除去後の鉱石を主原料として利用するための乾燥に時間とコストを要するという課題がある。 Further, since the method disclosed in Patent Document 3 is wet-treated in the same manner as the method disclosed in Patent Document 2, there is a problem that it takes time and cost to dry the ore after removing phosphorus as a main raw material. ..

さらに、非特許文献1は、鉱石中のリン除去率が最大で13%と低位であるという課題を抱えている。しかも、この方法は、反応ガスとして水素を利用しているため、工業規模で安全に処理する設備等についての検討が必要であるところ、それがなされていないという課題もある。 Further, Non-Patent Document 1 has a problem that the phosphorus removal rate in the ore is as low as 13% at the maximum. Moreover, since this method uses hydrogen as a reaction gas, it is necessary to study equipment for safe treatment on an industrial scale, but there is also a problem that it has not been done.

そこで、本発明は、従来技術が抱えている前述の課題を解決するために開発された方法であり、その目的とするところは、金属製錬ないし金属精錬の主原料あるいは副原料として用いられる固体酸化物であるリン含有物質中のリンを効果的に低減させるための、工業的規模で適用可能な、リン含有物質からのリン除去方法を提案することである。また、そのようにしてリンを除去された原料を用いることで、精錬剤の利用量低減とスラグ発生量低減による鉄ロス低減を両立可能な低リン鋼の製造方法を提案することである。 Therefore, the present invention is a method developed to solve the above-mentioned problems of the prior art, and an object thereof is a solid used as a main raw material or an auxiliary raw material for metal smelting or metal refining. It is to propose a method for removing phosphorus from a phosphorus-containing substance, which can be applied on an industrial scale, in order to effectively reduce phosphorus in a phosphorus-containing substance which is an oxide. Further, it is proposed a method for producing low phosphorus steel which can achieve both reduction of iron loss by reducing the amount of refining agent used and reducing the amount of slag generated by using the raw material from which phosphorus has been removed in this way.

発明者らは、従来技術が抱えている前述の課題について検討する中で、リン含有物質を大気圧未満の減圧下で加熱して窒素を含むガスと接触させることでリンの除去が効率的に行われることを突き止めた。 In examining the above-mentioned problems of the prior art, the inventors efficiently remove phosphorus by heating the phosphorus-containing substance under a reduced pressure of less than atmospheric pressure and bringing it into contact with a gas containing nitrogen. I figured out what would happen.

本発明は、このような知見に基づいて開発した方法である。すなわち、本発明は、第1に、金属製錬用または金属精錬用原料として用いられるリン含有物質を窒素含有ガスと反応させることにより該リン含有物質中のリンを窒化除去する方法であって、雰囲気の全圧P(Pa)を大気圧未満に減圧して、前記リン含有物質を未溶融状態の処理温度T(℃)に加熱し、前記窒素含有ガスと反応させることにより、一窒化リン(PN)を生成せしめて前記リン含有物質からリンの少なくとも一部を除去することを特徴とするリン含有物質からのリンの除去方法を提案する。 The present invention is a method developed based on such findings. That is, the present invention is first a method of reacting a phosphorus-containing substance used as a raw material for metal smelting or metal refining with a nitrogen-containing gas to remove phosphorus in the phosphorus-containing substance by nitriding. Phosphorus mononitride is obtained by reducing the total pressure PA (Pa) of the atmosphere to less than atmospheric pressure, heating the phosphorus - containing substance to a treatment temperature T (° C.) in an unmelted state, and reacting with the nitrogen-containing gas. We propose a method for removing phosphorus from a phosphorus-containing substance, which comprises producing (PN) and removing at least a part of phosphorus from the phosphorus-containing substance.

なお、前記のように構成される本発明にかかるリン含有物質からのリンの除去方法は、また、
a.前記窒素含有ガスは、窒素分率NN2および酸素分圧PO2(Pa)を調整したものであること、
b.前記窒素含有ガスが還元性ガスを含むものであって、かつ、前記窒素分率NN2が下記の数式1の条件を満たすように調整すること、
c.前記処理温度T(℃)は下記の数式2(式中、Tはリン含有物質の融解温度(℃)を表す。)の条件を満たし、前記窒素含有ガス中の酸素分圧PO2(Pa)は下記の数式3の条件を満たすこと、
などがより好ましい実施形態になりうるものと考えられる。
ここで、窒素分率NN2は、{窒素濃度(vоl%)/100}である。
In addition, the method for removing phosphorus from the phosphorus-containing substance according to the present invention configured as described above is also described.
a. The nitrogen-containing gas has an adjusted nitrogen fraction NN2 and oxygen partial pressure PO2 (Pa).
b. The nitrogen-containing gas contains a reducing gas, and the nitrogen fraction NN2 is adjusted so as to satisfy the condition of the following formula 1.
c. The treatment temperature T (° C.) satisfies the condition of the following formula 2 (in the formula, T m represents the melting temperature (° C.) of the phosphorus-containing substance), and the oxygen partial pressure PO2 (Pa) in the nitrogen-containing gas is satisfied. ) Meets the condition of formula 3 below.
It is considered that such as can be a more preferable embodiment.
Here, the nitrogen fraction NN2 is {nitrogen concentration (vоl%) / 100}.

Figure 0007040499000001
Figure 0007040499000001

Figure 0007040499000002
Figure 0007040499000002

Figure 0007040499000003
Figure 0007040499000003

なお、本発明において、大気圧未満の減圧下とは、真空ポンプ等の減圧装置によって、反応容器内の雰囲気圧力を反応容器外の大気の圧力より低下させた状態を指す。また、前記融解温度Tは、固体試料が液体に変化する温度のことであり、下記第1~第3のいずれかの方法で決定することが簡易的であり望ましいが、これらの方法に限定するものではない。
・第1の方法は、るつぼ等の容器に固体試料を装入し、対象とするガス雰囲気下において、電気抵抗炉などにより毎分5℃、望ましくは毎分1℃以下で昇温しながら容器内の試料を連続的に観察し、固体試料の粒同士の隙間が消失し、表面に平滑面が生じた温度を融点とする方法である。
・第2の方法は、対象とするガス雰囲気下において、示差熱分析法により毎分5℃、望ましくは毎分1℃以下で昇温して測定した際の、吸熱ピークの極小点の温度を融点とする方法である。ここで、吸熱ピークが複数生じる場合、それぞれの吸熱ピークが生じた温度で測定を止めて、測定試料の外観を観察し、固体試料の粒同士の隙間が消失し、表面に平滑面が生じた温度の中で最も低温の吸熱ピークの極小点の温度を融点とする方法である。
・第3の方法は、電子計算機の熱力学計算ソフトを用い、試料組成を入力して温度を変化させて液相率を計算し、計算液相率が95%を超える温度を融点とする方法である。
In the present invention, the term “under reduced pressure below atmospheric pressure” refers to a state in which the atmospheric pressure inside the reaction vessel is lowered from the atmospheric pressure outside the reaction vessel by a decompression device such as a vacuum pump. Further, the melting temperature Tm is a temperature at which the solid sample changes to a liquid, and it is simple and desirable to determine by any of the following first to third methods, but the melting temperature is limited to these methods. It's not something to do.
-In the first method, a solid sample is placed in a container such as a melting point, and the temperature is raised to 5 ° C. per minute, preferably 1 ° C. or less per minute by an electric resistance furnace or the like under the target gas atmosphere. This is a method in which the melting point is the temperature at which the gaps between the grains of the solid sample disappear and a smooth surface is formed on the surface by continuously observing the sample inside.
-The second method measures the temperature of the minimum endothermic peak when the temperature is raised to 5 ° C. per minute, preferably 1 ° C. or less per minute by a differential thermal analysis method under the target gas atmosphere. It is a method of setting the melting point. Here, when a plurality of heat absorption peaks occur, the measurement is stopped at the temperature at which each heat absorption peak occurs, the appearance of the measurement sample is observed, the gaps between the grains of the solid sample disappear, and a smooth surface is generated on the surface. This is a method in which the temperature at the minimum point of the heat absorption peak, which is the lowest temperature among the temperatures, is used as the melting point.
-The third method is to use the thermodynamic calculation software of a computer to input the sample composition and change the temperature to calculate the liquid phase ratio, and set the temperature at which the calculated liquid phase ratio exceeds 95% as the melting point. Is.

また、本発明は、第2に、鋼の製造方法であって、金属の製錬段階および金属の精錬段階のうち少なくとも1の段階において、上記リン含有物質からのリンの除去方法により含有するリンの一部が除去された鉄鉱石またはマンガン鉱石原料の少なくとも一部として用いて鋼の製造を行うことを特徴とする鋼の製造方法を提案する。 The present invention is secondly a method for producing steel, which is contained by the method for removing phosphorus from the phosphorus-containing substance in at least one of the metal smelting step and the metal refining step. We propose a method for producing steel, which comprises using iron ore or manganese ore from which a part of phosphorus has been removed as at least a part of a raw material to produce steel.

本発明によれば、金属製錬用や金属精錬用の原料である、リンを含有する主原料または副原料などの固体、即ちリン含有物質を、大気圧未満の減圧下で未溶融状態の温度に加熱し、窒素含有ガスと接触させることで、窒素による、該リン含有物質中のリンの窒化脱リン処理を効率的に行えるようになるので、安価なリンを含有する主原料または副原料の使用量を増加させることができると共に、金属製錬や金属精錬プロセス内の脱リン処理プロセス負荷を低減できる。 According to the present invention, a solid such as a phosphorus-containing main raw material or auxiliary raw material, which is a raw material for metal smelting or metal refining, that is, a phosphorus-containing substance, is exposed to a temperature in an unmelted state under a reduced pressure of less than atmospheric pressure. By heating to and in contact with a nitrogen-containing gas, it becomes possible to efficiently perform smelting and dephosphorization of phosphorus in the phosphorus-containing substance with nitrogen. The amount used can be increased, and the load on the dephosphorization process in the metal smelting or metal refining process can be reduced.

また、本発明によれば、製鋼スラグのような副生物からリンを除去することで、該副生物の発生プロセスでの再利用の可能性が広がり、製鋼プロセスの副原料使用量の低減および副生物発生量の抑制が可能となる。 Further, according to the present invention, by removing phosphorus from by-products such as steelmaking slag, the possibility of reuse of the by-products in the development process is expanded, and the amount of auxiliary materials used in the steelmaking process is reduced and secondary substances are used. It is possible to control the amount of biological generation.

さらに、本発明によれば、窒化除去されたリンは排ガス中で酸化されてPとなり、リン濃度の高いダストを回収することができるようになるので、リン資源として有効活用が可能になるという副次的効果もある。 Further, according to the present invention, phosphorus denitrated is oxidized in exhaust gas to P2O5, and dust having a high phosphorus concentration can be recovered, so that it can be effectively used as a phosphorus resource. There is also a side effect of becoming.

リンをPNの気体として除去する反応(a)および、固体炭素と一酸化炭素ガスの平衡反応(c)について、それぞれの反応の平衡が成り立つときの処理温度T(℃)と酸素分圧(logPO2)の関係を示すグラフである。Regarding the reaction (a) for removing phosphorus as a gas of PN and the equilibrium reaction (c) between solid carbon and carbon monoxide gas, the treatment temperature T (° C.) and the oxygen partial pressure (logP) when the equilibrium of each reaction is established. It is a graph which shows the relationship of O2 ). 表3-1に示す全圧P=9.0×10Paにおける処理温度T(℃)と酸素分圧PO2(Pa)が鉄鉱石のリン除去率(ΔP)に与える影響を示すグラフである。Graph showing the influence of the treatment temperature T (° C.) and the oxygen partial pressure PO2 (Pa) on the phosphorus removal rate (ΔP) of iron ore at the total pressure PA = 9.0 × 10 4 Pa shown in Table 3-1. Is. 表3-2に示す全圧P=1.0×10Paにおける処理温度T(℃)と酸素分圧PO2(Pa)が鉄鉱石のリン除去率(ΔP)に与える影響を示すグラフである。Graph showing the influence of the treatment temperature T (° C.) and the oxygen partial pressure PO2 (Pa) at the total pressure PA = 1.0 × 10 3 Pa shown in Table 3-2 on the phosphorus removal rate (ΔP) of iron ore. Is. 表3-3に示す全圧P=10Paにおける処理温度T(℃)と酸素分圧PO2(Pa)が鉄鉱石のリン除去率(ΔP)に与える影響を示すグラフである。FIG. 3 is a graph showing the effects of the treatment temperature T (° C.) and the oxygen partial pressure PO2 (Pa) at a total pressure PA = 10 Pa shown in Table 3-3 on the phosphorus removal rate (ΔP) of iron ore.

本発明の開発にあたり、発明者らは、金属製錬用や金属精錬用の主原料として、リン濃度が高く安価な塊鉱石に着目し、そうしたリン含有物質からリンを予め除去する方法についての研究をすすめた。 In developing the present invention, the inventors focused on lump ore having a high phosphorus concentration and low cost as a main raw material for metal smelting and metal refining, and studied a method for removing phosphorus from such a phosphorus-containing substance in advance. I recommended.

金属製錬用や金属精錬用の原料(主原料および副原料)として用いられる鉄鉱石は日本国内では産出されず、海外、例えばオーストラリアやブラジルなどから輸入されている。鉄鉱石鉱山での採掘には大型の重機が利用され、鉄道、トラック、船舶などにより鉄鋼会社の工場まで運搬される。また、該工場内の原料使用設備までの運搬は、アンローダーや重機、コンベアー、ガスによる搬送などが行われる。このような採掘、運搬の過程で原料は不可避的に破砕されて広い粒度分布を持つ。この内、10mm以上の鉄鉱石を塊鉱石、10mm未満の鉄鉱石を粉鉱石と称する。必要に応じて、ジョークラッシャー、ロッドミルなどの破砕設備による粒度調整と、篩い器を用いた分級処理が行われる。 Iron ore used as a raw material for metal smelting and metal refining (main raw material and auxiliary raw material) is not produced in Japan, but is imported from overseas, such as Australia and Brazil. Large heavy machinery is used for mining at iron ore mines and is transported to steel company factories by rail, truck, ship, etc. In addition, transportation to the equipment using raw materials in the factory is carried out by unloaders, heavy machinery, conveyors, gas, and the like. In the process of such mining and transportation, the raw material is inevitably crushed and has a wide particle size distribution. Of these, iron ore of 10 mm or more is referred to as lump ore, and iron ore of less than 10 mm is referred to as powder ore. If necessary, the particle size is adjusted by a crushing facility such as a jaw crusher or a rod mill, and the classification process is performed using a sieve.

鉄鉱石の運搬方法と設備への供給方法は、粒度や強度などの性状と、使用する設備により異なる。例えば、10mm以上の塊鉱石については、コンベアーなどで連続的に運搬が可能な一方で、ガスによる搬送は困難である。また、塊鉱石の添加方法は自重による自然落下が多く、精製錬装置上部からコンベアー等を用いて直接装入する、あるいは製精錬装置上部に設けたホッパー等の貯蔵設備へコンベアー等を用いて貯蔵し、必要な時に必要量を切出して装入されている。 The method of transporting iron ore and the method of supplying it to equipment differ depending on the properties such as particle size and strength and the equipment used. For example, lump ore of 10 mm or more can be continuously transported by a conveyor or the like, but it is difficult to transport by gas. In addition, the method of adding lump ore often falls naturally due to its own weight, so it is directly charged from the upper part of the refining equipment using a conveyor or the like, or stored in a storage facility such as a hopper provided on the upper part of the refining equipment using a conveyor or the like. However, the required amount is cut out and charged when necessary.

10mm未満の粉鉱石については、ガスによる搬送が可能な一方で、コンベアーなどで運搬すると目詰まりを起こし、運搬効率低下を招く。また、該粉状原料を自重により自然落下させると、精製錬設備内での粉塵飛散による該製精錬設備の目詰まりや、ホッパー等の貯蔵設備内で棚吊りの発生、添加した粉鉱石が集塵されて添加歩留りが低下するなどの問題が生じる。 Powder ore less than 10 mm can be transported by gas, but if it is transported by a conveyor or the like, it will be clogged and the transportation efficiency will be reduced. In addition, when the powdery raw material is naturally dropped by its own weight, the refining equipment is clogged due to dust scattering in the refining equipment, shelving occurs in the storage equipment such as a hopper, and the added powder ore is collected. Problems such as dusting and a decrease in the addition yield occur.

以上を踏まえ、リン窒化除去を実施したリン含有物質について、粒度ごとに使用するプロセスおよび使用方法を変えることが望ましい。塊鉱石は、高炉原料として直接装入しても、該鉱石の還元に必要な通気性確保が可能なため、同等の組成の粉鉱石よりも高価である。塊鉱石の組成の例を表1に示す。 Based on the above, it is desirable to change the process and method of use for each particle size of the phosphorus-containing substance that has undergone phosphor nitriding removal. Even if the lump ore is directly charged as a raw material for a blast furnace, it is more expensive than the powder ore having the same composition because it can secure the air permeability required for the reduction of the ore. Table 1 shows an example of the composition of the lump ore.

Figure 0007040499000004
Figure 0007040499000004

ここで、鉄鉱石の鉄含有量を表すためにT.Feの濃度で記載したが、実際にはほぼ全てがFeの形態で存在する。ところで、リンは、珪素(Si)およびアルミニウム(Al)と比較して酸素との親和力が弱いことから、リン含有物質を、炭素、珪素、アルミニウムなどを使って還元した場合、リン含有物質中のPは容易に還元されることが知られている。一方で、鉄酸化物のFeは酸素との親和力がリンと同等であることから、リン含有物質を、炭素や珪素、アルミニウムなどで還元すると、Feもまた還元されることになる。 Here, in order to express the iron content of iron ore, T.I. Although described in terms of the concentration of Fe, in reality, almost all of them exist in the form of Fe 2 O 3 . By the way, since phosphorus has a weaker affinity for oxygen than silicon (Si) and aluminum (Al), when a phosphorus-containing substance is reduced with carbon, silicon, aluminum or the like, it is contained in the phosphorus-containing substance. It is known that P 2 O 5 is easily reduced. On the other hand, since Fe 2 O 3 of iron oxide has the same affinity for oxygen as phosphorus, when the phosphorus-containing substance is reduced with carbon, silicon, aluminum, etc., Fe 2 O 3 is also reduced. become.

ただ、リンは鉄中への溶解度が高く、とくに還元により生成したリンは、還元により生成した鉄中に迅速に溶解し、高リン含有鉄となる。このように、還元によるリンの除去方法は、有価成分である鉄へのリンの吸着、溶解が生じるため、リン除去率が低いという課題がある。 However, phosphorus has a high solubility in iron, and in particular, phosphorus produced by reduction is rapidly dissolved in iron produced by reduction to become high phosphorus-containing iron. As described above, the method for removing phosphorus by reduction has a problem that the phosphorus removal rate is low because phosphorus is adsorbed and dissolved in iron, which is a valuable component.

発明者らは、この問題を解決すべく鋭意研究を重ねた結果、リンを一窒化リン(PN)の気体として除去することにより、金属鉄や金属マンガンが生成しない温度および酸素分圧での処理が可能となり、リンの鉄およびマンガンへの吸着を抑制することが可能であることを見出した。 As a result of diligent research to solve this problem, the inventors removed phosphorus as a gas of phosphorus pentanitride (PN), and treated it at a temperature and oxygen partial pressure at which metallic iron and metallic manganese were not produced. It was found that it is possible to suppress the adsorption of phosphorus on iron and manganese.

即ち、発明者らは、リン含有物質中にPとして存在するリンを、一窒化リン(PN)の気体として除去する下記の化学式1に示す反応(a)が、リン含有物質に含まれる鉄酸化物が還元されて金属鉄となる下記の化学式2に示す反応(b)よりも安定であることを熱力学な検討により確認したのである。 That is, the inventors include the reaction (a) shown in the following chemical formula 1 for removing phosphorus existing as P 2 O 5 in the phosphorus-containing substance as a gas of phosphorus mononitride (PN), in the phosphorus-containing substance. It was confirmed by thermodynamic study that the iron oxide was reduced to metallic iron, which is more stable than the reaction (b) shown in the following chemical formula 2.

Figure 0007040499000005
Figure 0007040499000005

Figure 0007040499000006
Figure 0007040499000006

化学式1の上記反応(a)について、平衡が成り立つときの温度と酸素分圧の関係を図1に示す。また、この図1には比較のために、固体炭素と一酸化炭素ガスの平衡(化学式3に示す反応(c))により達成可能な温度と酸素分圧の関係を併せて示した。ここで、P活量を0.001、N分圧を9.0×10Pa、PN分圧を1.0×10Pa、C活量を1、CO分圧を1.0×10Paと仮定した。 FIG. 1 shows the relationship between the temperature and the oxygen partial pressure when an equilibrium is established for the reaction (a) of the chemical formula 1. Further, for comparison, FIG. 1 also shows the relationship between the temperature and the oxygen partial pressure that can be achieved by the equilibrium between solid carbon and carbon monoxide gas (reaction (c) shown in Chemical Formula 3). Here, the P 2 O 5 activity is 0.001, the N 2 partial pressure is 9.0 × 10 4 Pa, the PN partial pressure is 1.0 × 10 2 Pa, the C activity is 1, and the CO partial pressure is 1. It was assumed to be 0.0 × 10 4 Pa.

Figure 0007040499000007
Figure 0007040499000007

図1において、反応(a)、(c)それぞれの線より下側の温度と酸素分圧の領域において、反応(a)、(c)がそれぞれ右側に進行する。つまり、反応(a)のリン窒化除去を生じさせるためには、800℃では酸素分圧を2.2×10-14Pa以下、1000℃では1.45×10-9Pa以下、1200℃では4.66×10-6Pa以下の酸素分圧とすることが必要である。 In FIG. 1, the reactions (a) and (c) proceed to the right in the temperature and oxygen partial pressure regions below the lines of the reactions (a) and (c), respectively. That is, in order to cause the phosphonitriding removal of the reaction (a), the oxygen partial pressure is 2.2 × 10 -14 Pa or less at 800 ° C., 1.45 × 10 -9 Pa or less at 1000 ° C., and 1200 ° C. It is necessary to have an oxygen partial pressure of 4.66 × 10-6 Pa or less.

ここで、酸素分圧を低減させるためには、酸化物として安定な元素、例えばCaやMg、Al、Ti、Si、Cなどの単体を共存させることが有効であるが、金属元素の単体は高価である。そこで、本発明では、処理コスト低減の観点から、炭素(C)により酸素分圧の低減を図ることが好ましい。それは、図1の記載から判るように、724℃以上の温度において、固体炭素により達成される酸素分圧は、リンの窒化除去反応(a)を進行させるのに十分な値となることからもわかる。 Here, in order to reduce the oxygen partial pressure, it is effective to coexist a simple substance such as an element stable as an oxide, for example, Ca, Mg, Al, Ti, Si, C, etc., but a simple substance of a metal element is effective. It is expensive. Therefore, in the present invention, from the viewpoint of reducing the processing cost, it is preferable to reduce the oxygen partial pressure by using carbon (C). It is also because, as can be seen from the description in FIG. 1, the oxygen partial pressure achieved by the solid carbon at a temperature of 724 ° C. or higher is a value sufficient to proceed with the nitriding removal reaction (a) of phosphorus. Recognize.

また、反応(a)において、反応物と生成物のガス物質量を比較すると、生成物側のガス物質量が多い。ルシャトリエの原理において、平衡状態にある反応系において、状態変数を変化させると、その変化を相殺する方向へ平衡は移動する。すなわち、反応の全圧を減少させると、気体分子の数を増やして圧力を増加させる方向、すなわち反応(a)は右側へと進行し、目的である窒化処理を促進させることが可能であると考えられる。 Further, in the reaction (a), when the amount of gas substance of the reactant and the product is compared, the amount of gas substance on the product side is large. In Le Chatelier's principle, in a reaction system in an equilibrium state, when a state variable is changed, the equilibrium moves in a direction that cancels the change. That is, when the total pressure of the reaction is reduced, the number of gas molecules is increased and the pressure is increased, that is, the reaction (a) proceeds to the right side, and it is possible to promote the target nitriding treatment. Conceivable.

<実験1>
次に、上述した検討結果を踏まえ、リン窒化除去の可否を確認する実験を行った。この実験では、リン含有物質として、粒径を1~3mmに調整した鉄鉱石10gを用い、固体炭素として試薬カーボン(粒径0.25mmアンダー)5gを用い、それぞれ別のアルミナ製ボート上に乗せて、小型の電気抵抗炉内に静置した。その炉内にArガスを1リットル/minで供給しながら所定温度(T=600~1400℃)まで加熱した後、Arガスの供給を停止した。油回転真空ポンプによって所定の圧力(10~10Pa)以下まで真空引きした後、一酸化炭素(CO)と窒素(N)との混合ガスを所定の圧力P(Pa)となるように調整しながら、一定圧力および一定温度で、60分間保持した。なお一酸化炭素と窒素の混合ガスの比率は、窒素分率NN2が0.15~0.95(体積分率で15~95vol%に相当)の範囲となるように変化させた。ここで、窒素分圧PN2は、窒素分率NN2と全圧Pの積で表される。所定の時間経過後、所定の時間経過後、油回転真空ポンプを停止し、一酸化炭素と窒素の混合ガスの供給を停止して、Arガスを1リットル/minの供給に切り替え、大気圧まで復圧後、室温まで降温させ、前記鉄鉱石を回収した。なお、この実験では、試薬カーボンを静置した側が上流となるようにガスを供給し、一酸化炭素ガスと試薬カーボンが先に反応するようにした。
<Experiment 1>
Next, based on the above-mentioned examination results, an experiment was conducted to confirm whether or not phosphonitriding could be removed. In this experiment, 10 g of iron ore whose particle size was adjusted to 1 to 3 mm was used as the phosphorus-containing substance, and 5 g of reagent carbon (particle size under 0.25 mm) was used as the solid carbon, and each was placed on a separate alumina boat. Then, it was allowed to stand in a small electric resistance furnace. After heating the furnace to a predetermined temperature (T = 600 to 1400 ° C.) while supplying Ar gas at 1 liter / min, the supply of Ar gas was stopped. After vacuuming to a predetermined pressure ( 10 to 105 Pa) or less with an oil rotary vacuum pump, the mixed gas of carbon monoxide (CO) and nitrogen (N 2 ) is adjusted to a predetermined pressure P (Pa). While adjusting, it was held at a constant pressure and a constant temperature for 60 minutes. The ratio of the mixed gas of carbon monoxide and nitrogen was changed so that the nitrogen fraction NN2 was in the range of 0.15 to 0.95 (corresponding to 15 to 95 vol% in volume fraction). Here, the nitrogen partial pressure PN2 is represented by the product of the nitrogen fraction NN2 and the total pressure PA . After the lapse of a predetermined time, after the lapse of a predetermined time, the oil rotary vacuum pump is stopped, the supply of the mixed gas of carbon monoxide and nitrogen is stopped, the supply of Ar gas is switched to the supply of 1 liter / min, and the pressure reaches atmospheric pressure. After the pressure was restored, the temperature was lowered to room temperature, and the iron ore was recovered. In this experiment, the gas was supplied so that the side on which the reagent carbon was left to stand was upstream, so that the carbon monoxide gas and the reagent carbon reacted first.

上記実験を種々の窒素分率、容器内圧力、温度、酸素分圧において実施した結果、以下の条件において鉄鉱石の組成分析結果から求めたリン除去率(ΔP={(実験前P濃度)-(実験後P濃度)}/(実験前P濃度))(%)が高位となることが確かめられた。
窒素分率NN2について、0.2以上0.9以下の範囲とすることが好ましい。
処理温度T(℃)について、750℃以上0.95×T(℃)以下とし、酸素分圧PO2(Pa)について、logPO2≦-0.000025×T+0.0723×T-58.8-0.4×logPの関係を満足することが好ましい。ここで、Tはリン含有物質の融解温度(℃)であり、P(Pa)は反応容器内の全圧である。
As a result of conducting the above experiment at various nitrogen content, container pressure, temperature, and oxygen content, the phosphorus removal rate (ΔP = {(P concentration before the experiment)-" obtained from the composition analysis results of iron ore under the following conditions. It was confirmed that (P concentration after the experiment)} / (P concentration before the experiment)) (%) was high.
The nitrogen fraction NN2 is preferably in the range of 0.2 or more and 0.9 or less.
The treatment temperature T (° C) should be 750 ° C or higher and 0.95 × T m (° C) or less, and the oxygen partition coefficient PO2 (Pa) should be logPO2-0.000025 × T 2 +0.0723 × T-. It is preferable to satisfy the relationship of 58.8-0.4 × logPA . Here, T m is the melting temperature (° C.) of the phosphorus - containing substance, and PA (Pa) is the total pressure in the reaction vessel.

この理由として、窒素分率NN2が0.2未満では、反応(a)に寄与する窒素量が少なすぎて所定の処理時間内では反応(a)によるリンの窒化除去が十分に進行しなかったためだと考えられる。一方、窒素分率NN2が0.9超えでは、COガスの供給量が少なく、鉄鉱石中の酸化鉄の熱分解により発生する酸素により、酸素分圧が上昇し、リン窒化除去反応(a)が抑制されたためだと考えられる。 The reason for this is that when the nitrogen fraction NN2 is less than 0.2, the amount of nitrogen contributing to the reaction (a) is too small, and the nitriding removal of phosphorus by the reaction (a) does not proceed sufficiently within a predetermined treatment time. It is thought that this is because of it. On the other hand, when the nitrogen fraction NN2 exceeds 0.9, the amount of CO gas supplied is small, and the oxygen partial pressure rises due to the oxygen generated by the thermal decomposition of iron oxide in the iron ore, resulting in the phosphorylated removal reaction (a). ) Is suppressed.

処理温度Tが750℃未満でリン除去率が低位な理由としては、図1に示したように、724℃以下ではリン窒化除去に必要な酸素分圧を固体炭素による反応(c)では達成できなかったことが一因と考えられる。一方、処理温度Tが1350℃および1400℃の場合には、鉄鉱石が半溶融~溶融していて、回収した試料が一体化しており、その結果、鉄鉱石粒の隙間や気孔が消失し、ガスと接触する界面積が大幅に減少したのが原因と考えられる。この点について、示差熱分析法により測定した鉄鉱石の融点(Tm)は1370℃であり、その0.95倍の1300℃では高いリン除去率が得られたため、処理温度Tを「0.95×Tm(℃)」以下とすることがリン除去のための反応界面積確保の上で好ましいと考えられる。 The reason why the treatment temperature T is less than 750 ° C. and the phosphorus removal rate is low is that, as shown in FIG. 1, the oxygen partial pressure required for phosphorus nitriding removal can be achieved by the reaction (c) with solid carbon at 724 ° C. or lower. It is thought that one of the reasons was that it was not. On the other hand, when the treatment temperatures T are 1350 ° C. and 1400 ° C., the iron ore is semi-melted to melted, and the recovered sample is integrated. As a result, the gaps and pores of the iron ore grains disappear. It is considered that the cause is that the boundary area in contact with the gas has decreased significantly. Regarding this point, the melting point (Tm) of iron ore measured by the differential thermal analysis method was 1370 ° C., and a high phosphorus removal rate was obtained at 1300 ° C., which is 0.95 times that, so the treatment temperature T was set to "0.95". It is considered preferable that the temperature is not more than × Tm (° C.) ”in order to secure the reaction boundary area for removing phosphorus.

好ましい酸素分圧PO2を示す上記関係式において、全圧Pの対数値の影響項の係数は-0.4であり、負の値となる。これは、全圧Pが小さくなるほど要求される酸素分圧PO2が高くても良い事を意味しており、必要となる処理条件が緩和(例えば低温、低還元雰囲気)されることを意味する。この理由として、前述の通り全圧Pを減少させることで、反応(a)が右側へと進行しやすくなるためだと考えられる。ここで、全圧Pは低いほど有効であるが、10Paよりも低くするためには複数ないしは高性能で高価な真空ポンプが必要となるため、10Pa以上とすることが好ましい。 In the above relational expression showing a preferable oxygen partial pressure PO2 , the coefficient of the logarithmic influence term of the total pressure PA is −0.4, which is a negative value. This means that the required oxygen partial pressure PO2 may be higher as the total pressure PA becomes smaller, and it means that the required treatment conditions are relaxed (for example, low temperature, low reduction atmosphere). do. It is considered that the reason for this is that the reaction (a) tends to proceed to the right side by reducing the total pressure PA as described above. Here, the lower the total pressure PA is, the more effective it is, but in order to make it lower than 10 Pa, a plurality of or high - performance and expensive vacuum pumps are required, so it is preferably 10 Pa or more.

同様の手法をマンガン鉱石や製鋼スラグにも適用し、異なる粒径に対しても実験を試みたが、全ての条件において、窒化脱リン処理は、「0.2以上0.9以下」の窒素分率(NN2)範囲、「750℃以上0.95×T(℃)以下」(ここで、Tはマンガン鉱石や製鋼スラグの融解温度)の処理温度T(℃)の範囲、および、「関係式logPO2≦-0.000025×T+0.0723×T-58.8-0.4×logP」(ここで、Pは反応容器内の全圧)を満足する酸素分圧PO2(Pa)で高いリン除去率が得られることがわかった。 The same method was applied to manganese ore and steelmaking slag, and experiments were attempted for different particle sizes. The range of fraction ( NN2 ), the range of processing temperature T (° C) of "750 ° C or higher and 0.95 x TM (° C) or lower" (where T m is the melting temperature of manganese ore or steelmaking slag), and , "Relational formula logP O2 ≤ -0.000025 x T 2 +0.0723 x T-58.8-0.4 x logPA A " (where PA is the total pressure in the reaction vessel) It was found that a high phosphorus removal rate can be obtained by dividing the pressure PO2 (Pa).

以上説明したように、リン含有物質中のリンを窒化除去するためには、所定の圧力、温度での処理と低酸素分圧の環境での窒素供給が必要と考えられる。このような処理をするための設備としては、電気炉、回転炉床炉、キルン炉、流動層型加熱炉、焼結機などの昇温と雰囲気調整とが可能な設備であればよい。また、反応容器内の圧力を低減する方法としては、油回転真空ポンプ、ピストン真空ポンプ、液封真空ポンプ、エジェクター、ドライポンプ、油拡散ポンプ、ターボ分子ポンプなど、目的とする容器内圧力が達成できれば、いずれの方法でも良い。 As described above, in order to remove phosphorus in a phosphorus-containing substance by nitriding, it is considered necessary to treat it at a predetermined pressure and temperature and supply nitrogen in an environment with a low oxygen partial pressure. The equipment for such processing may be any equipment such as an electric furnace, a rotary hearth furnace, a kiln furnace, a fluidized layer type heating furnace, a sintering machine, etc., which can raise the temperature and adjust the atmosphere. As a method for reducing the pressure inside the reaction vessel, the desired pressure inside the vessel is achieved, such as an oil rotary vacuum pump, a piston vacuum pump, a liquid-sealed vacuum pump, an ejector, a dry pump, an oil diffusion pump, and a turbo molecular pump. If possible, either method may be used.

また、酸素分圧を低減させる方法としては、
(1)固体の還元剤と窒素ガスとを高温で接触させる、
(2)一酸化炭素、水素、炭化水素等の還元性ガスを窒素ガスに混合する、
(3)電圧を印加した固体電解質に窒素ガスを導入して酸素を除去する、
など所定の酸素分圧を得ることができれば、いずれの方法でもよい。
Also, as a method of reducing the oxygen partial pressure,
(1) Bring the solid reducing agent into contact with nitrogen gas at high temperature.
(2) Mix reducing gas such as carbon monoxide, hydrogen, and hydrocarbon with nitrogen gas.
(3) Nitrogen gas is introduced into the solid electrolyte to which a voltage is applied to remove oxygen.
Any method may be used as long as a predetermined partial pressure of oxygen can be obtained.

本発明法に従い、大気圧未満の減圧下で、窒化脱リン処理した鉄鉱石を低リン塊鉱石として、高炉に配合することで低リン溶銑の製造が可能となる。これにより、溶銑予備処理の精錬剤の削減、処理時間短縮による高い溶銑温度の確保により、冷鉄源の多量使用が可能になるなど、省エネルギー面、環境負荷軽減面で効果があった。また、本発明法に従い、大気圧未満の減圧下で、窒化脱リン処理したマンガン鉱石を、転炉精錬時にマンガン源として投入し、低リン高マンガン鋼の溶製を行った。この方法では、高価なマンガン合金を使うことなく、また、後続する処理で脱リン処理を必要とすることなく、低リン高マンガン鋼を経済的に製造することができた。上記の例に限られず、リサイクルする鉄鋼スラグや予備処理で投入する副原料等の事前脱リン処理に本発明法が適用できる。 According to the method of the present invention, low-phosphorus hot metal can be produced by blending iron ore treated with nitriding and dephosphorization as a low-phosphorus ingot ore in a blast furnace under a reduced pressure of less than atmospheric pressure. As a result, by reducing the amount of refining agent for hot metal pretreatment and ensuring a high hot metal temperature by shortening the treatment time, it became possible to use a large amount of cold iron source, which was effective in terms of energy saving and reduction of environmental load. Further, according to the method of the present invention, manganese ore treated with nitriding and dephosphorization was charged as a manganese source during converter refining under a reduced pressure of less than atmospheric pressure to melt low-phosphorus and high-manganese steel. In this method, low phosphorus and high manganese steel could be economically produced without using an expensive manganese alloy and without requiring a dephosphorization treatment in the subsequent treatment. Not limited to the above example, the method of the present invention can be applied to the pre-phosphorus removal treatment of recycled steel slag, auxiliary raw materials to be added in the pretreatment, and the like.

<実施例1>
設備全体が密閉され、多段式の蒸気エジェクターにより設備内の圧力を調整可能な5トン/hr規模の回転炉床炉に鉄鉱石を装入し、加熱バーナーに供給する燃料と酸素の量とその比率、更に供給する窒素ガスの量を調整して、処理温度Tは1000℃一定とし、設備内の全圧P、窒素分率NN2および酸素分圧PO2を調整した窒化処理を30分間実施した。バーナー燃料にはLPGを用い、必要に応じて、外熱式のヒーターを用い、一定温度となるように調整した。装入した試料が、窒化脱リン処理において15分経過時点で存在する場所の温度測定とガス組成分析とを行った。ガス中の一酸化炭素(CO)濃度(vol%)および二酸化炭素(CO)濃度(vol%)は赤外線ガス分析装置により測定し、その残りは窒素濃度(vol%)として扱った。なお、窒素分率NN2は、{窒素濃度(vol%)/100}である。また、酸素分圧PO2はPCO/PCO2比の測定値から、下記化学式4中の計算式より算出した。なお、LPGのバーナー燃焼により生じる水(HO)は、赤外線ガス分析装置へガスを導入する前にドレーンにより分離した。また、水素(H)は分析装置の検出限界以下となり、未燃焼の水素はほぼ存在しなかった。
<Example 1>
The entire facility is sealed, and the amount of fuel and oxygen supplied to the heating burner by charging iron ore into a 5-ton / hr-scale rotary hearth furnace whose pressure inside the facility can be adjusted by a multi-stage steam ejector and its By adjusting the ratio and the amount of nitrogen gas to be supplied, the treatment temperature T is kept constant at 1000 ° C., and the nitriding treatment in which the total pressure PA , nitrogen fraction NN2 and oxygen partial pressure PO2 in the facility are adjusted is performed for 30 minutes. Carried out. LPG was used as the burner fuel, and if necessary, an external heat type heater was used to adjust the temperature to a constant level. The temperature of the place where the charged sample was present after 15 minutes in the nitriding dephosphorization treatment and the gas composition analysis were performed. The carbon monoxide (CO) concentration (vol%) and carbon dioxide (CO 2 ) concentration (vol%) in the gas were measured by an infrared gas analyzer, and the rest was treated as the nitrogen concentration (vol%). The nitrogen fraction NN2 is {nitrogen concentration (vol%) / 100}. Further, the oxygen partial pressure PO2 was calculated from the measured value of the PCO / PCO2 ratio by the calculation formula in the following chemical formula 4. The water ( H2O ) generated by the burner combustion of LPG was separated by a drain before introducing the gas into the infrared gas analyzer. In addition, hydrogen (H 2 ) was below the detection limit of the analyzer, and there was almost no unburned hydrogen.

Figure 0007040499000008
Figure 0007040499000008

処理条件ならびに実施結果について、表2に示す。表2から明らかなように、処理No.1~9は、全圧Pが10~9.0×10Paの範囲、および、窒素分率NN2が0.20~0.90の範囲であり、いずれの条件でもリン除去率は70%以上と高位であった。一方、処理No.10、12および14は、窒素分率NN2が0.15であり、いずれの全圧でも、リン除去率は30%と低位であった。また、処理No.11、13および15は、窒素分率NN2が0.95であり、リンの除去はまったく確認されなかった。以上の結果から、高いリン除去率を得るためには、窒素分率NN2が0.2以上0.9以下の範囲にあることが好ましいとわかる。 Table 2 shows the processing conditions and the implementation results. As is clear from Table 2, the processing No. 1 to 9 have a total pressure PA in the range of 10 to 9.0 × 10 4 Pa and a nitrogen fraction NN2 in the range of 0.20 to 0.90, and the phosphorus removal rate is in the range of 0.20 to 0.90 under any condition. It was as high as 70% or more. On the other hand, processing No. In 10, 12 and 14, the nitrogen fraction NN2 was 0.15, and the phosphorus removal rate was as low as 30% at any of the total pressures. In addition, processing No. In 11, 13 and 15, the nitrogen fraction NN2 was 0.95, and no phosphorus removal was confirmed. From the above results, it can be seen that in order to obtain a high phosphorus removal rate, it is preferable that the nitrogen fraction NN2 is in the range of 0.2 or more and 0.9 or less.

窒素分率NN2が下限を下回ると雰囲気中の窒素量が不十分で、今回の処理時間の30分間では十分にリンが除去できなかったものと考えられる。一方、窒素分率NN2が上限を超えると、還元ガスである雰囲気中のCOガス量が十分でなく、鉄鉱石の熱分解により生じる酸素、および鉄鉱石の装入口や装置の隙間からの巻き込み空気に含まれる酸素を除去しきれなかった結果、窒化除去に必要な酸素分圧を確保できなかったと考えられる。このことは、ガス分析においてCOガスがほとんど検出されていない事と合致する。 When the nitrogen fraction NN2 is below the lower limit, the amount of nitrogen in the atmosphere is insufficient, and it is probable that phosphorus could not be sufficiently removed within 30 minutes of this treatment time. On the other hand, when the nitrogen content NN2 exceeds the upper limit, the amount of CO gas in the atmosphere, which is a reducing gas, is not sufficient, and oxygen generated by the thermal decomposition of iron ore and entrainment of iron ore from the inlet or the gap of the device. As a result of not being able to completely remove the oxygen contained in the air, it is probable that the oxygen partial pressure required for removing the nitride was not secured. This is consistent with the fact that almost no CO gas is detected in the gas analysis.

Figure 0007040499000009
Figure 0007040499000009

<実施例2>
実施例1と同様の、設備全体が密閉され、多段式の蒸気エジェクターにより設備内の圧力を調整可能な5トン/hr規模の回転炉床炉に鉄鉱石を装入し、加熱バーナーに供給する燃料と酸素の量とその比率、更に供給する窒素ガスの量を調整して、窒素分率NN2は0.9一定とし、設備内の全圧P、処理温度Tおよび酸素分圧PO2を調整した窒化処理を30分間実施した。酸素分圧の算出方法は実施例1と同様である。
<Example 2>
Similar to Example 1, iron ore is charged into a 5 ton / hr scale rotary hearth furnace in which the entire equipment is sealed and the pressure inside the equipment can be adjusted by a multi-stage steam ejector, and the iron ore is supplied to a heating burner. By adjusting the amount and ratio of fuel and oxygen, and the amount of nitrogen gas to be supplied, the nitrogen fraction NN2 is set to 0.9 constant, the total pressure PA in the facility, the processing temperature T, and the oxygen partial pressure PO2 . The nitriding treatment was carried out for 30 minutes. The method for calculating the oxygen partial pressure is the same as in Example 1.

設備内の圧力を9.0×10Pa、1.0×10Paおよび10Paとした時の処理条件並びに結果を表3-1~3-3にそれぞれ示す。図2~4は、表3-1~3-3に示す処理温度T(℃)と酸素分圧PO2(Pa)の関係をそれぞれ図示したものである。図2~4において、リン除去率が70%以上の結果(処理No.16~25、37~46および58~67)を○で、リン除去率が10%未満の結果(処理No.26~36、47~57および68~78)を×でプロットした。 Tables 3-1 to 3-3 show the processing conditions and results when the pressures in the equipment were 9.0 × 10 4 Pa, 1.0 × 10 3 Pa and 10 Pa, respectively. 2 to 4 show the relationship between the treatment temperature T (° C.) and the oxygen partial pressure PO2 (Pa) shown in Tables 3-1 to 3-3, respectively. In FIGS. 2 to 4, the results with a phosphorus removal rate of 70% or more (treatments No. 16 to 25, 37 to 46 and 58 to 67) are marked with ◯, and the results with a phosphorus removal rate of less than 10% (treatments No. 26 to 26). 36, 47-57 and 68-78) were plotted with x.

表3-1~3-3および図2~4から明らかなように、処理温度T(℃)が750℃以上0.95×T(℃)以下の範囲にあり、酸素分圧PO2(Pa)が、logPO2≦-0.000025×T+0.0723×T-58.8-0.4×logPの関係を満たすとき、高いリン除去率が得られていることがわかる。上記条件を外した場合にリン除去率が低位であった原因として以下の理由が考えられる。処理No.26~28、47~49および68~70は、処理温度Tが700℃以下での処理であり、化学式4に示すCO-CO平衡から決まる酸素分圧では、リンの窒化除去に必要な低酸素分圧に至らなかったと考えられる。一方、処理No.34~36、55~57および76~78は、は1400℃での処理であり、試料の鉄鉱石の融解温度T=1370℃以上での処理であったため、試料が溶融して内部の気孔や粒間の隙間が消失した結果、界面積が大幅に低減したと考えられる。また、処理No.29~33、50~54および71~75は、処理温度の範囲は好適であるが、酸素分圧が上記好適な条件を満たさず、リンの窒化除去に必要な低酸素分圧を達成できなかったと考えられる。
同様の設備を用い、処理時間を変更した場合にも、窒素分率、処理温度および酸素分圧が上記好適条件を満たす時に高いリン除去率が得られることを確認した。
As is clear from Tables 3-1 to 3-3 and FIGS. 2 to 4, the treatment temperature T (° C.) is in the range of 750 ° C. or higher and 0.95 × T m (° C.) or lower, and the oxygen partial pressure PO2 ( It can be seen that a high phosphorus removal rate is obtained when Pa) satisfies the relationship of logP O2 ≤ −0.000025 × T 2 +0.0723 × T-58.8-0.4 × logPA A. The following reasons can be considered as the reason why the phosphorus removal rate was low when the above conditions were not met. Processing No. 26 to 28, 47 to 49 and 68 to 70 are treatments at a treatment temperature T of 700 ° C. or lower, and the oxygen partial pressure determined from the CO-CO 2 equilibrium shown in Chemical Formula 4 is the low required for nitriding removal of phosphorus. It is probable that the oxygen partial pressure was not reached. On the other hand, processing No. 34 to 36, 55 to 57 and 76 to 78 were treated at 1400 ° C. and the melting temperature of the iron ore of the sample was T m = 1370 ° C. or higher, so that the sample was melted and the internal pores were formed. It is considered that the boundary area was significantly reduced as a result of the disappearance of the gaps between the grains. In addition, processing No. For 29 to 33, 50 to 54 and 71 to 75, the treatment temperature range is suitable, but the oxygen partial pressure does not satisfy the above-mentioned suitable conditions, and the low oxygen partial pressure required for nitriding removal of phosphorus cannot be achieved. It is thought that it was.
It was confirmed that a high phosphorus removal rate can be obtained when the nitrogen fraction, the treatment temperature and the oxygen partial pressure satisfy the above-mentioned preferable conditions even when the treatment time is changed by using the same equipment.

Figure 0007040499000010
Figure 0007040499000010

Figure 0007040499000011
Figure 0007040499000011

Figure 0007040499000012
Figure 0007040499000012

鉄鋼製錬においてリンを除去しようとすると、精錬剤としてCaOを含有する生石灰や消石灰、ドロマイトなどを添加してスラグを生成する。脱リン精錬は通常酸化条件で行われ、同時に鉄も酸化されるため、スラグ中に鉄が取り込まれ、鉄ロスが生じ、歩留りが低下する。また、鉄鋼精錬は1300~1700℃の高温で行われ、スラグも同等の温度とする必要があるため、エネルギーロスも発生する。 When phosphorus is to be removed in steel smelting, quicklime, slaked lime, dolomite, etc. containing CaO are added as a refining agent to generate slag. Dephosphorization refining is usually carried out under oxidizing conditions, and iron is also oxidized at the same time, so that iron is taken into the slag, iron loss occurs, and the yield decreases. Further, steel refining is performed at a high temperature of 1300 to 1700 ° C., and the slag needs to be at the same temperature, so that energy loss also occurs.

一般的に、溶銑からP濃度0.001mass%相当のリンを除去するためには、予備処理で脱リンする場合には、CaO換算で200~250g/t-溶銑を添加する必要があり、鉄ロス量は75~100g/t-溶銑である。一方、同様に転炉脱炭で脱リンする場合には、CaO換算で約450g/t-溶銑を添加する必要があり、鉄ロス量は200g/t-溶銑である。 Generally, in order to remove phosphorus equivalent to a P concentration of 0.001 mass% from hot metal, it is necessary to add 200 to 250 g / t-hot metal in terms of CaO when dephosphorizing by pretreatment, and iron. The amount of loss is 75 to 100 g / t-hot metal. On the other hand, similarly, when dephosphorizing by converter decarburization, it is necessary to add about 450 g / t-hot metal in terms of CaO, and the amount of iron loss is 200 g / t-hot metal.

このように、鉄鋼精錬においてリンを除去するためには多量の副原料添加やエネルギーが必要である。本発明では、鉄鋼製錬および鉄鋼精錬プロセス用原料として用いられるリン含有物質を窒素含有ガスと反応させて、該リン含有物質中のリンを窒化除去することで、鉄鋼製錬および鉄鋼精錬プロセスにおけるリン濃度低減がなされ、前述の様な多量の副原料添加やエネルギーを必要とすることなく、低リン鋼の溶製が可能となる。 As described above, in order to remove phosphorus in steel refining, a large amount of auxiliary raw material addition and energy are required. In the present invention, phosphorus-containing substances used as raw materials for steel smelting and steel refining processes are reacted with nitrogen-containing gas to remove phosphorus in the phosphorus-containing substances by nitriding, thereby in steel smelting and steel refining processes. The phosphorus concentration is reduced, and low-phosphorus steel can be smelted without the need for adding a large amount of auxiliary raw materials or energy as described above.

本発明に開示の技術については、上記鉄鉱石に限られず、マンガン鉱石や製鋼スラグ等金属製錬用や金属精錬用の主原料または副原料に適用可能である。また、除去した排ガス中の一窒化リン(PN)を、P含有ダストなどとして、リン酸肥料のようなものにして再資源化することも可能である。 The technique disclosed in the present invention is not limited to the above iron ore, and can be applied to a main raw material or an auxiliary raw material for metal smelting and metal refining such as manganese ore and steelmaking slag. It is also possible to recycle the removed phosphorus pentanitride ( PN) in the exhaust gas as P2O5 - containing dust or the like as a phosphoric acid fertilizer.

Claims (5)

金属製錬用または金属精錬用原料として用いられるリン含有物質を下記の数式1の条件を満たす窒素分率N N2 窒素含有ガスと反応させることにより該リン含有物質中のリンを窒化除去する方法であって、
雰囲気の全圧P(Pa)を大気圧未満に減圧して、前記リン含有物質を下記の数式2(式中、T はリン含有物質の融解温度(℃)を表す。)の条件を満たす処理温度T(℃)に加熱し、前記窒素含有ガスと反応させることにより、一窒化リン(PN)を生成せしめて前記リン含有物質からリンの少なくとも一部を除去することを特徴とするリン含有物質からのリンの除去方法。
Figure 0007040499000013
Figure 0007040499000014
A method for removing phosphorus in a phosphorus-containing substance by reacting a phosphorus-containing substance used as a raw material for metal smelting or metal refining with a nitrogen-containing gas having a nitrogen content of NN2 that satisfies the conditions of the following formula 1. And
The total pressure PA (Pa) of the atmosphere is reduced to less than atmospheric pressure, and the phosphorus - containing substance is subjected to the conditions of the following formula 2 (in the formula, Tm represents the melting temperature (° C.) of the phosphorus-containing substance). Phosphorus is characterized in that at least a part of phosphorus is removed from the phosphorus-containing substance by heating to a treatment temperature T (° C.) to be satisfied and reacting with the nitrogen-containing gas to generate phosphorus mononitride (PN). A method for removing phosphorus from contained substances.
Figure 0007040499000013
Figure 0007040499000014
前記窒素含有ガスは、酸素分圧PO2(Pa)を調整したものであることを特徴とする請求項1に記載のリン含有物質からのリンの除去方法。 The method for removing phosphorus from a phosphorus-containing substance according to claim 1, wherein the nitrogen-containing gas has an adjusted oxygen partial pressure PO2 (Pa). 前記窒素含有ガスが還元性ガスを含むことを特徴とする請求項2に記載のリン含有物質からのリンの除去方法。 The method for removing phosphorus from a phosphorus-containing substance according to claim 2, wherein the nitrogen-containing gas contains a reducing gas. 記窒素含有ガス中の酸素分圧PO2(Pa)は下記の数式3の条件を満たすことを特徴とする、請求項2または3に記載のリン含有物質からのリンの除去方法。
Figure 0007040499000015
The method for removing phosphorus from a phosphorus-containing substance according to claim 2 or 3, wherein the oxygen partial pressure PO2 (Pa) in the nitrogen-containing gas satisfies the condition of the following formula 3.
Figure 0007040499000015
鋼の製造方法であって、金属の製錬段階および金属の精錬段階のうち少なくとも1の段階において、請求項1から4のいずれか1項に記載のリン含有物質からのリンの除去方法により含有するリンの一部が除去された鉄鉱石またはマンガン鉱石を原料の少なくとも一部として用いて鋼の製造を行うことを特徴とする鋼の製造方法。
A method for producing steel, which is contained by the method for removing phosphorus from a phosphorus-containing substance according to any one of claims 1 to 4 in at least one of a metal smelting step and a metal refining step. A method for producing steel, which comprises using iron ore or manganese ore from which a part of phosphorus is removed as at least a part of a raw material to produce steel.
JP2019117366A 2019-06-25 2019-06-25 Phosphorus removal method from phosphorus-containing substances and steel manufacturing method Active JP7040499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019117366A JP7040499B2 (en) 2019-06-25 2019-06-25 Phosphorus removal method from phosphorus-containing substances and steel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117366A JP7040499B2 (en) 2019-06-25 2019-06-25 Phosphorus removal method from phosphorus-containing substances and steel manufacturing method

Publications (2)

Publication Number Publication Date
JP2021004383A JP2021004383A (en) 2021-01-14
JP7040499B2 true JP7040499B2 (en) 2022-03-23

Family

ID=74099212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117366A Active JP7040499B2 (en) 2019-06-25 2019-06-25 Phosphorus removal method from phosphorus-containing substances and steel manufacturing method

Country Status (1)

Country Link
JP (1) JP7040499B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940209B2 (en) * 1977-12-16 1984-09-28 新日本製鐵株式会社 How to remove phosphorus from ore
JPS5675507A (en) * 1979-11-21 1981-06-22 Sumitomo Metal Ind Ltd Regenerating method of converter slag
JPH09316519A (en) * 1996-05-23 1997-12-09 Sumitomo Metal Ind Ltd Method for reforming smelting slag

Also Published As

Publication number Publication date
JP2021004383A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP6825725B2 (en) How to remove phosphorus from phosphorus-containing substances
WO2020261767A1 (en) Method for removing phosphorus from phosphorus-containing substance, method for producing starting material for metal smelting or starting material for metal refining, and method for producing metal
JP7040499B2 (en) Phosphorus removal method from phosphorus-containing substances and steel manufacturing method
JP7067532B2 (en) A method for dephosphorizing a manganese oxide-containing substance, a method for producing a low-phosphorus-containing manganese oxide-containing substance, and a method for producing steel using the manganese oxide-containing substance.
Zhdanov et al. Utilization of ferroalloy-production wastes
JP7047817B2 (en) Manufacturing method of low phosphorus steel
JP7047815B2 (en) Manufacturing method of low phosphorus steel
JP6052191B2 (en) Recycling method of steelmaking slag
JP7047816B2 (en) Manufacturing method of low phosphorus steel
JP6798654B1 (en) A method for removing phosphorus from a phosphorus-containing substance, a method for producing a raw material for metal smelting or a raw material for metal refining, and a method for producing a metal.
JP5829788B2 (en) Method for producing phosphoric acid resource raw material
JP2014221932A (en) Dephosphorization method for hot pig iron having high iron yield
JP7476871B2 (en) Metal manufacturing methods
Park et al. Metal/Slag separation behavior of CCA with various slag systems and effect of slag composition on the content of sulfur and phosphorus in iron nugget
JP2023080996A (en) metal manufacturing method
Jung Evaluation of reduction progress of raw titanomagnetite and char composite by thermogravimetry
Yugov et al. Converter production of clean and microalloyed steels.
JP2013181195A (en) Decarburization-blowing method for high-alloy steel
JP2013133513A (en) Method for producing agglomerated ore

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R150 Certificate of patent or registration of utility model

Ref document number: 7040499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150