JP2004143492A - Method of melting extra-low phosphorus stainless steel - Google Patents

Method of melting extra-low phosphorus stainless steel Download PDF

Info

Publication number
JP2004143492A
JP2004143492A JP2002307991A JP2002307991A JP2004143492A JP 2004143492 A JP2004143492 A JP 2004143492A JP 2002307991 A JP2002307991 A JP 2002307991A JP 2002307991 A JP2002307991 A JP 2002307991A JP 2004143492 A JP2004143492 A JP 2004143492A
Authority
JP
Japan
Prior art keywords
chromium
slag
dephosphorization
phosphorus
containing molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002307991A
Other languages
Japanese (ja)
Other versions
JP3966156B2 (en
Inventor
Naoki Kikuchi
菊池 直樹
Seiji Nabeshima
鍋島 誠司
Hideji Takeuchi
竹内 秀次
Takayuki Kashiwa
柏 孝幸
Yoshihisa Kitano
北野 嘉久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002307991A priority Critical patent/JP3966156B2/en
Publication of JP2004143492A publication Critical patent/JP2004143492A/en
Application granted granted Critical
Publication of JP3966156B2 publication Critical patent/JP3966156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of melting extra-low phosphorus stainless steel more inexpensive than the conventional one. <P>SOLUTION: In the method of melting molten stainless steel, chromium ore and a carbonaceous material are added to hot metal charged to a converter type reaction vessel then, gaseous oxygen is fed thereto to subject the chromium ore to smelting reduction-refining; the obtained chromium-containing molten iron is subjected to decarburization refining in an another converter type reaction vessel to be made into chromium-containing molten steel; and the above steel is subjected to decarburization refining and/or componential regulation in a vacuum refining device. Before the decarburization of the chromium-containing molten iron, oxidizer-CaO based flux is added thereto, and dephosphorization is performed. An operation where, in accordance with the allowable amount of the phosphorus content in molten stainless steel as the object for a smelting reduction-refining charge on and after the next time, dephosphorization slag formed there is recycled to the smelting reduction-refining charge on and after the next time and an operation where a carbonaceous material is added to the dephosphorization slag, heating and vaporizing dephosphorization are performed, and it is recycled to the smelting reduction-refining charge on and after the next time are selectively recovered, and thus chromium oxide in the slug is subjected to carbon reduction, and the chromium component is recovered into the chromium-containing molten iron. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、極低燐ステンレス鋼の溶製方法に係わり、特に、燐含有量が0.010質量%以下の所謂「極低燐ステンレス鋼」を従来より安価で、かつ環境に悪影響を及ぼさずに溶製する技術に関する。
【0002】
【従来の技術】
近年、鋼材の特性に対する要求が益々高まっており、製鋼の各精錬工程では、不純物成分を低減するための負荷が増加している。ステンレス鋼の場合もその例外でなく、とりわけステンレス鋼中の燐は、連続鋳造によって製造される鋳片の中心偏析の要因となり、これを素材として得られるパイプ材の内面欠陥を引き起こす等の問題のため、その低減が必須である。
【0003】
ステンレス鋼の溶製方法としては、1)原料となるスクラップやフェロクロムを電気炉で溶解し、炭素飽和の含クロム溶鉄あるいは炭素濃度1質量%程度の粗溶鋼を製造し、これをAOD(Argon Oxygen Decarburization)炉やVOD(Vacuum Oxygen Decarburization)装置等で仕上げ脱炭精錬する方法、2)溶銑を装入した転炉にフェロクロムやスクラップを装入して酸素を吹き込んで加熱溶解と粗脱炭精錬して炭素濃度0.1〜1.0質量%程度の粗溶鋼を製造し、これを前記VOD等で仕上げ脱炭精錬する方法、3)溶鋼を装入した転炉に炭材とクロム鉱石を投入し、酸素を吹き込んで溶融還元製錬して炭素飽和に近い含クロム溶鉄を製造し、その含クロム溶鉄を別の転炉に移行してさらに酸素を吹き込み脱炭精錬して炭素濃度0.1〜1.0質量%程度の粗溶鋼に溶製し、これを前記VOD等で仕上げ脱炭精錬する方法等が知られている。
【0004】
これらのうち1)の方法によれば、燐含有量の低いスクラップやフェロクロムを厳選することで極低燐ステンレス鋼を製造可能であるが、そのような原料は極めて高価であるので、コストが著しく高くなるという欠点がある。また、2)の方法では、溶銑を予備処理によって脱燐する一方、燐含有量の低いスクラップやフェロクロムを厳選することで極低燐ステンレス鋼を製造可能であるが、コストが高いことは1)の方法と同じである。
【0005】
そこで、このような高価な低燐原料を使用せずに極低燐ステンレス鋼を製造することを目的として、含クロム溶鉄あるいは含クロム粗溶鋼を脱燐する方法が種々提案された。例えば、アルカリ金属化合物を高濃度で含有するスラグを使用して含クロム溶銑を酸化脱燐する方法(特許文献1参照)、酸化源としてクロム酸化物を混合したフラックスを使用して含クロム溶鉄を酸化脱燐する方法(特許文献2参照)が提案されている。
【0006】
ところで、前記の1)あるいは2)の方法において、上記特許文献1,2のごとき酸化脱燐処理を施すと、必然的に燐の酸化物とクロム酸化物を高濃度で含有するスラグが発生することになる。クロムは、溶製対象であるステンレス鋼の主要な成分元素であるので、スラグ中に損失することは、原料コストを増大することを意味する。そこで、スラグを脱炭精錬炉や電気炉へリサイクルして、脱炭精錬あるいは溶解の末期に通常行われている還元期(アルミやフェロシリコン等の還元剤を使用してスラグ中のクロム酸化物を還元する時期)において還元し、溶鉄あるいは溶鋼に回収することが考えられるが、その際にスラグ中の燐も還元されて溶鉄や溶鋼に移行してしまう。また、アルミやフェロシリコンは高価である上に、スラグの還元によって生成したアルミナやシリカを多量に含有するスラグによって炉の耐火物が溶損する問題があった。
【0007】
しかしながら、このような燐とクロムを高濃度で含有するスラグは、その処理方法が確立していないので、事実上、前記1)あるいは2)の方法に、上記特許文献1及び2のごとき酸化脱燐処理を施して安価に極低燐ステンレス鋼を製造することは行われていなかった。
【0008】
一方、3)のクロム鉱石の溶融還元を行って含クロム溶鉄を製造し、それを脱炭精錬する方法は、原料コストが安価であること、また転炉やVOD装置等で含クロム溶鉄や含クロム溶鋼を脱炭精錬する際に不可避的に発生するクロム酸化物を溶融還元炉にリサイクルすることで安価な還元剤である炭材により、容易に溶鉄中に還元回収できることからクロム損失が僅少であることから近年注目を集めているプロセスである。
【0009】
本発明者は、この3)の方法を利用してこの方法に含クロム溶鉄の脱燐処理を組み合わせることを考えた。すなわち、含クロム溶鉄の脱燐処理によって生成したクロム酸化物を溶融還元にリサイクルするのである。
【0010】
しかしながら、そのような方法でも、スラグ中の燐の酸化物が溶融還元の際にクロムと同時に還元されて溶鉄中に移行するので、リサイクルする前にスラグから燐を除去することが必要である。
【0011】
燐を含有する鉄鋼精錬スラグからの燐の除去技術としては、燐含有スラグと高炉スラグとを混合したものに還元剤を加え、さらに酸素を吹き込んで燐を気相中に揮散させる方法(例えば、特許文献3参照)、スラグを湿式処理して燐酸を回収する方法(例えば、特許文献4参照)が提案されている。
【0012】
この特許文献3に記載の技術では、高炉スラグとの混合が必須であるが、高炉スラグは土木・建築資材として利用価値の高い資源であり、スラグの脱燐処理に使用するのは経済的でない。また、燐含有スラグには通常鉄分が含まれていることから、高炉スラグによる希釈を行わなければ還元された燐の大部分が同じく還元された鉄中に移行してしまい、気相への除去が十分になされないという問題があった。一方、特許文献4記載の湿式処理による燐の除去は、コストが高く、実用化が難しい。
【0013】
【特許文献1】
特開昭54−28720号公報(第2頁、左欄の24行〜35行)
【特許公報2】
特開昭57−32319号公報(第2頁、右欄の11行〜20行)
【特許文献3】
特開昭55−97408号公報(第1頁、左欄の5行〜14行)
【特許文献4】
特開昭56−22613号公報(第2頁、左欄の20行〜右欄の4行)
【0014】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、従来より安価な極低燐ステンレス鋼の溶製方法を提供することを目的としている。
【0015】
【課題を解決するための手段】
発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。
【0016】
すなわち、本発明は、転炉型反応容器に装入した溶銑に、クロム鉱石及び炭材を添加すると共に酸素ガスを供給してクロム鉱石を溶融還元製錬し、得られた含クロム溶鉄を別の転炉型反応容器において脱炭精錬して含クロム溶鋼とし、引き続き真空精錬装置にて該含クロム溶鋼の脱炭精錬及び/又は成分調整を行うステンレス溶鋼の溶製方法において、前記含クロム溶鉄を脱炭精錬する前に、該含クロム溶鉄に酸化剤−CaO系フラックスを添加して脱燐処理を行うと共に、そこで発生した脱燐スラグは、次回以降の溶融還元製錬チャージの向け先であるステンレス溶鋼の燐含有量の許容量に応じて、該脱燐スラグを次回以降の溶融還元製錬チャージへリサイクルする操業と、該脱燐スラグに炭材を加えて加熱し、該脱燐スラグから気化脱燐処理をした後に、前記次回以降の溶融還元製錬チャージへリサイクルする操業とを選択的に実施し、スラグ中の酸化クロムを炭素還元してクロム分を含クロム溶鉄中に回収することを特徴とする極低燐ステンレス鋼の溶製方法である。この場合、前記脱燐スラグは、その燐を気化除去する前に、含有する粒鉄を除去したものであると一層良い。
【0017】
本発明では、次回以降の溶融還元製錬チャージで溶製される含クロム溶鉄が、その向け先としてどのような規格のステンレス溶鋼の原料として使用されるかにまず着目する。そして、その向け先であるステンレス溶鋼の燐含有量の許容量に応じて、今回若しくはそれ以前の脱燐スラグを、該スラグからの気化脱燐を行うことなくリサイクルする操業と、スラグからの気化脱燐を行う操業とを選択的に実施する。その際、次回以降のステンレス鋼が燐含有量の上限値の高い、所謂「高燐仕様のステンレス鋼(例えば、燐含有量の上限値が0.040〜0.020質量%のステンレス鋼等)」である場合には、前記スラグを気化脱燐処理せずに溶融還元製錬にリサイクルしても、得られる含クロム溶鉄が燐含有量の上限を超えることがない。従って、そのような場合は、炭材や酸素を使用するために、それなりの負荷とコストがかかる処理である気化脱燐処理を省略して、スラグ中の酸化クロムの回収を経済的に行えるようになる。また、次回以降のステンレス鋼が燐含有量の上限値の低い、所謂「低燐仕様のステンレス鋼(例えば、燐含有量の上限値が0.020質量%未満のステンレス鋼等)」である場合には、スラグを気化脱燐処理してから溶融還元製錬にリサイクルすることにより、得られる含クロム溶鉄が燐含有量の上限を超えないようにできる。さらに、スラグを気化脱燐する場合には、その前処理としてのスラグ中の粒鉄を除去しておくと、気化脱燐の際に燐が粒鉄中に吸収されることがないので、スラグからの気化脱燐を一層効率良くできるようになる。
その結果、極低燐ステンレス鋼が、従来より安価に溶製できるようになる。
【0018】
【発明の実施の形態】
本発明に係る極低燐ステンレス溶鋼の溶製方法は、ステンレス溶鋼の素材である含クロム溶鉄を、電気炉ではなく転炉型反応容器でクロム鉱石等の溶融還元で直接溶製してから、別の転炉型反応容器で脱炭すると共に、引き続き真空精錬装置にて仕上げ脱炭精錬及び/又は成分調整を行う技術を対象とする。ここに、転炉型反応容器としては、ガスの上吹きランスと底吹き羽口とを備える所謂「上底吹き転炉が好ましい。そして、脱燐は、溶融還元炉より出湯された後で、且つ脱炭処理前に、取鍋あるいは別途の反応容器内に保持した含クロム溶鉄に酸化剤−CaO系フラックスを添加して不活性ガス等の吹き込みで撹拌し、脱燐処理を行うものである。ここに、酸化剤としては、鉄鉱石、焼結鉱、ミルスケール等の酸化鉄を用いるのが良い。
【0019】
以下、発明をなすに至った経緯をまじえ、本発明の実施の形態を説明する。
【0020】
上記脱燐工程での含クロム溶鉄中燐及びクロムの酸化反応は、メタル/スラグ間で(1)、(2)式のように進行する。
【0021】
2[P]+5[O]=(P)        ……(1)
2[Cr]+3[O]=(Cr)      ……(2)
ここで、[P]、[Cr]:溶鉄中の燐及びクロム、[O]:溶鉄中の酸素(又は酸素ガス,若しくは酸化鉄からの酸素)、(P)、(CaS):スラグ中のP及びCr、(g)はガス成分であることを示す記号である。
【0022】
この酸化反応で生成したPは、スラグ中で塩基性成分であるCaOやNaO等と結合し、固定される。また、上記燐及びクロムの酸化反応は、共に吸熱反応であり、低温ほど反応が進行し易い。つまり、(1)式の酸化反応を起こさせる脱燐処理では、(2)式のクロムの酸化が避けられない。
【0023】
そこで、脱燐処理によってスラグ中に移行したクロム分を溶鉄中に回収するには、そのスラグを前記転炉型反応容器へ投入し、下記(3)式のような反応で回収する。ここで、記号Cは、転炉型反応容器に投入した炭材、若しくは溶鉄中の炭素(濃度記号[C])である。この時、同時に(4)式の反応も進行し、所謂「復燐」が進行する。
【0024】
(Cr)+C=2[Cr]+3CO(g)  ……(3)
(P)+5C=2[P]+5CO(g)   ……(4)
溶融還元製錬を行う転炉型反応容器にリサイクルする前記脱燐スラグから、そこで生じる溶鉄中に復燐すると、この溶融還元製錬で製造された含クロム溶鉄を原料として後工程で脱炭精錬して溶製するステンレス鋼中の燐含有量を高めるので、一般には好ましくない。しかし、本発明者は、ステンレス鋼中にも、燐含有量の上限値の緩やかな鋼種(例えば、上限が0.040質量%)から極めて低い極低燐鋼(例えば、上限が0.010質量%)があることに鑑みて、次回以降の溶融還元製錬チャージで溶製される含クロム溶鉄の向け先であるステンレス溶鋼の燐の許容量に応じて、今回若しくはそれ以前の脱燐スラグを、該スラグからの気化脱燐処理を行うことなくリサイクルする操業と、スラグからの気化脱燐処理を行う操業とを選択的に実施することにした。つまり、次回以降のステンレス鋼が燐含有量の上限値の低い、前記「低燐仕様のステンレス鋼」である場合には、スラグから予め燐を除去してから溶融還元製錬にリサイクルするようにするのである。
【0025】
その燐の除去手段として、本発明者は、前記特許文献3で示唆された気化脱燐の採用を検討した。
【0026】
その際の反応は、(5)式のようなる。
【0027】
(P)+5C=P(g)+5CO(g)  ……(5)
つまり、スラグ中の燐酸化物は、Cによって還元され、Pガスとして気化脱燐する。熱力学的にはPに比べCrが酸化物として安定であるので、温度、酸素分圧を適切に調整することで、(5)式による気化脱燐のみを優先的に進行させることが可能である。なお、(5)式の反応する物質は、式の上では(4)式と同じになっているが、(4)式は溶鉄及びスラグの存在下での反応、(5)式は溶鉄が存在しない状態での反応である。
【0028】
ところで、特許文献3記載の気化脱燐は、普通鋼の転炉精錬スラグと高炉スラグとを混合したものを処理対象にしている。普通鋼の転炉精錬スラグには酸化鉄が10〜30質量%と多量に含まれており、これに炭素、珪素、アルミニウム等を加えて還元処理すると、まず酸化鉄の還元が起き、ついで燐酸化物が還元される。還元で生じた燐は、ガスとして気相に移行する一方で、生成した金属鉄にも吸収される。従って、そのような転炉スラグの脱燐では、気化脱燐だけでなく、燐が鉄中に吸収される現象が避けられず、スラグを溶融還元炉にリサイクルすると、そこで生じる溶鉄中に燐が移行するという問題があった。特許文献3の技術では、転炉スラグとほぼ同量の、多量の高炉スラグを混合した上で気化脱燐させるので、意図せずに転炉スラグ中の酸化鉄分を希釈しており、酸化鉄の還元には不利な条件が生じ、気化脱燐比率が高くなったと推測される。
【0029】
しかしながら、特許文献3の出願当時と比べ現在では、高炉スラグは廃棄物でなく、土木・建築資材として利用価値の高い資源と位置づけられているので、それを転炉スラグの希釈に使用するのは経済的に不利である。つまり、特許文献3記載の技術による転炉スラグの気化脱燐を、本願発明の対象である含クロム溶鉄を脱燐処理した際に発生するスラグの脱燐に適用することは好ましくない。また、含クロム溶鉄を脱燐した際に発生するスラグは、高融点のクロム酸化物を多量に含むので、気化脱燐する温度の下では、固相比率が高くて反応性に乏しいので、高炉スラグを添加して希釈し、低融点化しなければ、気化脱燐反応を効率的に行わせることが難しいと予測された。
【0030】
しかしながら、発明者は、このような含クロムで高燐含有量のスラグであっても、もし気化脱燐が可能ならば、クロム分の回収に非常に有益であると考え、あえて気化脱燐の利用に挑戦することにした。
【0031】
まず、発明者は、含クロム溶鉄の脱燐実験を行った。フラックスには、転炉型反応容器への脱燐スラグのリサイクルを前提に、CaO−CaF−FeO系とした。実験装置は、図1に示すように、含クロム溶鉄1を保持する炭素ルツボ2に、撹拌用の不活性ガス3を吹き込むランス4を配置したものである。実験条件は、表1に一括して示す。
【0032】
【表1】

Figure 2004143492
【0033】
この実験で得られた含クロム溶鉄及びスラグの組成を表2に示す。[Cr]:16質量%の含クロム溶鉄に対し、[P]≦100ppmの極低燐化が可能であることを確認した。
【0034】
【表2】
Figure 2004143492
【0035】
引き続いて、この実験で得られた燐を多量に含有するスラグからの気化脱燐実験を行った。最初に、そのスラグは、100メッシュアンダーに粉砕してから、含有する粒鉄を磁選により予め除去した。そして、該スラグに炭材を混合し、図2に示す実験装置で気化脱燐を行った。その実験装置は、回転する円筒状容器5と装入物(スラグと炭材の混合したもの)6を加熱するガス・バーナ7(燃料:コークスス炉ガス)を備えたものである。実験条件は、表3に一括して示す。
【0036】
【表3】
Figure 2004143492
【0037】
実験結果の一例を表4に示す。スラグ:炭材=1:2、コークス炉ガスの燃焼により容器内雰囲気の温度を1200℃以上にすると、前記スラグから脱燐率50%以上で脱燐ができ、1450℃では、90%以上の脱燐が達成された。なお、この気化脱燐では、スラグ中のクロム酸化物は還元されなかった。
【0038】
【表4】
Figure 2004143492
【0039】
このように、クロム酸化物を含有し、固相比率の高いスラグであっても、意外にも気化脱燐で燐を確実に、しかも何ら支障を生じることなく除去できることが確認できた。このように、クロム酸化物を含有するスラグの場合には、高炉スラグを混合しなくても気化脱燐が可能な理由は定かでないが、次のように推測される。
【0040】
まず、クロム酸化物は、普通鋼の転炉精錬で生じるスラグ中に含まれる酸化鉄に比し、安定で還元され難いこと、また融点が高いため、気化脱燐時の温度では固相で存在する。そのため、クロム酸化物は、反応性が低く、一層還元し難くなっていると考えられる。つまり、スラグ中の燐が吸収される金属相が生成しないために、炭材で還元されて生成した燐は、気相中に移行するしか行き場がなく、それによって気化脱燐が十分に起きると考えられる。また、スラグ中の粒鉄分を予め除去しておくと、粒鉄に吸収される燐も少なく、一層気化脱燐に有利な条件が発現したものと推察される。このような現象は、従来は全く知られ、また予想されてもいなかったことであり、本発明者が実際にクロム酸化物を含むスラグを炭材と共に加熱処理する実験を行って、初めて確認できた新規な知見である。
【0041】
そこで、発明者は、この知見を要件に本発明を完成させたのである。また、本発明では、脱燐処理の対象は、転炉型反応容器でクロム鉱石を溶融還元して得た含クロム溶鉄が好ましいが、該容器でステンレス鋼スクラップを溶解したり、または該容器で得た含クロム溶鉄を素材とし、外部加熱式のスクラップ溶解可能な貯銑炉にてステンレス鋼スクラップを溶解した含クロム溶鉄等、ステンレス鋼を溶製するクロム源となる含クロム溶鉄であれば、いかなるプロセスで製造されたものでも良い。さらに、本発明では、気化脱燐を行うスラグは、含クロム溶鉄の脱燐後、まだ高温状態にあるものでも、ヤードで常温まで冷却されたものであっても良い。加えて、本発明では、転炉型反応容器へ装入する溶銑は、予め溶銑予備処理工程で脱燐されていることが好ましい。その後の燐除去に対する負荷が軽減されるからである。
【0042】
【実施例】
トピード・カーでのフラックス・インジェクション法で予め燐濃度を0.010質量%にまで脱燐された溶銑に、スクラップ、クロム鉱石、炭材等を投入し、クロム鉱石を溶融還元する転炉型反応容器、そこで得た含クロム溶鉄を、CaO−FeO系フラックスの添加と、不活性ガスの吹き込みで脱燐する取鍋方式の脱燐装置、脱燐後の含クロム溶鉄を酸素ガスの吹錬で脱炭する上底吹き転炉、転炉出鋼後のステンレス溶鋼に各種合金を添加して成分調整を行うVOD方式の真空脱ガス装置を順次配置したステンレス鋼の溶製工程で、極低燐ステンレス鋼を溶製した。
【0043】
その際、前記含クロム溶鉄の脱燐には、図3に示すように、収容能力180tの溶銑装入鍋8を利用し、フラックス9は、ホッパ10より投入管11を経て添加した。含クロム溶鉄1の撹拌には、ランス4を介してアルゴン・ガス3を用いた。脱燐処理の条件を表5に一括して示す。また、脱燐処理前後の溶鉄の成分を表6に示す。生成したスラグは、1mmアンダーに粉砕し、物理的選別と磁力により鉄分を除いた。
【0044】
【表5】
Figure 2004143492
【0045】
【表6】
Figure 2004143492
【0046】
一方、この脱燐処理で生成したスラグからの気化脱燐は、製鉄所内に既設のCガス内燃式のロタリーキルンで行い、気化した燐を含むガスは、バグ・フィルタ方式の集塵装置にて捕集した後、環境問題が生じないように通水して燐化合物を除去してから大気へ放出した。気化脱燐の処理条件を表7に示す。処理前後のスラグ組成を表8に示す。該スラグからの気化脱燐率は、70%以上であった。この気化脱燐処理後のスラグを、次回以降のクロム鉱石の溶融還元を行う際に、前記転炉型反応容器へリサイクルし、含クロム溶鉄の溶製に利用した。その結果、スラグからのクロム回収率は平均で90%、スラグから含クロム溶鉄への復燐率は15%であった。この程度の復燐率であれば、以降の前記脱燐工程での脱燐に悪影響を及ぼすことがないので、前記リサイクルは安定して継続可能である。なお、脱燐後の含クロム溶鉄は、転炉での脱炭、VOD真空脱ガス槽での成分調整を行い、極低燐ステンレス鋼とされた。得られた極低燐ステンレス鋼の組成を表9に示すが、燐の含有量は、0.0060質量%と目標値を満足していた。また、当該チャージの次のチャージでは、その脱燐処理で生成したスラグを気化脱燐することなく、クロム鉱石の溶融還元用の転炉型反応容器にリサイクルした。リサイクルされた該脱燐スラグの組成は、表8の気化脱燐処理前スラグと同一であった。リサイクルしたスラグから含クロム溶鉄へのクロムの回収率は、平均で92%であった。さらに、該スラグからのクロム溶鉄への復燐率は85%であった。その後、得られた含クロム溶鉄は、転炉での脱炭、VOD真空脱ガス槽での成分調整が行われ、燐含有率の上限が0.020質量%の一般仕様のステンレス溶鋼とされた。そのステンレス溶鋼の組成を表10に示すが、燐含有量は0.016質量%であり、この鋼種の燐含有量の規制を満足するものであった。
【0047】
なお、本発明では、目標の炭素含有量に応じては、VOD真空脱ガス槽で仕上げ脱炭を行っても良い。
【0048】
【表7】
Figure 2004143492
【0049】
【表8】
Figure 2004143492
【0050】
【表9】
Figure 2004143492
【0051】
【表10】
Figure 2004143492
【0052】
このように、含クロム溶鉄の脱燐処理と、その脱燐で発生した高燐スラグからの気化脱燐処理、溶融還元炉への気化脱燐後のスラグ・リサイクルを組み合わせることによって、[P]≦0.010質量%のステンレス鋼の溶製が可能となった。なお、気化脱燐されたスラグのリサイクルをした溶融還元炉で発生したスラグは、(T.Cr)≦0.2質量%であり、問題なく路盤材としての処理が可能であった。また、溶銑装入鍋や溶融還元炉等の耐火物寿命は、従来と同等であった。
【0053】
【発明の効果】
以上述べたように、本発明により、脱炭精錬以降で復燐を生じることなく、スラグ中のクロム分が回収できるようになる。一方、燐濃度の成分許容値が高いステンレス鋼の溶製に対しては、安価に脱燐スラグを未処理のままリサイクルすることで十分である。その結果、極低燐ステンレス鋼が、従来より安価、且つ環境に悪影響を与えることなく溶製できるようになる。
【図面の簡単な説明】
【図1】含クロム溶鉄の脱燐実験を実施した装置の縦断面図である。
【図2】燐含有スラグからの気化脱燐実験に用いた装置の縦断面図である。
【図3】本発明の実施で利用した脱燐装置を示す縦断面図ある。
【符号の説明】
1  含クロム溶鉄
2  炭素ルツボ
3  不活性ガス(アルゴン・ガス、窒素ガス等)
4  ランス
5  円筒状容器
6  装入物
7  ガスバーナ
8  溶銑装入鍋
9  フラックス
10 ホッパ
11 投入管
12 スラグ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing ultra-low phosphorus stainless steel, and particularly to a so-called “ultra-low phosphorus stainless steel” having a phosphorus content of 0.010% by mass or less, which is less expensive than before and does not adversely affect the environment. Related to the technology for melting into
[0002]
[Prior art]
In recent years, the demands on the properties of steel materials have been increasing more and more, and in each refining process of steelmaking, the load for reducing impurity components has increased. The case of stainless steel is no exception, and in particular, phosphorus in stainless steel causes central segregation of slabs produced by continuous casting, which causes problems such as causing internal surface defects of pipe materials obtained from this material. Therefore, its reduction is essential.
[0003]
As a method of melting stainless steel, 1) scrap or ferrochrome as a raw material is melted in an electric furnace to produce carbon-saturated chromium-containing molten iron or crude molten steel having a carbon concentration of about 1% by mass, which is then subjected to AOD (Argon Oxygen). Decarburization (Decarburization) furnace or VOD (Vacuum Oxygen Decarburization) method for finishing and decarburizing and refining. 2) Loading ferrochrome or scrap into a converter loaded with hot metal and blowing oxygen to heat and melt and roughly decarburize and refine. A method of producing a crude molten steel having a carbon concentration of about 0.1 to 1.0% by mass, and finishing and decarburizing the molten steel by the above-mentioned VOD, etc. 3) Charcoal and chromium ore are charged into a converter charged with molten steel Then, smelting reduction smelting is performed by blowing oxygen to produce chromium-containing molten iron near carbon saturation, and the chromium-containing molten iron is transferred to another converter. In addition, there is known a method in which oxygen is further blown and decarburized and refined to produce molten steel having a carbon concentration of about 0.1 to 1.0% by mass, which is then subjected to finish decarburization and refinement by the VOD or the like. .
[0004]
According to the method 1), extremely low phosphorus stainless steel can be produced by carefully selecting scrap and ferrochrome having a low phosphorus content. However, since such a raw material is extremely expensive, the cost is remarkably high. There is a disadvantage that it becomes high. In the method 2), while the hot metal is dephosphorized by pretreatment, extremely low phosphorus stainless steel can be produced by carefully selecting scrap and ferrochrome having a low phosphorus content, but the high cost is 1). Method is the same.
[0005]
Accordingly, various methods for dephosphorizing chromium-containing molten iron or chromium-containing crude molten steel have been proposed for the purpose of producing ultra-low phosphorus stainless steel without using such expensive low-phosphorus raw materials. For example, a method of oxidizing and dephosphorizing chromium-containing hot metal using a slag containing a high concentration of an alkali metal compound (see Patent Document 1), and a method of using a chromium-containing molten iron as a oxidizing source using a flux mixed with chromium oxide. A method of oxidative dephosphorization (see Patent Document 2) has been proposed.
[0006]
By the way, in the method 1) or 2), when the oxidative dephosphorization treatment is performed as in Patent Documents 1 and 2, slag containing a high concentration of a phosphorus oxide and a chromium oxide is inevitably generated. Will be. Since chromium is a major constituent element of stainless steel to be smelted, loss in slag means an increase in raw material costs. Therefore, the slag is recycled to a decarburizing smelting furnace or electric furnace, and the chromium oxide in the slag is reduced using a reducing agent such as aluminum or ferrosilicon, which is usually used at the end of decarburization smelting or melting. It is conceivable to reduce the phosphorus in the slag and transfer it to the molten iron or molten steel. In addition, aluminum and ferrosilicon are expensive, and the slag containing a large amount of alumina and silica generated by the reduction of the slag has a problem that the refractory of the furnace is melted and damaged.
[0007]
However, such a slag containing phosphorus and chromium at a high concentration has not yet been established as a treatment method. Therefore, in practice, the method 1) or 2) described above requires the oxidative desorption as described in Patent Documents 1 and 2 above. The production of ultra-low phosphorus stainless steel at low cost by performing a phosphorous treatment has not been performed.
[0008]
On the other hand, the method of 3) producing chromium-containing molten iron by smelting reduction of chromium ore and decarburizing and refining the chromium ore is that the raw material cost is low and that chromium-containing molten iron or The chromium oxide, which is inevitably generated during the decarburization and refining of molten chromium steel, is recycled to the smelting reduction furnace. Because of this, it is a process that has attracted attention in recent years.
[0009]
The present inventor has considered using this method 3) to combine this method with the dephosphorization treatment of chromium-containing molten iron. That is, the chromium oxide generated by the dephosphorization of the chromium-containing molten iron is recycled for smelting reduction.
[0010]
However, even in such a method, it is necessary to remove phosphorus from the slag before recycling, since the oxide of phosphorus in the slag is reduced at the same time as the chromium during the smelting reduction and moves into the molten iron.
[0011]
As a technique for removing phosphorus from steel smelting slag containing phosphorus, a method of adding a reducing agent to a mixture of a slag containing phosphorus and a blast furnace slag and further blowing oxygen to volatilize the phosphorus in a gas phase (for example, Patent Document 3) and a method of recovering phosphoric acid by wet-treating slag (for example, see Patent Document 4) have been proposed.
[0012]
In the technology described in Patent Document 3, mixing with blast furnace slag is essential, but blast furnace slag is a highly valuable resource as civil engineering and building material, and it is not economical to use it for dephosphorization of slag. . In addition, since phosphorus-containing slag usually contains iron, most of the reduced phosphorus is transferred to the reduced iron unless diluted with blast furnace slag, and is removed to the gas phase. There was a problem that was not done enough. On the other hand, the removal of phosphorus by the wet treatment described in Patent Document 4 is expensive and is difficult to put to practical use.
[0013]
[Patent Document 1]
JP-A-54-28720 (page 2, left column, lines 24 to 35)
[Patent Publication 2]
JP-A-57-32319 (page 2, right column, lines 11 to 20)
[Patent Document 3]
JP-A-55-97408 (page 1, left column, lines 5 to 14)
[Patent Document 4]
JP-A-56-22613 (page 2, left column, 20 lines to right column, 4 lines)
[0014]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide a method of melting ultra-low phosphorus stainless steel which is less expensive than the conventional method.
[0015]
[Means for Solving the Problems]
The inventor conducted intensive research to achieve the above object, and realized the results in the present invention.
[0016]
That is, according to the present invention, chromium ore and carbonaceous material are added to hot metal charged in a converter type reaction vessel and oxygen gas is supplied to perform smelting reduction smelting of chromium ore, and the obtained chromium-containing molten iron is separated. The chromium-containing molten steel is produced by decarburizing and refining chromium-containing molten steel in a converter type reaction vessel described above, and subsequently decarburizing and / or adjusting the composition of the chromium-containing molten steel by a vacuum refining apparatus. Before decarburizing and refining, the chromium-containing molten iron is subjected to a dephosphorization treatment by adding an oxidizing agent-CaO-based flux, and the dephosphorized slag generated there is used at a destination of a smelting reduction smelting charge for the next and subsequent times. An operation to recycle the dephosphorized slag to the smelting reduction smelting charge from the next time onward in accordance with the allowable amount of phosphorus content of a stainless steel molten steel, and adding a carbonaceous material to the dephosphorized slag and heating the dephosphorized slag. Vaporization from phosphorus After that, the operation for recycling to the smelting reduction smelting charge from the next time onward is selectively performed, and the chromium oxide in the slag is reduced to carbon and the chromium content is recovered in the chromium-containing molten iron. This is a method of melting extremely low phosphorus stainless steel. In this case, it is more preferable that the dephosphorized slag is obtained by removing the contained iron particles before vaporizing and removing the phosphorus.
[0017]
In the present invention, attention is first paid to what standard chromium-containing molten iron that is produced by the subsequent smelting reduction smelting charge is used as a raw material of stainless steel molten steel of the destination. Then, depending on the allowable amount of phosphorus content of the molten stainless steel to which it is destined, the operation of recycling the dephosphorized slag this time or earlier without vaporizing and dephosphorizing the slag, and vaporizing the slag An operation for dephosphorization is selectively implemented. At that time, the next and subsequent stainless steels have a high upper limit of the phosphorus content, so-called “high-phosphorus specification stainless steel (for example, a stainless steel having an upper limit of the phosphorus content of 0.040 to 0.020 mass%). ", The chromium-containing molten iron obtained does not exceed the upper limit of the phosphorus content even if the slag is recycled to the smelting reduction smelting without vaporization and dephosphorization. Therefore, in such a case, the use of carbonaceous materials and oxygen eliminates the vaporization and dephosphorization treatment, which is a process that requires a considerable load and cost, so that the chromium oxide in the slag can be economically recovered. become. Also, when the next and subsequent stainless steels are so-called “low-phosphorus specification stainless steels (for example, stainless steels with an upper limit of phosphorus content of less than 0.020% by mass) having a low upper limit of the phosphorus content”. The slag is vaporized and dephosphorized and then recycled to smelting reduction smelting so that the resulting chromium-containing molten iron does not exceed the upper limit of the phosphorus content. Furthermore, when the slag is vaporized and dephosphorized, if the granular iron in the slag is removed as a pretreatment, phosphorus is not absorbed into the granular iron during vaporization and dephosphorization, so that the slag is not absorbed. Vaporization and dephosphorization from water can be performed more efficiently.
As a result, extremely low phosphorus stainless steel can be produced at lower cost than before.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for melting ultra-low phosphorus stainless steel molten steel according to the present invention is performed by directly melting chromium-containing molten iron, which is a material of stainless steel molten steel, by smelting reduction of chrome ore or the like in a converter type reaction vessel instead of an electric furnace, The present invention is directed to a technique of decarburizing in another converter type reaction vessel and subsequently performing finish decarburization refining and / or component adjustment in a vacuum refining device. Here, as the converter type reaction vessel, a so-called “top and bottom blown converter having a gas top blow lance and a bottom blow tuyere is preferable. Then, dephosphorization is performed after tapping from the smelting reduction furnace. Before the decarburization treatment, the oxidizing agent-CaO-based flux is added to the chromium-containing molten iron held in a ladle or a separate reaction vessel, and the mixture is stirred by blowing an inert gas or the like to perform the dephosphorization treatment. Here, iron oxide such as iron ore, sintered ore, and mill scale is preferably used as the oxidizing agent.
[0019]
Hereinafter, embodiments of the present invention will be described, taking into account the circumstances that led to the invention.
[0020]
The oxidation reaction of phosphorus and chromium in the chromium-containing molten iron in the above-mentioned dephosphorization step proceeds between the metal and the slag as shown in equations (1) and (2).
[0021]
2 [P] +5 [O] = (P 2 O 5 ) (1)
2 [Cr] +3 [O] = (Cr 2 O 3 ) (2)
Here, [P], [Cr]: phosphorus and chromium in the molten iron, [O]: oxygen in the molten iron (or oxygen gas or oxygen from iron oxide), (P 2 O 5 ), (CaS): P 2 O 5 and Cr 2 O 3 in the slag, (g) are symbols indicating that they are gas components.
[0022]
P 2 O 5 generated by this oxidation reaction is bound and fixed to basic components such as CaO and Na 2 O in the slag. Further, the above-mentioned oxidation reactions of phosphorus and chromium are both endothermic reactions, and the reaction proceeds more easily at lower temperatures. That is, in the dephosphorization treatment that causes the oxidation reaction of the formula (1), the oxidation of chromium of the formula (2) is inevitable.
[0023]
Then, in order to recover the chromium content transferred into the slag by the dephosphorization treatment into the molten iron, the slag is charged into the converter type reaction vessel and recovered by a reaction represented by the following formula (3). Here, symbol C is carbon (concentration symbol [C]) in the carbon material or molten iron charged into the converter type reaction vessel. At this time, the reaction of the formula (4) also proceeds at the same time, so-called “phosphorus recovery” proceeds.
[0024]
(Cr 2 O 3 ) + C = 2 [Cr] + 3CO (g) (3)
(P 2 O 5 ) + 5C = 2 [P] + 5CO (g) (4)
From the dephosphorized slag recycled to the converter-type reaction vessel for smelting reduction smelting, when the molten iron produced there is rephosphorized, the chromium-containing molten iron produced by this smelting reduction smelting is used as a raw material for decarburization smelting in a subsequent step. This is not preferred because it increases the phosphorus content in the stainless steel to be melted. However, the present inventor has found that even in stainless steel, a very low phosphorus steel (for example, having an upper limit of 0.010 mass%) from a steel type having a moderate upper limit of the phosphorus content (for example, the upper limit is 0.040 mass%). %), The current or previous dephosphorization slag is used depending on the allowable amount of phosphorus in the molten stainless steel, which is the destination of the chromium-containing molten iron to be produced in the subsequent smelting reduction smelting charge. The operation for recycling without performing the vaporization and dephosphorization from the slag and the operation for performing the vaporization and dephosphorization from the slag are selectively performed. In other words, if the next stainless steel is a low-phosphorus specification stainless steel having a low upper limit of the phosphorus content, the phosphorus is removed from the slag in advance and then recycled to the smelting reduction smelting. You do it.
[0025]
As a means for removing phosphorus, the present inventors have studied the use of vaporization dephosphorization suggested in Patent Document 3.
[0026]
The reaction at that time is as shown in equation (5).
[0027]
(P 2 O 5 ) + 5C = P 2 (g) + 5CO (g) (5)
That is, phosphorus oxides in the slag is reduced by C, and vaporized dephosphorization as P 2 gas. Thermodynamically, Cr 2 O 3 is more stable as an oxide than P 2 O 5. Therefore, by appropriately adjusting the temperature and the oxygen partial pressure, only the vaporized dephosphorization according to the formula (5) is preferentially performed. It is possible to proceed. The reacting substance of the equation (5) is the same as the equation (4) in the equation, but the equation (4) is a reaction in the presence of molten iron and slag, and the equation (5) is a reaction of the molten iron. This is a reaction in the absence.
[0028]
By the way, in the vaporization dephosphorization described in Patent Document 3, a mixture of a converter slag of ordinary steel and a blast furnace slag is treated. The converter slag of ordinary steel contains a large amount of iron oxide in an amount of 10 to 30% by mass. When carbon, silicon, aluminum or the like is added to the slag for reduction treatment, iron oxide is reduced first, followed by phosphoric acid. Is reduced. The phosphorus generated by the reduction is transferred to the gas phase as a gas, and is also absorbed by the produced metallic iron. Therefore, in such dephosphorization of converter slag, not only vapor dephosphorization but also the phenomenon that phosphorus is absorbed in iron is inevitable.When slag is recycled to the smelting reduction furnace, phosphorus is generated in the molten iron generated there. There was a problem of migration. In the technique of Patent Document 3, since a large amount of blast furnace slag, which is almost the same amount as the converter slag, is mixed and vaporized and dephosphorized, the iron oxide content in the converter slag is unintentionally diluted, and iron oxide is undesirably diluted. It is presumed that disadvantageous conditions occurred for the reduction of, and the vaporization dephosphorization ratio increased.
[0029]
However, compared to the time of filing of Patent Document 3, blast furnace slag is now regarded as a valuable resource not as waste but as civil engineering and building material, so it is used for dilution of converter slag. Economically disadvantaged. That is, it is not preferable to apply the vapor dephosphorization of the converter slag by the technique described in Patent Document 3 to the dephosphorization of the slag generated when the chromium-containing molten iron, which is the subject of the present invention, is dephosphorized. In addition, the slag generated when the chromium-containing molten iron is dephosphorized contains a large amount of chromium oxide with a high melting point. It was predicted that it would be difficult to efficiently perform the vaporization dephosphorization reaction unless the slag was added and diluted to lower the melting point.
[0030]
However, the inventor of the present invention considers that even if such a slag having a high chromium content and a high phosphorus content can be vaporized and dephosphorized, it is very useful for the recovery of the chromium content. I decided to try using it.
[0031]
First, the inventor conducted an experiment for dephosphorization of chromium-containing molten iron. The flux, on the assumption the recycling of dephosphorization slag to the converter type reaction vessel, was CaO-CaF 2 -Fe t O system. In the experimental apparatus, as shown in FIG. 1, a lance 4 for blowing an inert gas 3 for stirring is arranged in a carbon crucible 2 holding chromium-containing molten iron 1. The experimental conditions are collectively shown in Table 1.
[0032]
[Table 1]
Figure 2004143492
[0033]
Table 2 shows the compositions of the chromium-containing molten iron and the slag obtained in this experiment. [Cr]: It was confirmed that extremely low phosphorylation of [P] ≦ 100 ppm was possible with respect to 16% by mass of chromium-containing molten iron.
[0034]
[Table 2]
Figure 2004143492
[0035]
Subsequently, an experiment for vaporization and dephosphorization from a slag containing a large amount of phosphorus obtained in this experiment was performed. First, the slag was pulverized to 100 mesh under, and then the contained iron particles were removed by magnetic separation in advance. Then, a carbon material was mixed with the slag, and the slag was vaporized and dephosphorized using an experimental apparatus shown in FIG. The experimental apparatus includes a rotating cylindrical container 5 and a gas burner 7 (fuel: coke oven gas) for heating a charge (a mixture of slag and carbon material) 6. The experimental conditions are collectively shown in Table 3.
[0036]
[Table 3]
Figure 2004143492
[0037]
Table 4 shows an example of the experimental results. When the temperature of the atmosphere in the vessel is set to 1200 ° C. or higher by burning slag: carbon material = 1: 2 and coke oven gas, dephosphorization can be performed from the slag at a dephosphorization rate of 50% or more, and at 1450 ° C., 90% or more. Dephosphorization was achieved. Note that chromium oxide in the slag was not reduced by this vapor dephosphorization.
[0038]
[Table 4]
Figure 2004143492
[0039]
As described above, it was confirmed that, even for a slag containing a chromium oxide and having a high solid phase ratio, it was possible to remove phosphorus by vapor dephosphorization surprisingly and without any trouble. As described above, in the case of slag containing chromium oxide, the reason why vaporization and dephosphorization is possible without mixing blast furnace slag is not clear, but is presumed as follows.
[0040]
First, chromium oxide is stable and hard to be reduced compared to iron oxide contained in slag generated in converter refining of ordinary steel, and has a high melting point, so it exists in the solid phase at the temperature during vaporization dephosphorization. I do. Therefore, it is considered that chromium oxide has low reactivity and is more difficult to be reduced. In other words, since the metal phase in which the phosphorus in the slag is absorbed is not generated, the phosphorus generated by reduction with the carbonaceous material has no choice but to move into the gas phase, so that sufficient vaporization dephosphorization occurs. Conceivable. Further, if the granular iron content in the slag is removed in advance, less phosphorus is absorbed by the granular iron, and it is presumed that conditions more advantageous for vaporization and dephosphorization have been developed. Such a phenomenon was hitherto completely unknown and unexpected, and could only be confirmed by the present inventor actually conducting an experiment of heat-treating slag containing chromium oxide together with carbonaceous material. This is a new finding.
[0041]
Then, the inventor completed the present invention on the basis of this knowledge. Further, in the present invention, the target of the dephosphorization treatment is preferably chromium-containing molten iron obtained by smelting and reducing chromium ore in a converter-type reaction vessel, but dissolving stainless steel scrap in the vessel, or in the vessel. Using the obtained chromium-containing molten iron as a material, such as a chromium-containing molten iron obtained by melting stainless steel scrap in an externally heated scrap melting iron storage furnace, if it is a chromium-containing molten iron serving as a chromium source for melting stainless steel, It may be manufactured by any process. Further, in the present invention, the slag to be vaporized and dephosphorized may be one which is still in a high temperature state after dephosphorization of the chromium-containing molten iron, or may be one which has been cooled to room temperature in a yard. In addition, in the present invention, the hot metal to be charged into the converter type reaction vessel is preferably dephosphorized in advance in the hot metal pretreatment step. This is because the load on the subsequent phosphorus removal is reduced.
[0042]
【Example】
A converter type reaction in which scrap, chromium ore, carbonaceous material, etc. are charged into hot metal that has been dephosphorized to a phosphorus concentration of 0.010% by mass in advance by the flux injection method using a topped car, and the chromium ore is melted and reduced. A vessel, a ladle-type dephosphorizer for dephosphorizing the chromium-containing molten iron obtained therefrom by adding a CaO-FeO-based flux and blowing an inert gas, and blowing the chromium-containing molten iron after dephosphorization by blowing oxygen gas. Ultra-low phosphorus in the stainless steel smelting process, in which a VOD type vacuum degassing device is installed in order to add various alloys to the stainless steel molten steel after the boiler, and to add various alloys. Stainless steel was melted.
[0043]
At this time, as shown in FIG. 3, a molten iron charging pot 8 having a capacity of 180 t was used for dephosphorization of the chromium-containing molten iron, and a flux 9 was added from a hopper 10 through a charging pipe 11. Argon gas 3 was used to stir the chromium-containing molten iron 1 via a lance 4. Table 5 shows the conditions for the dephosphorization treatment. Table 6 shows the components of the molten iron before and after the dephosphorization treatment. The produced slag was pulverized to 1 mm under, and iron was removed by physical sorting and magnetic force.
[0044]
[Table 5]
Figure 2004143492
[0045]
[Table 6]
Figure 2004143492
[0046]
On the other hand, vaporization dephosphorization from the slag generated by this dephosphorization treatment is carried out by an existing C gas internal combustion type rotary kiln in a steel mill, and gas containing phosphorus is collected by a bag filter type dust collector. After collecting, the phosphorus compound was removed by passing water so as not to cause an environmental problem, and then released to the atmosphere. Table 7 shows the processing conditions for vapor dephosphorization. Table 8 shows the slag composition before and after the treatment. The rate of vaporization and dephosphorization from the slag was 70% or more. The slag after the vaporization and dephosphorization treatment was recycled to the converter type reaction vessel and used for smelting chromium-containing molten iron when performing smelting reduction of chromium ore from the next time. As a result, the recovery rate of chromium from the slag was 90% on average, and the phosphorus reversion rate from the slag to the chromium-containing molten iron was 15%. If the dephosphorization rate is at this level, there is no adverse effect on the dephosphorization in the subsequent dephosphorization step, so that the recycling can be stably continued. The chromium-containing molten iron after the dephosphorization was decarburized in a converter and adjusted for components in a VOD vacuum degassing tank to obtain an extremely low phosphorus stainless steel. The composition of the obtained ultra-low phosphorus stainless steel is shown in Table 9, and the phosphorus content was 0.0060% by mass, satisfying the target value. In the charge following the charge, the slag generated in the dephosphorization treatment was recycled to the converter type reaction vessel for smelting reduction of chromium ore without vaporizing dephosphorization. The composition of the recycled dephosphorized slag was the same as the slag before the vaporized dephosphorization treatment in Table 8. The recovery rate of chromium from the recycled slag to the chromium-containing molten iron was 92% on average. Further, the phosphorus reversion rate from the slag to the chromium molten iron was 85%. After that, the obtained chromium-containing molten iron was subjected to decarburization in a converter and component adjustment in a VOD vacuum degassing tank, so that the upper limit of the phosphorus content was made into molten stainless steel having a general specification of 0.020 mass%. . The composition of the molten stainless steel is shown in Table 10. The phosphorus content was 0.016% by mass, which satisfied the regulation on the phosphorus content of this steel type.
[0047]
In the present invention, finishing decarburization may be performed in a VOD vacuum degassing tank depending on the target carbon content.
[0048]
[Table 7]
Figure 2004143492
[0049]
[Table 8]
Figure 2004143492
[0050]
[Table 9]
Figure 2004143492
[0051]
[Table 10]
Figure 2004143492
[0052]
Thus, by combining the dephosphorization treatment of the chromium-containing molten iron, the vaporization dephosphorization treatment from the high phosphorus slag generated by the dephosphorization, and the slag recycling after vaporization dephosphorization to the smelting reduction furnace, [P] ≦ 0.010% by mass of stainless steel can be melted. The slag generated in the smelting reduction furnace in which the vaporized and dephosphorized slag was recycled was (T.Cr) ≦ 0.2% by mass, and could be processed as a roadbed material without any problem. In addition, the life of refractories of hot metal charging pots, smelting reduction furnaces, and the like was the same as before.
[0053]
【The invention's effect】
As described above, according to the present invention, chromium in slag can be recovered without dephosphorization after decarburization refining. On the other hand, it is sufficient to recycle dephosphorized slag untreated at low cost for the production of stainless steel having a high allowable component of phosphorus concentration. As a result, extremely low phosphorus stainless steel can be produced at a lower cost than before and without adversely affecting the environment.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an apparatus in which a chromium-containing molten iron dephosphorization experiment was performed.
FIG. 2 is a vertical cross-sectional view of an apparatus used for a vaporization dephosphorization experiment from a phosphorus-containing slag.
FIG. 3 is a longitudinal sectional view showing a dephosphorization apparatus used in the embodiment of the present invention.
[Explanation of symbols]
1 Chromium-containing molten iron 2 Carbon crucible 3 Inert gas (argon gas, nitrogen gas, etc.)
4 Lance 5 Cylindrical vessel 6 Charge 7 Gas burner 8 Hot metal charging pan 9 Flux 10 Hopper 11 Input pipe 12 Slag

Claims (2)

転炉型反応容器に装入した溶銑に、クロム鉱石及び炭材を添加すると共に酸素ガスを供給してクロム鉱石を溶融還元製錬し、得られた含クロム溶鉄を別の転炉型反応容器において脱炭精錬して含クロム溶鋼とし、引き続き真空精錬装置にて該含クロム溶鋼の脱炭精錬及び/又は成分調整を行うステンレス溶鋼の溶製方法において、
前記含クロム溶鉄を脱炭精錬する前に、該含クロム溶鉄に酸化剤−CaO系フラックスを添加して脱燐処理を行うと共に、そこで発生した脱燐スラグは、次回以降の溶融還元製錬チャージの向け先であるステンレス溶鋼の燐含有量の許容量に応じて、該脱燐スラグを次回以降の溶融還元製錬チャージへリサイクルする操業と、該脱燐スラグに炭材を加えて加熱し、その気化脱燐処理をした後に、前記次回以降の溶融還元製錬チャージへリサイクルする操業とを選択的に実施し、スラグ中の酸化クロムを炭素還元してクロム分を含クロム溶鉄中に回収することを特徴とする極低燐ステンレス鋼の溶製方法。
Chromium ore and carbon material are added to the hot metal charged in the converter type reaction vessel, and oxygen gas is supplied to melt and smelt the chromium ore, and the obtained chromium-containing molten iron is converted into another converter type reaction vessel. In the method of melting stainless steel, which is decarburized and refined to obtain chromium-containing molten steel, and subsequently decarburized and refined and / or component-adjusted the chromium-containing molten steel in a vacuum refining apparatus,
Prior to decarburizing and refining the chromium-containing molten iron, an oxidizing agent-CaO-based flux is added to the chromium-containing molten iron to perform a dephosphorization treatment. Depending on the permissible amount of the phosphorus content of the molten stainless steel that is the destination, the operation of recycling the dephosphorized slag to the next and subsequent smelting reduction smelting charge, adding carbonaceous material to the dephosphorized slag and heating, After the vaporization and dephosphorization treatment, the operation of recycling to the smelting reduction smelting charge of the next and subsequent times is selectively performed, and the chromium oxide in the slag is carbon-reduced to recover the chromium content in the chromium-containing molten iron. A method for melting ultra-low phosphorus stainless steel.
前記脱燐スラグは、その燐を気化除去する前に、含有する粒鉄を除去したものであることを特徴とする請求項1記載の極低燐ステンレス鋼の溶製方法。2. The method according to claim 1, wherein the dephosphorized slag is obtained by removing particulate iron contained therein before vaporizing and removing the phosphorus.
JP2002307991A 2002-10-23 2002-10-23 Method for melting ultra-low phosphorus stainless steel Expired - Fee Related JP3966156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002307991A JP3966156B2 (en) 2002-10-23 2002-10-23 Method for melting ultra-low phosphorus stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002307991A JP3966156B2 (en) 2002-10-23 2002-10-23 Method for melting ultra-low phosphorus stainless steel

Publications (2)

Publication Number Publication Date
JP2004143492A true JP2004143492A (en) 2004-05-20
JP3966156B2 JP3966156B2 (en) 2007-08-29

Family

ID=32454251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002307991A Expired - Fee Related JP3966156B2 (en) 2002-10-23 2002-10-23 Method for melting ultra-low phosphorus stainless steel

Country Status (1)

Country Link
JP (1) JP3966156B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097079A (en) * 2004-09-29 2006-04-13 Jfe Steel Kk Method for oxidizing-dephosphorizing molten chromium-containing iron
JP2007131928A (en) * 2005-11-11 2007-05-31 Jfe Steel Kk Method for recycling steelmaking slag
JP2007254865A (en) * 2006-03-24 2007-10-04 Jfe Steel Kk Method for adjusting flowability of slag in furnace for storing pig iron
WO2010074309A1 (en) 2008-12-26 2010-07-01 Jfeスチール株式会社 Method for reclaiming iron and phosphorus from steelmaking slag
RU2459874C1 (en) * 2011-01-20 2012-08-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Method of casting low-phosphorus steel in converter
JP2012219298A (en) * 2011-04-06 2012-11-12 Jfe Steel Corp Method for recovering iron and phosphorus from steelmaking slag
JP2013147382A (en) * 2012-01-19 2013-08-01 Jfe Steel Corp Method of separating phosphorus
CN109735676A (en) * 2019-03-19 2019-05-10 山西太钢不锈钢股份有限公司 A kind of production method of low-phosphorous chromium-containing molten iron
RU2729692C1 (en) * 2019-07-24 2020-08-11 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Steel melting method in converter with combined blowdown

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655573B2 (en) * 2004-09-29 2011-03-23 Jfeスチール株式会社 Method for oxidative dephosphorization of chromium-containing hot metal
JP2006097079A (en) * 2004-09-29 2006-04-13 Jfe Steel Kk Method for oxidizing-dephosphorizing molten chromium-containing iron
JP2007131928A (en) * 2005-11-11 2007-05-31 Jfe Steel Kk Method for recycling steelmaking slag
JP4654886B2 (en) * 2005-11-11 2011-03-23 Jfeスチール株式会社 Steelmaking slag recycling method
JP2007254865A (en) * 2006-03-24 2007-10-04 Jfe Steel Kk Method for adjusting flowability of slag in furnace for storing pig iron
EP3239308A1 (en) 2008-12-26 2017-11-01 Jfe Steel Corporation Method for reclaiming iron and phosphorus from steelmaking slag
WO2010074309A1 (en) 2008-12-26 2010-07-01 Jfeスチール株式会社 Method for reclaiming iron and phosphorus from steelmaking slag
RU2459874C1 (en) * 2011-01-20 2012-08-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Method of casting low-phosphorus steel in converter
JP2012219298A (en) * 2011-04-06 2012-11-12 Jfe Steel Corp Method for recovering iron and phosphorus from steelmaking slag
JP2013147382A (en) * 2012-01-19 2013-08-01 Jfe Steel Corp Method of separating phosphorus
CN109735676A (en) * 2019-03-19 2019-05-10 山西太钢不锈钢股份有限公司 A kind of production method of low-phosphorous chromium-containing molten iron
CN109735676B (en) * 2019-03-19 2020-11-24 山西太钢不锈钢股份有限公司 Production method of low-phosphorus chromium-containing molten iron
RU2729692C1 (en) * 2019-07-24 2020-08-11 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Steel melting method in converter with combined blowdown

Also Published As

Publication number Publication date
JP3966156B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
JP5408369B2 (en) Hot metal pretreatment method
Eric Production of ferroalloys
JP2021134386A (en) Method for melting cold iron source with slag reduction
CN104164529A (en) Method for producing cast iron by adopting remelting furnace blowing smelting and purification, and apparatus thereof
JP3966156B2 (en) Method for melting ultra-low phosphorus stainless steel
JP5720497B2 (en) Method for recovering iron and phosphorus from steelmaking slag
WO2008068810A1 (en) Process for recovering valuable metals from waste
KR100764259B1 (en) METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni
US3947267A (en) Process for making stainless steel
JP2004520478A (en) Manufacture of ferroalloys
JP2002256323A (en) Method for reforming roughly decarburized slag in molten stainless steel
Kumar et al. Removal of C, Si, Mn, S and P in Iron Melt under Hydrogen Plasma
JP5712747B2 (en) Method for recovering iron and phosphorus from steelmaking slag
JP4189112B2 (en) Processing method for slag refining stainless steel
JP2007131928A (en) Method for recycling steelmaking slag
KR101189183B1 (en) Recovery method of valuable metals from spent petroleum catalysts
US3091524A (en) Metallurgical process
JP2004285473A (en) METHOD FOR RECOVERING VALUABLE METAL FROM V, Mo, AND NICKEL-CONTAINING WASTE
JPH0222154A (en) Treatment of smelting slag
JP2002069526A (en) Method for regeneration treating of dephosphorized slag
JP2005256174A (en) METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni
JP7160061B2 (en) Method for treating chromium-containing dust, method for producing iron-making raw material, and method for producing chromium-containing molten iron
JP3063537B2 (en) Stainless steel manufacturing method
JPH0967608A (en) Production of stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees