JPS5940209B2 - How to remove phosphorus from ore - Google Patents
How to remove phosphorus from oreInfo
- Publication number
- JPS5940209B2 JPS5940209B2 JP15061977A JP15061977A JPS5940209B2 JP S5940209 B2 JPS5940209 B2 JP S5940209B2 JP 15061977 A JP15061977 A JP 15061977A JP 15061977 A JP15061977 A JP 15061977A JP S5940209 B2 JPS5940209 B2 JP S5940209B2
- Authority
- JP
- Japan
- Prior art keywords
- ore
- plasma
- iron
- dephosphorization
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】
本発明は比較的リンの高い鉱石から低リンの鉄又は合金
鉄原料を得る目的で鉄鉱石、含チタン鉄鉱石、含ニツケ
ル鉱石、含クロム鉱石あるいはこれらの鉱石を主成分と
する混合物からリンを選択的に揮散除去する方法に関す
るものである。Detailed Description of the Invention The present invention mainly uses iron ore, titanium-containing iron ore, nickel-containing ore, chromium-containing ore, or these ores for the purpose of obtaining low-phosphorus iron or ferroalloy raw materials from relatively high-phosphorus ores. The present invention relates to a method for selectively volatilizing and removing phosphorus from a mixture of components.
製鉄原料、合金鉄原料である該鉱石は通常炭素質還元剤
により強還元して用いられるため、原料鉱石中に含有す
るリンははゾ全量還元されて鉄又は合金鉄中に不純物と
して含有される。The ore, which is a raw material for iron manufacturing and ferroalloy, is usually strongly reduced with a carbonaceous reducing agent before use, so the phosphorus contained in the raw material ore is completely reduced and contained as an impurity in the iron or ferroalloy. .
周知のごとく鉄鋼材料におよぼすリンの悪影響は甚だ大
きく低温脆性、焼戻し脆性を起こし、耐食性、溶接性を
劣化させる。As is well known, the adverse effects of phosphorus on steel materials are extremely large, causing low-temperature embrittlement and tempering embrittlement, and deteriorating corrosion resistance and weldability.
従って鉄又は合金鉄製造に当って使用される原料鉱石は
、できるだけリン含有量の少ないものが望まれる。Therefore, it is desirable that the raw material ore used in the production of iron or ferroalloy contains as little phosphorus as possible.
従来鉱石中のリンを除去する方法として、鉱石を粉砕し
、磁力選鉱するかあるいは磨鉱処理した後水簸磁力選鉱
を行なう方法が知られているが、この方法は生産性が悪
い上リンの低下もそれほど顕著ではない。Conventionally known methods for removing phosphorus from ores include crushing the ore and subjecting it to magnetic beneficiation, or grinding and then elutriation and magnetic beneficiation. The decline is also not that noticeable.
そこでリンの除去は通常製鋼段階で塩基性スラグのもと
て酸化精錬して除去している。Therefore, phosphorus is usually removed during the steelmaking stage by oxidizing and refining basic slag.
しかしリン含有量の高い原料鉱石を使用した場合には、
通常精錬による極低リン化は困難で、ダブルスラグ精錬
法あるいは特殊な脱リン精錬法を必要とし、精錬工程を
複雑にし、生産性を低下させている。However, when raw material ore with high phosphorus content is used,
It is difficult to achieve extremely low phosphorus levels through conventional smelting, and requires a double slag smelting method or a special dephosphorization smelting method, which complicates the smelting process and reduces productivity.
通常鉱石中の不純物Pは例えばCa3(PO4)2のよ
うなリン酸化合物として存在する。The impurity P in ores usually exists as a phosphoric acid compound such as Ca3(PO4)2.
本発明者は種々検討の結果CaO含有量が重量にして2
5%以下で、かつCa O/(S i 02+A 40
3)比が5以下の組成からなる鉱石中のリン酸化合物は
超高温で熱分解し、蒸気圧の高い例えばP2O,のよう
なガス状化合物として蒸発し、ガスの流れによって気相
に除去できる、あるいは還元性ガスを使用した場合は、
鉱石中のリン酸化合物は還元されて亜リン酸化合物(P
O、PO2)や単体のリン(P)として蒸発し、ガスの
流れによって気相に除去できることを見出した。As a result of various studies, the inventor found that the CaO content was 2 by weight.
5% or less, and Ca O/(S i 02 + A 40
3) Phosphate compounds in ores with a composition ratio of 5 or less are thermally decomposed at extremely high temperatures, evaporated as gaseous compounds with high vapor pressure, such as PO, and can be removed into the gas phase by a gas flow. , or when using a reducing gas,
Phosphate compounds in the ore are reduced to phosphite compounds (P
It was discovered that phosphorus (P) can be removed into the gas phase by a gas flow.
本発明による脱リンは1600℃以上の温度で実椎する
ことができるか、より効果的な脱リンを行なうため18
00℃以上であることが好ましい。Can the dephosphorization according to the present invention be carried out at a temperature of 1600°C or higher?18
The temperature is preferably 00°C or higher.
このような高い温度領域は通常の加熱方式で達成するこ
とは困難であるが、例えばプラズマアークや高周波誘導
プラズマの利用により達成できる。Although it is difficult to achieve such a high temperature range by ordinary heating methods, it can be achieved by using, for example, plasma arc or high-frequency induction plasma.
プラズマアークを用いて本発明を実施する場合は、鉱石
は溶融状態で処理するため粉状、塊状、ペレット状等い
づれも使用できる。When carrying out the present invention using a plasma arc, the ore is processed in a molten state, so any form of powder, lumps, pellets, etc. can be used.
プラズマアークを用いて本発明を実施する手順は、まず
鉱石を容器中に装入し、上部よりプラズマアークを照射
して鉱石を溶融し、更に溶融鉱石を容器中に一定時間保
持して、超高温のプラズマアークガスにさらして処理す
る。The procedure for implementing the present invention using a plasma arc is to first charge ore into a container, irradiate the plasma arc from above to melt the ore, and then hold the molten ore in the container for a certain period of time until the Treated by exposure to high temperature plasma arc gas.
容器への鉱石の装入は予め処理鉱石の全量を容器中に装
入しておいてもよく、鉱石の一部を溶融径連続的に装入
してもよい。For charging the ore into the container, the entire amount of the ore to be treated may be charged into the container in advance, or a portion of the ore may be continuously charged to a molten diameter.
連続装入は容器中へ直接装入する方法が簡便であるが、
鉱石の一部を粉砕するか、粉状の鉱石を篩分して100
メツシユ以下とし鉱石粉をガスと共にプラズマアーク中
に送給し、アークの超高温部で溶融して容器に受は更に
容器中で一定時間保持して処理する方法も可能である。For continuous charging, it is convenient to charge directly into the container, but
Grind some of the ore or sieve the powdered ore to 100
It is also possible to process the ore powder by feeding it into a plasma arc together with gas, melting it in the ultra-high temperature part of the arc, placing it in a container, and then holding it in the container for a certain period of time.
粉状鉱石を100メツシユ以下とする理由はガスにより
プラズマアーク中に安定に鉱石粒子を送給するためと、
アーク内での鉱石粒子の十分な溶融を保つためである。The reason why the amount of powdered ore is 100 mesh or less is to stably feed ore particles into the plasma arc using gas.
This is to maintain sufficient melting of ore particles within the arc.
プラズマアークを用いて鉱石を大量に処理する場合は、
容器中への直接装入とプラズマアーク中への送給を併用
する方法が効果的である。When processing ore in large quantities using plasma arc,
An effective method is to use a combination of direct charging into the container and feeding into the plasma arc.
高周波誘導プラズマを用いて本発明を実施する場合には
鉱石は粉状で処理する。When implementing the present invention using high-frequency induced plasma, the ore is treated in powder form.
鉱石を粉砕するか粉状の鉱石を篩分して100メツシユ
以下とした後、該鉱石粉を公知の給粉装置によって高周
波誘導プラズマ中に連続的に送給して処理する。After the ore is crushed or the powdered ore is sieved to a size of 100 mesh or less, the ore powder is continuously fed into a high-frequency induced plasma using a known powder feeding device for treatment.
高周波誘導プラズマ中への鉱石粉の送給はプラズマアー
ク中への送給に比較して容易であり、多量の鉱石の送給
が可能である。Feeding ore powder into high-frequency induced plasma is easier than feeding into a plasma arc, and a large amount of ore can be fed.
高周波誘導プラズマを用いて本発明を実施する場合は、
プラズマ中を通過させて途中の超高温部で鉱石粉を短時
間溶融し、低温部で固化させるのみでも脱リン処理が可
能である。When implementing the present invention using high frequency induced plasma,
Dephosphorization can be achieved simply by passing the ore powder through plasma, melting it for a short time in an extremely high temperature section, and solidifying it in a low temperature section.
処理後の該鉱石は容器に受けて再溶融してもよく、粉状
のまメで回収してもよい。The ore after treatment may be received in a container and remelted, or may be recovered as a powder.
本発明で用いる容器は、金属製容器、耐火物製容器のい
づれも使用できるが、金属製容器を用いる場合は加熱さ
れた溶融鉱石による溶損を防止するため容器外壁の水冷
が必要である。The container used in the present invention can be either a metal container or a refractory container, but when a metal container is used, the outer wall of the container needs to be cooled with water to prevent melting damage caused by heated molten ore.
又耐大物製容器を用いる場合は溶融鉱石との反応による
侵食を防止するため、容器内壁に薄く未溶融の鉱石層を
形成させる様容器の放熱をコントロールする必要があり
、水冷ジャケット等により冷却することが好ましい。In addition, when using a large-sized container, it is necessary to control the heat dissipation of the container to form a thin layer of unmolten ore on the inner wall of the container in order to prevent erosion due to reaction with molten ore, and cool it with a water cooling jacket, etc. It is preferable.
本発明による脱リンの割合は、鉱石中に含有するCaO
,5i02.Al2O3含有量によって異なる。The rate of dephosphorization according to the present invention is based on the CaO contained in the ore.
, 5i02. It varies depending on the Al2O3 content.
本発明者の研究によれば、重量にして25%以上CaO
を含有した鉱石、あるいはCaO含有量25%以下でも
CaO/(S102+A1203)比が5以上の鉱石の
場合には脱リンしない。According to the research of the present inventor, 25% or more by weight of CaO
In the case of an ore containing CaO or an ore with a CaO/(S102+A1203) ratio of 5 or more even if the CaO content is 25% or less, dephosphorization is not performed.
しかしCaO含有量25%以下で、かつCaO/(S1
02+A1203)比が5以下の場合には脱リンが起こ
る。However, if the CaO content is 25% or less, and CaO/(S1
02+A1203) when the ratio is less than 5, dephosphorization occurs.
CaOは脱リンを阻害するので含有量は少ないほど好ま
しい。Since CaO inhibits dephosphorization, the lower the content, the better.
又同−CaO含有量においてもCaO/(S102+A
1203)比が小さいほど脱リン率は増加する。Also, in the same -CaO content, CaO/(S102+A
1203) The smaller the ratio, the higher the dephosphorization rate.
しかしSiO□。Al2O3共僅かではあるが脱リンを
阻害する成分であるから、その総量は重量にして50%
以下であることが好ましい。However, SiO□. Although Al2O3 is a component that inhibits dephosphorization, the total amount is 50% by weight.
It is preferable that it is below.
プラズマの超高温の利用法として、例えばArプラズマ
によるバラ輝石(MnSi03)あるいはジルコン(Z
r S + 03)等の熱分解法或いはH2又は炭化
水素ガスを含むプラズマアークによる鉄鉱石、含クロム
鉱石、含ニツケル鉱石の溶融還元法等が既に公知である
。As a method of utilizing the ultra-high temperature of plasma, for example, Ar
A thermal decomposition method such as rS + 03) or a method of melting and reducing iron ore, chromium-containing ore, and nickel-containing ore using a plasma arc containing H2 or hydrocarbon gas is already known.
前者は熱分解により二成分を分離し易い結晶構造に変化
させることを目的としたものであって、例えばバラ輝石
の熱分解法を例にとれば、次式のごとく結晶構造を変化
させた後、MnOを塩酸中で溶解
MnSiO3→MnO+5i02
抽出してMnを得る方法で、プラズマアークの超高温に
よる熱分解反応を、有価金属を回収し易い形態に変換す
る方法として利用しているにすぎない。The purpose of the former is to change the crystal structure by thermal decomposition into a crystal structure that makes it easy to separate two components.For example, taking the thermal decomposition method of rosette, after changing the crystal structure as shown in the following formula, , is a method of obtaining Mn by dissolving MnO in hydrochloric acid (MnSiO3→MnO+5i02) and extracting it. This method simply utilizes the thermal decomposition reaction caused by the extremely high temperature of a plasma arc as a method of converting valuable metals into a form that is easy to recover.
本発明のごとく不純物元素、特に鉱石中のリンを選択的
に揮散除去する方法は現状では見出されていない。At present, no method has been found for selectively volatilizing and removing impurity elements, especially phosphorus in ores, as in the present invention.
後者の溶融還元法は鉄、クロム、ニッケル等の還元製造
を目的としたものであり、従来不純物除去には強い関心
が払われていなかった。The latter smelting reduction method is aimed at the reduction production of iron, chromium, nickel, etc., and conventionally, no strong attention has been paid to the removal of impurities.
本発明者は鉱石の還元を目的としたものではなく、鉱石
の予備脱リン法を種々検討した結果、本発明を完成した
ものであって、公知のプラズマ溶融還元法のごとく還元
性ガスの存在を不可欠とはしない。The present inventor did not intend to reduce ore, but completed the present invention after studying various preliminary dephosphorization methods for ore. is not essential.
還元性ガスを用いる場合においても溶融還元法に比べて
還元性ガスの使用量は少ない。Even when reducing gas is used, the amount of reducing gas used is smaller than in the smelting reduction method.
例えば水素プラズマによる鉄鉱石の溶融還元法と、水素
プラズマの超高温を利用した本発明の方法を比較し、そ
の相違点を述べれば、通常鉄鉱石中の’I’Feは60
%程度であり、水素プラズマ溶融還元における水素の利
用効率は50〜70%であるから還元所要水素量は鉱石
100g当り90〜12ONl必要である。For example, if we compare the method of melting and reducing iron ore using hydrogen plasma and the method of the present invention that utilizes the ultra-high temperature of hydrogen plasma, and describe the differences, 'I'Fe in iron ore is usually 60
%, and the hydrogen utilization efficiency in hydrogen plasma smelting and reduction is 50 to 70%, so the amount of hydrogen required for reduction is 90 to 12 ONl per 100 g of ore.
更に水素プラズマ溶融還元では含クロム鉱石のごとき難
還元性の鉱石を還元する場合は水素の利用効率が20%
以下に低下するので実質的に含クロム鉱石の還元は不可
能になる。Furthermore, hydrogen plasma smelting reduction has a hydrogen utilization efficiency of 20% when reducing difficult-to-reducible ores such as chromium-containing ores.
Since the chromium-containing ore decreases to below, it becomes virtually impossible to reduce the chromium-containing ore.
上記溶融還元法に対して本発明の方法は鉄鉱石はもとよ
り難還元性の含クロム鉱石においても、CaO含有量が
25%以下で力りCaO/(SiO□+A#)s)比が
5以下の鉱石であれば、鉱石の種類に無関係に鉱石中の
リンを60%以上除去するのに要する水素ガス使用量は
鉱石100g当り5ONl以下である。In contrast to the above smelting reduction method, the method of the present invention can be applied not only to iron ores but also to difficult-to-reducible chromium-containing ores, when the CaO content is 25% or less and the strain CaO/(SiO□+A#)s) ratio is 5 or less. ore, the amount of hydrogen gas required to remove 60% or more of phosphorus in the ore is 5 ONl or less per 100 g of ore, regardless of the type of ore.
ガス使用量が少ないことは当然処理に要する時間も短か
くなる。Naturally, if the amount of gas used is small, the time required for processing will also be shortened.
以上のように本発明は公知のプラズマアークを利用した
熱分解法や溶融還元法とは異なったものであり、本発明
により脱リン処理した鉱石は低オンの鉄又は合金鉄原料
としてもよく、製鉄用副原料として利用することも可能
である。As described above, the present invention is different from the known pyrolysis method or smelting reduction method using a plasma arc, and the ore dephosphorized according to the present invention may be used as a raw material for low-on iron or ferroalloy. It can also be used as an auxiliary raw material for steel manufacturing.
尚本発明を実施するにあたってガス或いは反応点を16
00°C以上にする手段は、プラズマアークや高周波誘
導プラズマの利用に限定されるものではなく、例えばレ
ーザー、イメージアーク等による集中加熱やメタン等の
燃焼加熱によっても可能であり、更に減圧下で本発明を
実施すればより効果的な脱リンが期待できる。In carrying out the present invention, 16 gases or reaction points are used.
The means to raise the temperature to 00°C or higher is not limited to the use of plasma arc or high-frequency induction plasma, but can also be achieved by concentrated heating using lasers, image arcs, etc., heating by combustion of methane, etc., and even under reduced pressure. If the present invention is implemented, more effective dephosphorization can be expected.
実舟例 1
鉄鉱石、含チタン鉄鉱石、含クロム鉱石、含ニツケル鉱
石を各々主成分とする焼成ペレットを水冷鉄モールド内
に全量初期装入し直流のArガスアークプラズマ、A、
r−N2混合ガスアークプラズマ、Ar−N2混合ガス
アークプラズマを照射して脱リン処理した。Actual boat example 1 All fired pellets containing iron ore, titanium-containing iron ore, chromium-containing ore, and nickel-containing ore as main components were initially charged into a water-cooled iron mold, and then subjected to direct current Ar gas arc plasma.
Dephosphorization treatment was carried out by irradiation with r-N2 mixed gas arc plasma and Ar-N2 mixed gas arc plasma.
処理中溶融鉱石を連続的に採取してPを分析した。During processing, molten ore was continuously sampled and analyzed for P.
各鉱石の分析値を第1表に、実験条件を第2表に示し、
結果を第1図に示した。The analytical values for each ore are shown in Table 1, and the experimental conditions are shown in Table 2.
The results are shown in Figure 1.
尚第1図中の番号は第2表に示した番号を示している。Note that the numbers in FIG. 1 indicate the numbers shown in Table 2.
実施例 2
実施例1に示したと同一の組成の鉄鉱石焼成ペレット3
00gを水冷鉄モールド中で、Ar H2混合ガスア
ークプラズマを照射して5分間で全量溶融した。Example 2 Calcined iron ore pellets 3 having the same composition as shown in Example 1
00g was placed in a water-cooled iron mold and irradiated with Ar H2 mixed gas arc plasma to melt the entire amount in 5 minutes.
鉄鉱石焼成ペレット30(L9の溶融後150〜250
メツシュに整粒した鉄鉱石(T−Fe62.39%、P
o、16%、CaO3,40%、Sin。Iron ore calcined pellets 30 (150-250 after melting L9)
Iron ore sized into mesh (T-Fe62.39%, P
o, 16%, CaO3, 40%, Sin.
4.02%、A42030.62%)を100g/mi
t>送給速度でAr−H2混合ガスアークプラズマ中に
20分間送給し、水冷鉄モールドに受け、送給停止後5
分間混合溶融して脱リン処理した。4.02%, A42030.62%) at 100g/mi
t> Feed into the Ar-H2 mixed gas arc plasma for 20 minutes at a feed rate, receive it in a water-cooled iron mold, and after stopping the feed,
The mixture was mixed and melted for a minute to perform dephosphorization treatment.
処理中水冷鉄モールド内の溶融鉱石を連続的に採取しP
を分析した。During processing, the molten ore inside the water-cooled iron mold is continuously collected.
was analyzed.
プラズマアーク条件を以下に示し、結果を第2図に示し
た。The plasma arc conditions are shown below, and the results are shown in FIG.
プラズマアーク条件
プラズマアークガス A r 74/mi!t+H25
1)/mm粉鉱石送給ガス Ar 30 l/mi
nプラズマプラズマアークガス50A−65V実施例
3
150〜250メツシユに整粒した鉄鉱石(’1.”・
Fe 63.54%、Po、127%、Ca00.34
%、S i025.90%、A42030.19%、M
g00.26%)を高周波誘導プラズマ中に送給し脱リ
ン処理した。Plasma arc conditions Plasma arc gas A r 74/mi! t+H25
1)/mm fine ore feed gas Ar 30 l/mi
n plasma plasma arc gas 50A-65V example
3 Iron ore sized to 150-250 mesh ('1.''・
Fe 63.54%, Po, 127%, Ca00.34
%, Si025.90%, A42030.19%, M
g00.26%) was fed into high frequency induction plasma for dephosphorization treatment.
処理後の粉鉱石は鉄モールド中に回収し、全量処理後モ
ールド中心部より分析試料を採取した。The processed ore powder was collected in an iron mold, and after the entire amount was processed, an analysis sample was taken from the center of the mold.
その結果P含有量0.013%(脱リン率90%)であ
った。As a result, the P content was 0.013% (dephosphorization rate 90%).
実1験条件を以下に示す。高周波発振機出力 35
kW
Arガス流量 s o Nl/min鉱石送給
速度 309 /m1yr処理時間
20分
鉱石処理量 610g
実施例 4
CaO2SiO2,Al2O3含有量を変えた鉄鉱石焼
成ペレット各々500gを水冷鉄モールド内に全量初期
装入し、直流250A−65VのAr−H2混合ガス(
Ar 7. Ol/m1yv+H25,01) /mi
n )アークプラズマを照射して脱リン処理した。Experimental conditions are shown below. High frequency oscillator output 35
kW Ar gas flow rate s o Nl/min Ore feeding rate 309 /mlyr Processing time
20 minutes ore processing amount 610g Example 4 500g each of calcined iron ore pellets with different contents of CaO2SiO2 and Al2O3 were initially charged in a water-cooled iron mold, and Ar-H2 mixed gas (DC 250A-65V) was charged.
Ar7. Ol/mlyv+H25,01)/mi
n) Dephosphorization treatment was performed by irradiating with arc plasma.
処理中溶融鉱石を連続的に採取してPを分析した。During processing, molten ore was continuously sampled and analyzed for P.
各焼成ペレットの分析値を第3表に示し、結果を第3図
に示した。The analytical values of each fired pellet are shown in Table 3, and the results are shown in FIG.
図中の番号は第3表に示したペレット番号を示しており
、この結果CaO含有量25%以上(6)では脱リンし
ていない。The numbers in the figure indicate the pellet numbers shown in Table 3, and as a result, dephosphorization was not performed when the CaO content was 25% or more (6).
CaO含有量25%以下でかつCaO/(S i02
+ Al2O3)比が5以下のものではCaO含有量が
少ないほどよく脱リンしている。CaO content is 25% or less and CaO/(S i02
+Al2O3) ratio of 5 or less, the lower the CaO content, the better the dephosphorization.
又同−CaO含有量においては(2゜3.4)、CaO
/(S102+A1203)比が小さいほどよく脱リン
している。In addition, the same -CaO content (2°3.4), CaO
/(S102+A1203) The smaller the ratio, the better the dephosphorization.
第1図はプラズマアークを用いて本発明を実施するにあ
たり、鉱石組成あるいはプラズマアーク条件を変えた場
合の処理時間とリン含有量の関係を示す図、第2図はプ
ラズマアークを用いて本発明を実施するにあたり、一部
鉱石を容器中に装入し、一部鉱石を粉状にしてプラズマ
アーク中へ送給した場合の処理時間と、リン含有量の関
係を示す図、第3図はプラズマアークを用いて本発明を
実施するにあたり、鉱石中のCaO含有量あるいはCa
O/(S102+A1203)比を変えた場合の処理時
間と脱リン率の関係を示す図である。Figure 1 is a diagram showing the relationship between processing time and phosphorus content when ore composition or plasma arc conditions are changed when implementing the present invention using a plasma arc, and Figure 2 is a diagram showing the relationship between processing time and phosphorus content when the ore composition or plasma arc conditions are changed. Figure 3 is a diagram showing the relationship between processing time and phosphorus content when some of the ore is charged into a container and some of the ore is pulverized and fed into the plasma arc. In implementing the present invention using a plasma arc, the CaO content or Ca
It is a figure which shows the relationship between processing time and dephosphorization rate when O/(S102+A1203) ratio is changed.
Claims (1)
O/(S 102 + k1203)比が5以下の鉄
鉱石、含チタン鉄鉱石、含ニツケル鉱石、含クロム鉱石
、あるいはこれらの鉱石を主成分とする混合物と、Ar
、He、N2 、CO,N2、炭化水素の一種もしく
はこれらの混合ガスの流れとを1600℃以上で接触さ
せることを特徴とする鉱石のリンを除去する方法。I CaO content is 25% or less by weight and Ca
Iron ore, titanium-containing iron ore, nickel-containing ore, chromium-containing ore, or a mixture containing these ores as main components, with an O/(S 102 + k1203) ratio of 5 or less;
, He, N2, CO, N2, one type of hydrocarbon, or a mixed gas flow thereof at a temperature of 1600° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15061977A JPS5940209B2 (en) | 1977-12-16 | 1977-12-16 | How to remove phosphorus from ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15061977A JPS5940209B2 (en) | 1977-12-16 | 1977-12-16 | How to remove phosphorus from ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5483603A JPS5483603A (en) | 1979-07-03 |
JPS5940209B2 true JPS5940209B2 (en) | 1984-09-28 |
Family
ID=15500818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15061977A Expired JPS5940209B2 (en) | 1977-12-16 | 1977-12-16 | How to remove phosphorus from ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5940209B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112020013037B1 (en) | 2017-12-26 | 2023-03-21 | Jfe Steel Corporation | METHOD FOR REMOVING PHOSPHORUS FROM A SUBSTANCE CONTAINING PHOSPHORUS |
JP7099149B2 (en) * | 2018-08-02 | 2022-07-12 | 日本製鉄株式会社 | Reduction method of high-phosphorus iron ore |
WO2020261767A1 (en) | 2019-06-25 | 2020-12-30 | Jfeスチール株式会社 | Method for removing phosphorus from phosphorus-containing substance, method for producing starting material for metal smelting or starting material for metal refining, and method for producing metal |
JP7040499B2 (en) * | 2019-06-25 | 2022-03-23 | Jfeスチール株式会社 | Phosphorus removal method from phosphorus-containing substances and steel manufacturing method |
KR102597737B1 (en) | 2019-06-25 | 2023-11-02 | 제이에프이 스틸 가부시키가이샤 | Method for removing phosphorus from phosphorus-containing substance, method for manufacturing raw material for metal smelting or raw material for metal refining, and method for manufacturing metal |
KR20240090639A (en) | 2021-11-30 | 2024-06-21 | 제이에프이 스틸 가부시키가이샤 | Manufacturing method of metallic iron |
-
1977
- 1977-12-16 JP JP15061977A patent/JPS5940209B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5483603A (en) | 1979-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3579328A (en) | Process for the production of ferro-vanadium directly from slag obtained from vanadium-containing pig iron | |
US20060037673A1 (en) | Chromium-containing metal and manufacturing method thereof | |
JP5656172B2 (en) | Method for recovering valuable metals from slag | |
CN105568004A (en) | Method for smelting chromium metal from aluminum-chromium slag in electric arc furnace | |
JP2659807B2 (en) | Direct smelting method | |
US4526612A (en) | Method of manufacturing ferrosilicon | |
CN107267780A (en) | A kind of production method of vananum | |
JPS5940209B2 (en) | How to remove phosphorus from ore | |
JPH06172916A (en) | Manufacturing of stainless steel | |
CN108300880A (en) | A kind of preparation method of vanadium iron | |
JP2021084848A (en) | Method for producing slag containing two liquid phases and method for producing artificial phosphate ore | |
JP2004143492A (en) | Method of melting extra-low phosphorus stainless steel | |
JP4485987B2 (en) | Method for recovering valuable metals from waste containing V, Mo and Ni | |
JP2000204420A (en) | Recovery of valuable metal from vanadium-containing waste | |
JPH01228586A (en) | Treatment of ni-cd battery waste | |
JPH06322455A (en) | Production of metallic antimony | |
WO2020178480A1 (en) | Combined smelting of molten slags and residuals from stainless steel and ferrochromium works | |
JP2004285473A (en) | METHOD FOR RECOVERING VALUABLE METAL FROM V, Mo, AND NICKEL-CONTAINING WASTE | |
JP3935251B2 (en) | Treatment method for waste containing hexavalent chromium | |
JPS61153201A (en) | Method for regenerating scrap of magnet containing rare earth element | |
WO2023100707A1 (en) | Production method for metal iron | |
RU2756057C2 (en) | Method for obtaining vanadium cast iron from iron-vanadium raw materials | |
US2991174A (en) | Process of producing chromium steel | |
Mimura et al. | Recent developments in plasma metal processing | |
JP2003049235A (en) | Chromium-containing metal and production method therefor |