JP2021134386A - Method for melting cold iron source with slag reduction - Google Patents

Method for melting cold iron source with slag reduction Download PDF

Info

Publication number
JP2021134386A
JP2021134386A JP2020031243A JP2020031243A JP2021134386A JP 2021134386 A JP2021134386 A JP 2021134386A JP 2020031243 A JP2020031243 A JP 2020031243A JP 2020031243 A JP2020031243 A JP 2020031243A JP 2021134386 A JP2021134386 A JP 2021134386A
Authority
JP
Japan
Prior art keywords
slag
charged
molten
iron source
cold iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020031243A
Other languages
Japanese (ja)
Other versions
JP7364899B2 (en
Inventor
俊哉 原田
Toshiya Harada
俊哉 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020031243A priority Critical patent/JP7364899B2/en
Publication of JP2021134386A publication Critical patent/JP2021134386A/en
Application granted granted Critical
Publication of JP7364899B2 publication Critical patent/JP7364899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Manufacture Of Iron (AREA)

Abstract

To carry out a process without enlarging the scale of equipment and without reducing the volume in a furnace, when steel slag is reformed into a material usable for various applications, valuable elements such as Fe and P in the steelmaking slag are reduced and recovered into molten iron, and then molten iron from which Fe components are recovered is recycled into a steelmaking process.SOLUTION: Steel slag 24 in a molten state or solidified at a high temperature is charged onto the deposited part of a cold iron source 23 charged into an electric furnace 1. After the cold iron source 23 is partially melted by direct current or alternating current arc heating, a carbon material is charged into the melting pool as a reducing material, and a slag modifier containing SiO2 and Al2O3 as a component composition is charged to reduce the slag, the melted molten iron is carbonized, the molten iron is discharged, leaving the seed iron, from the tapping hole, and the reduced slag is discharged from the slag discharge port.SELECTED DRAWING: Figure 1

Description

本発明は、スラグ還元を伴った冷鉄源の溶解方法に関するものである。 The present invention relates to a method for melting a cold iron source with slag reduction.

製鋼スラグの排出量については、溶銑予備処理の改善により排出スラグ量が削減されつつある。一方、排出された製鋼スラグの利用については、製鋼スラグは高塩基度のため、利用に当たっては水浸膨張や高pH水溶出といった課題がある。それに対しては蒸気エージング等の対策が施されている。 Regarding the amount of steelmaking slag discharged, the amount of discharged slag is being reduced by improving the hot metal pretreatment. On the other hand, regarding the utilization of the discharged steelmaking slag, since the steelmaking slag has a high basicity, there are problems such as water immersion expansion and high pH water elution. Measures such as steam aging are taken against it.

一方で、排出スラグを還元・改質して高炉スラグと同等のスラグに転換し、用途の拡大を図ると同時に、スラグに含まれる有価なFeやPを回収する技術が開発されている。その際、必要エネルギーを最小にするためには、高温の製鋼スラグを冷却固化せずにそのまま還元処理することが効果的であり、その方法が種々考案されている。 On the other hand, technologies have been developed for reducing and reforming discharged slag to convert it into slag equivalent to blast furnace slag to expand its applications and at the same time recover valuable Fe and P contained in the slag. At that time, in order to minimize the required energy, it is effective to reduce the high-temperature steelmaking slag as it is without cooling and solidifying it, and various methods have been devised.

特許文献1には、電気炉内に収容された溶鉄上に、スラグ供給容器(スラグ保持炉)から熱間製鋼スラグを流入させ、溶融スラグ層に還元材を供給し、溶鉄及び溶融スラグ層を通電して加熱し、溶融スラグ層の溶融スラグ、又は、前記溶鉄を間歇的に排出しながら、熱間製鋼スラグの還元処理を非酸化性雰囲気で継続する、製鋼スラグ還元処理方法が開示されている。製鋼スラグの還元処理を行い、製鋼スラグを、セメント原料、土工材料、セラミック製品等の種々の用途に使用可能な材料に改質するとともに、製鋼スラグ中のMn、P等の有価元素を溶鉄中に還元回収し、その後、Fe及びMnは、製鉄プロセスへリサイクルし、Pは溶鉄に酸化処理を施して酸化物として回収し、リン酸肥料やリン酸原料として利用することを目的としている。特許文献1の構造は、溶融スラグを電気炉に直接投入するのではなく、電気炉に隣接配置されたスラグ保持炉に一旦保持し、電気炉内の溶鉄層上に溶融スラグ層を緩衝帯として形成した上で、注入量を調整しながら、溶融スラグを徐々に注入しているため、設備の規模が大きくなるとの課題を有している。 In Patent Document 1, hot steelmaking slag is flowed from a slag supply container (slag holding furnace) onto molten iron housed in an electric furnace, a reducing material is supplied to the molten slag layer, and the molten iron and the molten slag layer are formed. Disclosed is a steelmaking slag reduction treatment method in which the reduction treatment of hot steelmaking slag is continued in a non-oxidizing atmosphere while the molten slag of the molten slag layer or the molten iron is intermittently discharged by energizing and heating. There is. The steelmaking slag is reduced and the steelmaking slag is modified into materials that can be used for various purposes such as cement raw materials, earthwork materials, and ceramic products, and valuable elements such as Mn and P in the steelmaking slag are added to molten iron. After that, Fe and Mn are recycled to the steelmaking process, and P is recovered as an oxide by subjecting molten iron to an oxidation treatment, and is intended to be used as a phosphoric acid fertilizer or a phosphoric acid raw material. In the structure of Patent Document 1, instead of directly charging the molten slag into the electric furnace, the molten slag is temporarily held in a slag holding furnace arranged adjacent to the electric furnace, and the molten slag layer is used as a buffer zone on the molten iron layer in the electric furnace. After forming, the molten slag is gradually injected while adjusting the injection amount, so that there is a problem that the scale of the equipment becomes large.

特許文献2に記載の発明は、溶鉄層と溶融スラグ層を形成する電気炉において、炉底部に浅底部を有し、スラグは搬送容器から溶融スラグを浅底部に向けて投入することを特徴とする。電気炉内で連続的に還元溶融改質することで、溶融スラグ中の有価物(Fe、P等の有価元素)を溶融スラグ層の下層である溶鉄層に回収する。回収された高リン溶鉄に対して脱リン処理を施して、溶鉄中のPを酸化させてスラグ中に移行させることで、高リン溶鉄が高リン酸スラグと溶鉄とに分離される。高リン酸スラグは、リン酸肥料やリン酸原料等としてリサイクルすることができる。また、溶鉄は製鋼工程にリサイクルされ、転炉等に投入される。溶融スラグが浅底部に注入されるので、注入された直後の溶融スラグと電気炉内の溶鉄層とが激しく混合されることを防止でき、フォーミング生成を防止できる。一方、浅底部を設けた結果として、炉内容積が減少するという課題を有する。 The invention described in Patent Document 2 is characterized in that an electric furnace forming a molten iron layer and a molten slag layer has a shallow bottom portion at the bottom of the furnace, and the slag is charged from a transport container toward the shallow bottom portion. do. By continuously reducing, melting and reforming in the electric furnace, valuable resources (valuable elements such as Fe and P) in the molten slag are recovered in the molten iron layer which is the lower layer of the molten slag layer. The recovered high-phosphorus molten iron is subjected to a dephosphorization treatment to oxidize P in the molten iron and transfer it into the slag, whereby the high-phosphorus molten iron is separated into high-phosphate slag and molten iron. High phosphoric acid slag can be recycled as phosphoric acid fertilizer, phosphoric acid raw material, or the like. In addition, molten iron is recycled in the steelmaking process and put into a converter or the like. Since the molten slag is injected into the shallow bottom portion, it is possible to prevent the molten slag immediately after being injected and the molten iron layer in the electric furnace from being violently mixed, and it is possible to prevent the formation of forming. On the other hand, as a result of providing the shallow bottom portion, there is a problem that the internal volume of the furnace is reduced.

電気炉では、スクラップなどの冷鉄源を溶解して溶鋼を形成する。電気炉で溶製した溶鋼を、転炉工場にて転炉で溶製した溶鋼とともに二次精錬、連続鋳造を行おうとすると、電気炉は通常転炉に比べてヒートサイズが小さく、転炉工場では既存の2次精錬、連鋳機とは取鍋容量が合致せず、時間的マッチングもうまくとれないため、転炉と併設することは難しい。また、電気炉鋼は、[N]やトランプエレメントが高く、転炉鋼でなければできない鋼種がある。 In an electric furnace, molten steel is formed by melting a cold iron source such as scrap. When attempting to perform secondary refining and continuous casting of molten steel melted in an electric furnace together with molten steel melted in a converter at a converter factory, the heat size of the electric furnace is smaller than that of a normal converter, and the converter factory Then, it is difficult to install it together with a converter because the capacity of the ladle does not match that of the existing secondary smelting and continuous casting machines and the time matching cannot be obtained well. In addition, electric furnace steel has a high [N] and trump element, and there are steel types that can only be achieved with converter steel.

特許文献3には、溶解室と、溶解室の上部に直結するシャフト型の予熱室とを具備し、溶解室で発生する排ガスを予熱室に導入して予熱室内の冷鉄源を予熱するアーク炉を用いた、アーク炉の操業方法が開示されている。アーク炉から出湯する溶湯の炭素濃度を1mass%以上としてアーク炉を操業する。溶湯の炭素濃度を1mass%以上とすることで、アーク炉を用いて製造した溶銑(溶湯)を高炉溶銑と混合し、高炉−転炉法によるプロセスフローの一部に組み込むことができる。 Patent Document 3 includes an arc that includes a melting chamber and a shaft-type preheating chamber that is directly connected to the upper part of the melting chamber, and introduces exhaust gas generated in the melting chamber into the preheating chamber to preheat the cold iron source in the preheating chamber. A method of operating an arc furnace using a furnace is disclosed. The arc furnace is operated with the carbon concentration of the molten metal discharged from the arc furnace set to 1 mass% or more. By setting the carbon concentration of the molten metal to 1 mass% or more, the hot metal (molten metal) produced by using an arc furnace can be mixed with the hot metal of the blast furnace and incorporated into a part of the process flow by the blast furnace-converter method.

国際公開WO2014/003123号International release WO2014 / 003123 国際公開WO2018/110171号International release WO2018 / 110171 特開2010−265485号公報Japanese Unexamined Patent Publication No. 2010-265485

本発明は、溶鉄を収容する電気炉において製鋼スラグの還元処理を行い、製鋼スラグを、セメント原料、土工材料、セラミック製品等の種々の用途に使用可能な材料に改質するとともに、製鋼スラグ中のMn、P等の有価元素を溶鉄中に還元回収し、その後、Fe及びMnを回収した溶鉄を製鉄プロセスへリサイクルするに際し、特許文献1に記載のように規模が大きな設備を用いることなく、電気炉炉底形状において特許文献2に記載のような浅底部を設ける必要がなく、転炉プロセスにリサイクルが容易な溶鉄を製造することのできる、スラグ還元を伴った冷鉄源の溶解方法を提供することを目的とする。さらに、製鋼スラグを還元して生成したPは、溶鉄に酸化処理を施して酸化物として回収し、リン酸肥料やリン酸原料として利用することをも目的とする。 In the present invention, steelmaking slag is reduced in an electric furnace containing molten iron, and the steelmaking slag is modified into a material that can be used for various purposes such as cement raw materials, earthwork materials, and ceramic products, and in steelmaking slag. In the case of reducing and recovering valuable elements such as Mn and P in molten iron and then recycling the molten iron from which Fe and Mn are recovered into a steelmaking process, without using a large-scale facility as described in Patent Document 1. A method for melting a cold iron source accompanied by slag reduction, which does not require a shallow bottom portion as described in Patent Document 2 in the shape of the bottom of an electric furnace and can produce molten iron that can be easily recycled in the converter process. The purpose is to provide. Further, P produced by reducing steelmaking slag is also intended to be recovered as an oxide by subjecting molten iron to an oxidation treatment and used as a phosphoric acid fertilizer or a phosphoric acid raw material.

即ち、本発明の要旨とするところは以下のとおりである。
[1]種湯が収容された電気炉内に冷鉄源を装入し、冷鉄源の堆積部の上から溶融状態または高温固化した製鋼スラグを装入し、直流または交流アーク加熱によって冷鉄源を部分溶解した後、溶融プールに還元剤として炭材を投入するとともに、成分組成としてSiOとAlの少なくとも一方を含むスラグ改質剤を投入して、スラグを還元すると共に溶解した溶鉄を加炭し、溶鉄を出湯孔から種湯を残して排出した後、還元スラグをスラグ排出口から排出することを特徴とするスラグ還元を伴った冷鉄源の溶解方法。
[2]前記製鋼スラグの装入は、前記電気炉の炉蓋を移動させるか、または炉蓋のスラグ投入口を開けることで形成する開口部を経由して行い、製鋼スラグを収容したスラグ鍋から直接または樋を介して装入するものとし、その際、装入する製鋼スラグは前記冷鉄源の堆積部の上、あるいは当該冷鉄源の堆積部の上にさらに堆積した固化スラグの上に装入することを特徴とする[1]に記載のスラグ還元を伴った冷鉄源の溶解方法。
[3]前記還元剤およびスラグ改質剤を、アーク加熱をしながら炉蓋上に設けた原料投入管を通して供給することを特徴とする[1]又は[2]記載のスラグ還元を伴った冷鉄源の溶解方法。
[4]スラグの還元中はランスをスラグ層内に挿入し、前記ランスを経由して攪拌ガスを吹いてスラグ内攪拌を行い、通電終了後は、溶鉄層内で底吹きまたはランスからガス攪拌することを特徴とする[1]〜[3]のいずれか1つに記載のスラグ還元を伴った冷鉄源の溶解方法。
[5]前記還元剤、スラグ改質剤とともに、リン酸を含む廃棄物と高リン鉄鉱石の一方又は両方を、原料投入管を通じて投入することを特徴とする[1]〜[4]のいずれか1つに記載のスラグ還元を伴った冷鉄源の溶解方法。
That is, the gist of the present invention is as follows.
[1] A cold iron source is charged into an electric furnace containing a seed bath, and a molten or high-temperature solidified steel slag is charged from above the deposited portion of the cold iron source and cooled by direct or AC arc heating. After the iron source is partially melted, a carbonaceous material is added to the molten pool as a reducing agent, and a slag modifier containing at least one of SiO 2 and Al 2 O 3 is added as a component composition to reduce the slag. A method for melting a cold iron source with slag reduction, which comprises charcoalizing molten iron, discharging the molten iron from a hot water outlet leaving a seed bath, and then discharging reduced slag from a slag discharge port.
[2] The steelmaking slag is charged through an opening formed by moving the furnace lid of the electric furnace or opening the slag inlet of the furnace lid, and the slag pot containing the steelmaking slag. The steelmaking slag to be charged shall be charged directly from or through a trough, and the steelmaking slag to be charged shall be placed on the deposited portion of the cold iron source or on the solidified slag further deposited on the deposited portion of the cold iron source. The method for melting a cold iron source with slag reduction according to [1], which comprises charging in.
[3] The cold with slag reduction according to [1] or [2], wherein the reducing agent and the slag modifier are supplied through a raw material input pipe provided on the furnace lid while performing arc heating. Method of melting iron source.
[4] During the reduction of the slag, the lance is inserted into the slag layer, and the stirring gas is blown through the lance to stir the inside of the slag. The method for melting a cold iron source with slag reduction according to any one of [1] to [3].
[5] Any of [1] to [4], wherein one or both of the waste containing phosphoric acid and the high-phosphorus iron ore are charged through the raw material input pipe together with the reducing agent and the slag modifier. The method for melting a cold iron source with slag reduction according to one of the above.

本発明は、溶鉄を収容する電気炉において製鋼スラグの還元処理を行い、製鋼スラグを、セメント原料、土工材料、セラミック製品等の種々の用途に使用可能な材料に改質するとともに、製鋼スラグ中のFe、P等の有価元素を溶鉄中に還元回収し、その後、Fe分を回収した溶鉄を製鉄プロセスへリサイクルするに際し、種湯が収容された電気炉内に冷鉄源を装入し、冷鉄源の堆積部の上から溶融状態または高温固化した製鋼スラグを装入することにより、設備の規模を大きくすることなく、また炉内容積を減少させることもなく、処理を行うことが可能となる。 In the present invention, steelmaking slag is reduced in an electric furnace containing molten iron, and the steelmaking slag is modified into a material that can be used for various purposes such as cement raw materials, earthwork materials, and ceramic products, and in steelmaking slag. When valuable elements such as Fe and P are reduced and recovered in molten iron, and then the molten iron from which Fe is recovered is recycled to the steelmaking process, a cold iron source is charged into the electric furnace containing the seed bath. By charging steelmaking slag in a molten state or solidified at high temperature from above the deposited part of the cold iron source, it is possible to perform processing without increasing the scale of the equipment and without reducing the internal volume of the furnace. It becomes.

本発明の冷鉄源の溶解方法において、冷鉄源の堆積部の上から製鋼スラグを装入する状況を示す図である。It is a figure which shows the situation which the steelmaking slag is charged from the deposit part of the cold iron source in the melting method of a cold iron source of this invention. 本発明の冷鉄源の溶解方法において、炭材とスラグ改質剤の添加状況を示す図である。It is a figure which shows the addition state of a coal material and a slag modifier in the melting method of a cold iron source of this invention. 本発明の冷鉄源の溶解方法において、溶鉄層の攪拌状況を示す図である。It is a figure which shows the stirring state of the molten iron layer in the melting method of a cold iron source of this invention. 本発明の冷鉄源の溶解方法において、冷鉄源の堆積部の上から製鋼スラグを装入する状況を示す図である。It is a figure which shows the situation which the steelmaking slag is charged from the deposit part of the cold iron source in the melting method of a cold iron source of this invention. 本発明の冷鉄源の溶解方法において、炭材とスラグ改質剤の添加状況及びスラグ層の攪拌状況を示す図である。It is a figure which shows the addition state of a coal material and a slag modifier, and the agitation state of a slag layer in the method of melting a cold iron source of this invention.

以下、図面を参照して本発明に好適な実施形態について詳細に説明する。
まず、本発明の電気炉を使用して行う、スラグ還元を伴った冷鉄源の溶解方法の概要を説明する。
Hereinafter, embodiments suitable for the present invention will be described in detail with reference to the drawings.
First, an outline of a method for melting a cold iron source accompanied by slag reduction, which is carried out using the electric furnace of the present invention, will be described.

製銑工程で高炉を用いて溶銑が製造され、製鋼工程で転炉等を用いて銑鉄が鋼に精錬される。この製鋼工程は、溶銑中の硫黄、リン、炭素等を除去する脱硫、脱リン、脱炭の各工程と、溶鋼中に残った水素等の気体や硫黄等を除去して成分調整を行う二次精錬工程と、連続鋳造機で溶鋼を鋳造する鋳造工程とを含む。 In the ironmaking process, hot metal is produced using a blast furnace, and in the steelmaking process, pig iron is refined into steel using a converter or the like. This steelmaking process involves desulfurization, dephosphorization, and decarburization to remove sulfur, phosphorus, carbon, etc. in the hot metal, and component adjustment by removing gas such as hydrogen and sulfur remaining in the molten steel. It includes a next refining step and a casting step of casting molten steel with a continuous casting machine.

製鋼工程のうち、主に脱リン、脱炭が転炉にて行われる。転炉内で、酸化カルシウムを主成分とするフラックスを用いて溶銑が精錬される。この際、転炉内に吹き込まれた酸素により溶銑中のC、Si、P、Mn等が酸化され、当該酸化物は酸化カルシウムと結び付きスラグになる。また、脱硫、脱リン、脱炭の各工程では、それぞれ成分の異なるスラグ(脱硫スラグ、脱リンスラグ、脱炭スラグ)が生成される。連続鋳造が完了した取鍋内に残存するスラグは、取鍋スラグと呼ばれる。 Of the steelmaking processes, dephosphorization and decarburization are mainly performed in a converter. In the converter, hot metal is refined using a flux containing calcium oxide as the main component. At this time, oxygen blown into the converter oxidizes C, Si, P, Mn, etc. in the hot metal, and the oxide is combined with calcium oxide to form slag. Further, in each step of desulfurization, dephosphorization, and decarburization, slag having different components (desulfurization slag, dephosphorization slag, decarburization slag) is generated. The slag remaining in the ladle after continuous casting is called ladle slag.

本発明で製鋼スラグとは、製鋼工程で生成されるスラグの総称であり、当該製鋼スラグは、脱硫スラグ、脱リンスラグ、脱炭スラグ、取鍋スラグを含む概念である。また、高温の溶融状態にある製鋼スラグを溶融スラグと称し、同様に、溶融状態にある脱硫スラグ、脱炭スラグ、脱リンスラグをそれぞれ、溶融脱硫スラグ、溶融脱リンスラグ、溶融脱炭スラグと称する。 In the present invention, steelmaking slag is a general term for slag produced in the steelmaking process, and the steelmaking slag is a concept including desulfurization slag, derinsing slag, decarburization slag, and ladle slag. Further, steelmaking slag in a high-temperature molten state is referred to as molten slag, and similarly, desulfurized slag, decarburized slag, and derinsed slag in a molten state are referred to as molten desulfurized slag, molten derinsed slag, and molten decarburized slag, respectively.

スラグ処理工程では、上記製鋼工程で生成された製鋼スラグを、溶融状態のままで転炉から電気炉に搬送し、電気炉内に装入した製鋼スラグを連続的に還元溶融改質することで、溶融スラグ中の有価物(Fe、P等の有価元素)を溶融スラグ層の下層である溶鉄層に回収する。 In the slag processing process, the steelmaking slag produced in the above steelmaking process is transferred from the converter to the electric furnace in a molten state, and the steelmaking slag charged in the electric furnace is continuously reduced, melted and reformed. , Valuable resources (valuable elements such as Fe and P) in the molten slag are recovered in the molten iron layer which is the lower layer of the molten slag layer.

従来、電気炉内に予め溶鉄浴を形成し、この溶鉄浴の上から溶融した製鋼スラグを添加し、溶融プールに還元剤として炭材を投入して、スラグの還元溶融改質処理が行われていた。この際、スラグ投入時のスラグフォーミングを抑制することが重要である。このため前述のように、特許文献1においては、電気炉内の溶鉄層上に還元された溶融スラグ層を緩衝帯として形成した上で、注入量を調整しながら、溶融スラグを徐々に注入する手段を採用している。また、特許文献2では、電気炉の炉底部に浅底部を有し、スラグは搬送容器から溶融スラグを浅底部に向けて投入することを特徴とする。 Conventionally, a molten iron bath is formed in advance in an electric furnace, molten steelmaking slag is added from above the molten iron bath, and a charcoal material is added as a reducing agent to the molten pool to perform reduction melting and reforming treatment of the slag. Was there. At this time, it is important to suppress slag forming at the time of slag injection. Therefore, as described above, in Patent Document 1, after forming the reduced molten slag layer on the molten iron layer in the electric furnace as a buffer band, the molten slag is gradually injected while adjusting the injection amount. The means are adopted. Further, Patent Document 2 is characterized in that a shallow bottom portion is provided at the bottom portion of the electric furnace, and the molten slag is charged from the transport container toward the shallow bottom portion.

ところで、電気炉においては、鉄スクラップ、型銑、還元鉄等の冷鉄源を電気炉内に装入し、アーク加熱によって溶解して溶鉄を形成している。冷鉄源の溶解促進のため、電気炉内には種湯が形成され、種湯及び溶解が進行した溶鉄中の炭素濃度を高めることにより、冷鉄源の溶解が促進される。冷鉄源を電気炉内に装入した後の溶解初期においては、電気炉の底部に種湯が貯留し、冷鉄源が山積みで堆積部を形成している。 By the way, in an electric furnace, a cold iron source such as iron scrap, pig iron, or reduced iron is charged into the electric furnace and melted by arc heating to form molten iron. In order to promote the dissolution of the cold iron source, a seed bath is formed in the electric furnace, and the dissolution of the cold iron source is promoted by increasing the carbon concentration in the seed bath and the molten iron in which the melting has progressed. In the initial stage of melting after the cold iron source is charged into the electric furnace, the seed water is stored at the bottom of the electric furnace, and the cold iron sources are piled up to form a sedimentary part.

本発明においては、冷鉄源が電気炉内に装入されて冷鉄源の堆積部が形成されている段階で、溶融した製鋼スラグを冷鉄源の堆積部の上から注ぎ込むことにより、溶融スラグと溶鉄との攪拌を抑制し、結果としてスラグのフォーミングを抑制することを着想した。
そして図1、図4に示すように、種湯28が収容された電気炉1内に冷鉄源23を装入し、冷鉄源23の堆積部の上から溶融状態または高温固化した製鋼スラグ24を装入し、直流または交流アーク加熱によって冷鉄源23を部分溶解した後、図2、図5に示すように、溶融プールに還元剤として炭材26を投入することにより、スラグフォーミングが抑制され、スラグの還元溶融改質が良好に進行することを見いだした。この際、電気炉内では、スラグ改質剤27の投入によってスラグの塩基度の調整処理などが行われ、溶融スラグ中のFe、P等の酸化物の還元や、スラグから粒鉄(鉄分)の分離が進行する。スラグが投入される直下に形成された冷鉄源23の堆積厚さが十分ではない場合、固化スラグ25を投入し、冷鉄源23堆積部の上に固化スラグ25を堆積させ、製鋼スラグを山積み状態の固化スラグ25及び未溶解冷鉄源23の上に装入することとしても良い(図4参照)。
In the present invention, when the cold iron source is charged into the electric furnace and the cold iron source deposit is formed, the molten steelmaking slag is poured from above the cold iron source deposit to melt the slag. The idea was to suppress the agitation of slag and molten iron, and as a result, to suppress the forming of slag.
Then, as shown in FIGS. 1 and 4, the cold iron source 23 is charged into the electric furnace 1 in which the seed bath 28 is housed, and the steelmaking slag is melted or solidified at a high temperature from above the deposited portion of the cold iron source 23. 24 is charged, and after the cold iron source 23 is partially melted by DC or AC arc heating, as shown in FIGS. 2 and 5, slag forming is performed by adding the carbonaceous material 26 as a reducing agent to the molten pool. It was found that the slag was suppressed and the reduction, melting and reforming of the slag proceeded well. At this time, in the electric furnace, the basicity of the slag is adjusted by adding the slag modifier 27, and the oxides such as Fe and P in the molten slag are reduced, and the slag is converted into granular iron (iron). Separation progresses. If the deposited thickness of the cold iron source 23 formed directly under the slag is not sufficient, the solidified slag 25 is charged, the solidified slag 25 is deposited on the cold iron source 23 deposited portion, and the steelmaking slag is formed. It may be charged on the solidified slag 25 and the undissolved cold iron source 23 in a piled state (see FIG. 4).

電気炉内に装入する冷鉄源としては、鉄スクラップ、型銑、還元鉄等を用いることができる。電気炉に冷鉄源を予熱する予熱炉を併設し、予熱炉で予熱した冷鉄源を電気炉内に装入することとすると好ましい。予熱炉としては、図4に示すように、電気炉の上部に直結するシャフト型の予熱炉7を具備し、電気炉内で発生する排ガスを予熱炉に導入して予熱炉7内の冷鉄源を予熱することができる。 As the cold iron source to be charged into the electric furnace, iron scrap, pig iron, reduced iron and the like can be used. It is preferable to install a preheating furnace for preheating the cold iron source in the electric furnace, and to charge the cold iron source preheated in the preheating furnace into the electric furnace. As shown in FIG. 4, the preheating furnace includes a shaft-type preheating furnace 7 directly connected to the upper part of the electric furnace, and the exhaust gas generated in the electric furnace is introduced into the preheating furnace to introduce the cold iron in the preheating furnace 7. The source can be preheated.

電気炉内に装入する製鋼スラグとしては、溶融状態にある製鋼スラグ、または高温固化した製鋼スラグを用いることができる。 As the steelmaking slag charged into the electric furnace, a steelmaking slag in a molten state or a steelmaking slag solidified at a high temperature can be used.

還元剤及び加炭材として用いる炭材には、コークス、石炭などを用いることができる。炭材を添加することにより、スラグ層中Fe、P等の酸化物の還元反応を進行させ、また溶鉄層に加炭して溶鉄の炭素濃度を上昇させる。溶鉄の炭素濃度を1質量%以上とすれば、溶鉄をそのまま、あるいは溶鉄の脱リン処理を行った上で、高炉溶銑と混合して転炉装入主原料とすることができる。 Coke, coal, or the like can be used as the charcoal material used as the reducing agent and the charcoal material. By adding the carbonaceous material, the reduction reaction of oxides such as Fe and P in the slag layer is promoted, and the molten iron layer is charcoalized to increase the carbon concentration of the molten iron. When the carbon concentration of the molten iron is 1% by mass or more, the molten iron can be used as it is, or after the molten iron is dephosphorized, it can be mixed with the blast furnace hot metal and used as the main raw material for the converter.

電気炉内に装入する製鋼スラグは、塩基度(CaO/SiO質量比)が高い高塩基度スラグであり、そのままでは融点が高いので溶解しづらい。また、スラグ中のP成分を還元して溶鉄層中に移行するためには、スラグの塩基度が低い方が好ましい。そこで本発明では、電気炉内にはさらに、成分組成としてSiOとAlの少なくとも一方を含むスラグ改質剤を投入する。製鋼スラグとスラグ改質剤が混合することにより、スラグの塩基度が低下し、Al濃度が増大し、結果として混合後のスラグの融点を低下させることができ、製鋼スラグの溶解とスラグ還元を速やかに進行させることが可能となる。スラグ改質剤添加後のスラグ成分として、塩基度が0.8〜1.3、Alが8〜13質量%の範囲とすれば好適である。 The steelmaking slag charged into the electric furnace is a high basicity slag having a high basicity (CaO / SiO 2 mass ratio), and is difficult to dissolve because it has a high melting point as it is. Further, in order to reduce the P component in the slag and transfer it into the molten iron layer, it is preferable that the basicity of the slag is low. Therefore, in the present invention, a slag modifier containing at least one of SiO 2 and Al 2 O 3 as a component composition is further charged into the electric furnace. By steelmaking slag and slag modifying agent are mixed, reduces the basicity of the slag, Al 2 O 3 concentration is increased, it is possible to lower the melting point of the slag after mixing as a result, the dissolution of the steel slag The slag reduction can proceed quickly. As the slag component after the addition of the slag modifier , it is preferable that the basicity is in the range of 0.8 to 1.3 and Al 2 O 3 is in the range of 8 to 13% by mass.

スラグ改質剤中のSiO濃度、Al濃度、スラグ改質剤の添加量(装入する製鋼スラグに対する比率)の好適範囲については、装入する製鋼スラグの成分によっても変動する。製鋼スラグとスラグ改質剤が混合した後において、スラグの塩基度が1.3以下、Al濃度が8質量%以上となれば良い。例えば、SiO濃度99質量%の珪砂、Al濃度83質量%のレンガ屑、およびSiO濃度59質量%、Al濃度23質量%のフライアッシュを適切に配合することにより、スラグ組成を最適範囲に調整し、スラグ溶解を好適に促進させることができる。スラグ改質剤としては、フライアッシュ、珪砂、レンガ屑の他に、下水汚泥灰、アルミドロス、等を用いることができる。 The preferred ranges of the SiO 2 concentration, Al 2 O 3 concentration, and the amount of the slag modifier added (ratio to the steelmaking slag to be charged) in the slag modifier vary depending on the components of the steelmaking slag to be charged. After the steelmaking slag and the slag modifier are mixed, the basicity of the slag may be 1.3 or less and the Al 2 O 3 concentration may be 8% by mass or more. For example, by appropriately blending silica sand having a SiO 2 concentration of 99% by mass, brick slag having an Al 2 O 3 concentration of 83% by mass, and fly ash having a SiO 2 concentration of 59% by mass and an Al 2 O 3 concentration of 23% by mass. The slag composition can be adjusted to the optimum range, and slag dissolution can be suitably promoted. As the slag modifier, in addition to fly ash, silica sand, and brick scrap, sewage sludge ash, aluminum dross, and the like can be used.

この結果、溶融スラグから分離されたリン分等を含む高リン溶鉄が回収されるとともに、製鋼スラグである溶融スラグが還元・改質されて、高炉スラグ相当の高品質の還元スラグが回収される。この還元スラグは、還元前と比べてFeO、P等の含有量が低いため、セメント原料、セラミック製品等にリサイクルできる。また、溶融スラグの塩基度が低くなるように成分を調整すれば低膨張性となるため、路盤材や骨材、石材として使用できる。 As a result, high-phosphorus molten iron containing phosphorus and the like separated from molten slag is recovered, and molten slag, which is steelmaking slag, is reduced and reformed to recover high-quality reduced slag equivalent to blast furnace slag. .. This reduction slag, FeO compared with the previous reduction, due to the low content of such P 2 O 5, it can be recycled to the cement material, ceramic products and the like. Further, if the components are adjusted so that the basicity of the molten slag is low, the expansion property becomes low, so that it can be used as a roadbed material, an aggregate, or a stone material.

さらに、上記回収された高リン溶鉄に対して脱リン処理を施して、溶鉄中のPを酸化させてスラグ中に移行させることで、高リン溶鉄が高リン酸スラグと溶鉄(低リン溶銑)とに分離される。高リン酸スラグは、リン酸肥料やリン酸原料等として製品化することができる。また、溶鉄(低リン溶銑)は、製鋼工程にリサイクルされ、高炉溶銑と混合した上で転炉等に投入される。 Further, the recovered high-phosphorus molten iron is subjected to a dephosphorization treatment to oxidize P in the molten iron and transfer it into the slag, whereby the high-phosphorus molten iron becomes high-phosphate slag and molten iron (low-phosphorus hot metal). Is separated into. The high phosphoric acid slag can be commercialized as a phosphoric acid fertilizer, a phosphoric acid raw material, or the like. Further, molten iron (low phosphorus hot metal) is recycled in the steelmaking process, mixed with blast furnace hot metal, and then put into a converter or the like.

以上、本実施形態に係るスラグ処理プロセスの概要について説明した。本プロセスは、上記製鋼工程で生成される種々の製鋼スラグのうち、溶融脱リンスラグを処理対象とすることが好ましい。溶融脱リンスラグは、溶融脱炭スラグよりも低温であるが、粒鉄やリン酸を多く含有しており、また一般に低塩基度である。このため、溶融脱リンスラグを、酸化処理ではなく、還元処理によって溶融改質することで、本プロセスによる有価元素(Fe、P等)の回収効率が高くなる、また低塩基度化のための改質剤を削減できるため必要エネルギーの低減にもつながる。そこで、以下の説明では、処理対象の溶融スラグとして、主に溶融脱リンスラグを用いる例について説明する。しかし、本発明の溶融した製鋼スラグとしては、溶融脱リンスラグに限定されず、溶融脱硫スラグ、溶融脱炭スラグ等、製鋼工程で発生する任意の製鋼スラグを使用することが可能である。 The outline of the slag processing process according to the present embodiment has been described above. Of the various steelmaking slags produced in the above steelmaking process, this process preferably targets melt-derinsed slag. Molten dephosphorized slag has a lower temperature than molten decarburized slag, but contains a large amount of granular iron and phosphoric acid, and is generally low in basicity. Therefore, by melt-modifying the melt-derinsed slag by a reduction treatment instead of an oxidation treatment, the recovery efficiency of valuable elements (Fe, P, etc.) by this process is increased, and the modification for lowering the basicity is performed. Since the amount of pawnbroker can be reduced, it also leads to the reduction of energy requirement. Therefore, in the following description, an example in which molten derinsed slag is mainly used as the molten slag to be treated will be described. However, the molten steelmaking slag of the present invention is not limited to the melt derinsing slag, and any steelmaking slag generated in the steelmaking process such as the melt desulfurization slag and the melt decarburized slag can be used.

電気炉で還元することにより、スラグの上熱が有利に働き、スラグ中に還元剤を懸濁させることによって、スラグメタル間のCO反応を抑制し、スラグフォーミングを抑制することができる。 By reducing in an electric furnace, the upper heat of the slag works advantageously, and by suspending the reducing agent in the slag, the CO reaction between the slag metals can be suppressed and the slag forming can be suppressed.

本発明で用いる電気炉として、据置式の直流電流炉、傾動式の直流電流炉、交流電流炉のいずれを用いてもよい。図2、図4に示すように、電気炉1の炉蓋2を通して電極3が設けられており、電極3による加熱で、冷鉄源、製鋼スラグを加熱し、電気炉内に溶鉄層21、溶融したスラグ層22を形成する。 As the electric furnace used in the present invention, any of a stationary DC current furnace, a tilting DC current furnace, and an AC current furnace may be used. As shown in FIGS. 2 and 4, the electrode 3 is provided through the furnace lid 2 of the electric furnace 1, and the cold iron source and the steelmaking slag are heated by the heating by the electrode 3, and the molten iron layer 21 is placed in the electric furnace. The molten slag layer 22 is formed.

図1〜図3に示す電気炉では、炉蓋にスラグ投入口が設けられておらず、電気炉1にスラグを装入するに際しては、炉蓋2を横に移動し、それによって形成された開口部を経由してスラグ鍋4から電気炉1内に製鋼スラグ24を装入する(図1参照)。 In the electric furnaces shown in FIGS. 1 to 3, the furnace lid is not provided with a slag inlet, and when the slag is charged into the electric furnace 1, the furnace lid 2 is moved laterally to form the slag. The steelmaking slag 24 is charged into the electric furnace 1 from the slag pan 4 via the opening (see FIG. 1).

図4、5に示す電気炉では、炉蓋2にスラグ投入口6が設置されている。炉蓋2のスラグ投入口6を開けることで形成する開口部を経由して電気炉内に製鋼スラグを装入する。図4に示す例では、樋5が設けられ、スラグ鍋4を傾転して製鋼スラグ24を樋5に流下し、樋5を経由してスラグ投入口6から電気炉1内に製鋼スラグ24が装入される。また図4、5に示す電気炉は、炉蓋2に予熱炉7が配置されている。冷鉄源ホッパー8から予熱炉7内に冷鉄源が供給され、電気炉排ガスの顕熱を利用し、予熱炉7内で冷鉄源を昇温する。電気炉1において、スラグ投入口6と予熱炉7の配置位置に関しては、図4に示す例では電気炉1の中心軸に対してスラグ投入口6と予熱炉7が互いに180°の位置に配置されているように作図している。好ましくは、電気炉1の中心軸に対してスラグ投入口6と予熱炉7が互いに90〜120°の位置に配置されていると良い。 In the electric furnace shown in FIGS. 4 and 5, a slag inlet 6 is installed in the furnace lid 2. Steelmaking slag is charged into the electric furnace via an opening formed by opening the slag inlet 6 of the furnace lid 2. In the example shown in FIG. 4, a gutter 5 is provided, the slag pot 4 is tilted to allow the steelmaking slag 24 to flow down to the gutter 5, and the steelmaking slag 24 enters the electric furnace 1 from the slag inlet 6 via the gutter 5. Is charged. Further, in the electric furnace shown in FIGS. 4 and 5, a preheating furnace 7 is arranged on the furnace lid 2. A cold iron source is supplied from the cold iron source hopper 8 into the preheating furnace 7, and the sensible heat of the electric furnace exhaust gas is used to raise the temperature of the cold iron source in the preheating furnace 7. Regarding the arrangement position of the slag inlet 6 and the preheating furnace 7 in the electric furnace 1, in the example shown in FIG. 4, the slag inlet 6 and the preheating furnace 7 are arranged at 180 ° to each other with respect to the central axis of the electric furnace 1. It is drawn as it is. Preferably, the slag inlet 6 and the preheating furnace 7 are arranged at positions of 90 to 120 ° with respect to the central axis of the electric furnace 1.

炉蓋2には、図2、図5に示すように、原料投入管9が配設されている。原料投入管9を経由して、炭材26、スラグ改質剤27を電気炉内に投入することができる。炭材26、スラグ改質剤27を顆粒状とし、アーク加熱をしながら原料投入管9から供給すると好ましい。電気炉内への空気の侵入による脱炭ロスを防ぐためには、できるだけ電気炉の密閉状態を維持し、非酸化性雰囲気での還元処理及び加炭を行うと好ましい。炭材の添加については、粉体の炭材をスラグ層に吹き込んで添加することとしても良い。 As shown in FIGS. 2 and 5, a raw material input pipe 9 is provided on the furnace lid 2. The carbonaceous material 26 and the slag modifier 27 can be charged into the electric furnace via the raw material input pipe 9. It is preferable that the charcoal material 26 and the slag modifier 27 are made into granules and supplied from the raw material input pipe 9 while being arc-heated. In order to prevent decarburization loss due to the intrusion of air into the electric furnace, it is preferable to maintain the closed state of the electric furnace as much as possible and perform reduction treatment and charcoalization in a non-oxidizing atmosphere. Regarding the addition of the charcoal material, the powdered charcoal material may be added by blowing it into the slag layer.

本発明で好ましくは、電気炉1内のスラグ層22あるいは溶鉄層21内にランス13を挿入し、ランス13先端から攪拌ガスを吹き込むことにより、スラグ層22あるいは溶鉄層21を攪拌することができる。ランス13は、電気炉1のスラグドア12を開放し、その開放部から炉内に挿入することができる(図3、図5参照)。 In the present invention, preferably, the slag layer 22 or the molten iron layer 21 can be agitated by inserting the lance 13 into the slag layer 22 or the molten iron layer 21 in the electric furnace 1 and blowing a stirring gas from the tip of the lance 13. .. The lance 13 can open the slug door 12 of the electric furnace 1 and insert it into the furnace through the open portion (see FIGS. 3 and 5).

スラグの還元中において、アーク加熱でスラグを優先的に加熱し、スラグ内攪拌を促進させるためには、スラグ層内にガス吹込ランスを挿入してガス攪拌を行うとよい。図5に示す例では、スラグドア12を経由して挿入したランス13の先端がスラグ層22中に浸漬し、ランス13先端から不活性ガスを吹き込むことにより、スラグ層22の攪拌を行っている。 In order to preferentially heat the slag by arc heating during the reduction of the slag and promote the agitation in the slag, it is preferable to insert a gas blowing lance into the slag layer to perform the gas agitation. In the example shown in FIG. 5, the tip of the lance 13 inserted via the slag door 12 is immersed in the slag layer 22, and the slag layer 22 is agitated by blowing an inert gas from the tip of the lance 13.

冷鉄源が完全に溶解し、溶鉄層中の炭素濃度が上昇するとともに温度が上昇した時点で通電を停止し、通電終了後、ランス13の先端を溶鉄層21内に浸漬してガス攪拌を行うことにより、スラグメタル温度の均一化を図ることができる。図3に示す例では、スラグドア12を経由して挿入したランス13の先端が溶鉄層21中に浸漬し、ランス13先端から不活性ガスを吹き込むことにより、溶鉄層21及びスラグ層22の攪拌を行っている。溶鉄層21内へのガスの吹き込みは、上記ランス浸漬に代えて、底吹きによってガスを吹き込んでも良い。 When the cold iron source is completely melted and the carbon concentration in the molten iron layer rises and the temperature rises, the energization is stopped. After the energization is completed, the tip of the lance 13 is immersed in the molten iron layer 21 to stir the gas. By doing so, the slag metal temperature can be made uniform. In the example shown in FIG. 3, the tip of the lance 13 inserted via the slag door 12 is immersed in the molten iron layer 21, and the inert gas is blown from the tip of the lance 13 to stir the molten iron layer 21 and the slag layer 22. Is going. The gas may be blown into the molten iron layer 21 by bottom blowing instead of the above lance immersion.

前記還元剤、スラグ改質剤とともに、リン酸を含む廃棄物と高リン鉄鉱石の一方又は両方を、原料投入管を通じて投入することができる。リン酸を含む廃棄物としては、下水処理等で発生するリン酸源も回収可能であり、そこに含まれるシリカ源はスラグ改質剤として利用できる。特に汚泥焼却灰を好ましく用いることができる。これにより、溶鉄中のP濃度を上昇し、次工程で溶鉄の脱リン処理を行い、脱リンスラグ中のP濃度を増大し、リン酸肥料原料またはその他のリン製品原料としての価値を増すことができる。下水汚泥に含まれるCdやAs、Pbといった低沸点の有害元素は、高温のアークフレームによって気化除去され、溶銑や高リン酸スラグには残らないため、安全にリサイクルできる。
製鋼スラグの装入量を増やすことにより、溶鉄中のP濃度を上昇させることもできる。
Along with the reducing agent and the slag modifier, one or both of the phosphoric acid-containing waste and the high-phosphorus iron ore can be charged through the raw material input pipe. As the waste containing phosphoric acid, a phosphoric acid source generated in sewage treatment or the like can also be recovered, and the silica source contained therein can be used as a slag modifier. In particular, sludge incinerator ash can be preferably used. As a result, the P concentration in the molten iron is increased, the molten iron is dephosphorized in the next step, the P 2 O 5 concentration in the derinsed slag is increased, and the value as a phosphate fertilizer raw material or other phosphorus product raw material is increased. Can be increased. Low boiling point harmful elements such as Cd, As, and Pb contained in sewage sludge are vaporized and removed by a high-temperature arc frame and do not remain in hot metal or high phosphate slag, so they can be safely recycled.
By increasing the amount of steelmaking slag charged, the P concentration in molten iron can also be increased.

電気炉を用いた冷鉄源の溶解方法において、本発明を適用することにより、冷鉄源溶解時に新たなフラックスを投入する必要がなく、P濃度の高い製鋼スラグで代用することができる。 In the dissolution process of Hiyatetsu source using an electric furnace, by applying the present invention, it is not necessary to introduce new flux during Hiyatetsu source dissolution, it is replaced with a high P 2 O 5 concentration steel slag can.

高炉法で製造される鉄源は、鉄鉱石をコークスで還元して製造するため、CO発生量が多い。そのため、地球温暖化対策の一環として、高炉法の比率を下げ、鉄スクラップを電気エネルギーで溶解する電気炉製鋼法の比率増大が求められている。一方、前述のように、電気炉で溶製した溶鋼を、転炉工場にて転炉で溶製した溶鋼とともに二次精錬、連続鋳造を行おうとすると、電気炉は通常転炉に比べてヒートサイズが小さく、転炉工場では既存の2次精錬、連鋳機とは取鍋容量が合致せず、時間的マッチングもうまくとれないため、転炉と併設することは難しい。また、電気炉鋼は、[N]やトランプエレメントが高く、転炉鋼でなければできない鋼種がある。 The iron source produced by the blast furnace method produces a large amount of CO 2 because it is produced by reducing iron ore with coke. Therefore, as part of measures against global warming, it is required to reduce the ratio of the blast furnace method and increase the ratio of the electric furnace steel manufacturing method that melts iron scrap with electric energy. On the other hand, as described above, when the molten steel melted in the electric furnace is subjected to secondary refining and continuous casting together with the molten steel melted in the converter at the converter factory, the electric furnace heats up as compared with the normal converter. Due to its small size, the capacity of the pan does not match that of the existing secondary smelting and continuous casting machines at the converter factory, and time matching cannot be achieved well, so it is difficult to install it together with the converter. In addition, electric furnace steel has a high [N] and trump element, and there are steel types that can only be achieved with converter steel.

それに対して本発明においては、電気炉で炭素濃度が1質量%以上の溶銑を溶製する。たとえ電気炉のヒートサイズが転炉のヒートサイズに比較して小さい場合でも、電気炉で製造した溶銑と高炉溶銑とを混合することにより、転炉のヒートサイズに合致させることができる。その結果、転炉を有する製鋼工場において、電気炉で溶銑を製造することが可能となる。また、電気炉で冷鉄源を溶解しても、そのあと高炉溶銑で稀釈し、転炉で吹錬することにより、トランプエレメント濃度および溶鋼窒素濃度を低減することができる。 On the other hand, in the present invention, hot metal having a carbon concentration of 1% by mass or more is melted in an electric furnace. Even if the heat size of the electric furnace is smaller than the heat size of the converter, the heat size of the converter can be matched by mixing the hot metal produced in the electric furnace and the blast furnace hot metal. As a result, in a steelmaking factory having a converter, it becomes possible to produce hot metal in an electric furnace. Further, even if the cold iron source is melted in an electric furnace, the Trump element concentration and the molten steel nitrogen concentration can be reduced by diluting with hot metal in a blast furnace and blowing in a converter.

[実施例1]
図1、図2に示すように、電気炉1の炉蓋2を外して鉄源を装入する電気炉を用いて、本発明を実施した。
[Example 1]
As shown in FIGS. 1 and 2, the present invention was carried out using an electric furnace in which the furnace lid 2 of the electric furnace 1 is removed and an iron source is charged.

種湯28として溶銑約40tの入った電気炉1(直流または交流電気炉)の炉蓋2をスライドして開け、装入バケット(図示せず)で800℃に予熱された冷鉄源60tを電気炉内に装入した。冷鉄源として鉄スクラップと型銑を用いた。図1に示すように、電気炉1内において、底部に種湯28の層が形成され、冷鉄源23が堆積部を形成している。 As the seed hot water 28, the furnace lid 2 of the electric furnace 1 (DC or AC electric furnace) containing about 40 tons of hot metal is slid open, and a cold iron source 60 tons preheated to 800 ° C. is opened in a charging bucket (not shown). It was charged in an electric furnace. Iron scrap and pig iron were used as cold iron sources. As shown in FIG. 1, in the electric furnace 1, a layer of the seed bath 28 is formed at the bottom, and the cold iron source 23 forms a deposit portion.

製鋼スラグ24として転炉で生成した溶融脱炭スラグまたは溶融脱リンスラグを用い、スラグ鍋4で搬送し、図1に示すように、スラグ鍋4を傾動することにより、電気炉1内に山積みされた冷鉄源23の上方から溶融状態のまま50tの製鋼スラグ24を装入した。装入された製鋼スラグは、温度:1350℃、成分組成がCaO:37.1%、SiO:15.3%、T.Fe:21%、P:3.2%であった。 Melt decarburized slag or melt derinsed slag generated in a converter is used as the steelmaking slag 24, transported in a slag pot 4, and as shown in FIG. 1, the slag pot 4 is tilted to be piled up in the electric furnace 1. A 50 ton steelmaking slag 24 was charged from above the cold iron source 23 in a molten state. The charged steelmaking slag had a temperature of 1350 ° C., a component composition of CaO: 37.1%, SiO 2 : 15.3%, and T.I. Fe: 21%, P 2 O 5 : 3.2%.

製鋼スラグ装入完了後、炉蓋2を閉めて電極3を降下し、50MWの出力でアーク加熱処理を開始した(図2参照)。
溶融プールができた段階で、図2に示すように、炉蓋2に設けた原料投入管9を経由して、炭材26としてコークス粉を上方からトータル7.5t、断続的に投入した。空気の侵入による脱炭ロスを防ぐためにできるだけ密閉状態を維持した。
途中、炉蓋を開けて60tの冷鉄源の追加装入を行った。
炭材26の添加と合わせて、スラグ改質剤27として珪砂7.0t、アルミナ主体のレンガ屑4.0tを添加した。スラグ改質剤27の全体平均組成は、SiO:63質量%、Al:30質量%であった。スラグ中の還元反応およびメタル層への浸炭促進のために、スラグドア12からランス13を炉内に挿入し、スラグ層内にランスを浸漬し、60Nm/hで窒素ガス攪拌を行った(ランス13の配置について図5参照)。
After the steelmaking slag was charged, the furnace lid 2 was closed, the electrode 3 was lowered, and the arc heat treatment was started at an output of 50 MW (see FIG. 2).
At the stage when the molten pool was formed, as shown in FIG. 2, coke powder was intermittently charged as a coal material 26 from above for a total of 7.5 tons via the raw material input pipe 9 provided in the furnace lid 2. The sealed state was maintained as much as possible to prevent decarburization loss due to air intrusion.
On the way, the furnace lid was opened and an additional 60 tons of cold iron source was charged.
Together with the addition of the charcoal material 26, 7.0 tons of silica sand and 4.0 tons of alumina-based brick scraps were added as the slag modifier 27. Overall average composition of the slag Aratameshitsuzai 27, SiO 2: 63 wt%, Al 2 O 3: was 30 wt%. In order to promote the reduction reaction in the slag and carburizing into the metal layer, the lance 13 was inserted into the furnace from the slag door 12, the lance was immersed in the slag layer, and nitrogen gas was stirred at 60 Nm 3 / h (lance). See FIG. 5 for the arrangement of 13.

冷鉄源が完全に溶解し、溶銑[C]2%、温度1500℃を超えた時点で通電を停止し、図3に示すようにランス13先端を溶鉄層21内に浸漬して60Nm/hの窒素ガス攪拌を行い、スラグメタル温度の均一化を図った。 When the cold iron source is completely melted, the hot metal [C] is 2%, and the temperature exceeds 1500 ° C., the energization is stopped, and the tip of the lance 13 is immersed in the molten iron layer 21 as shown in FIG. 3, 60 Nm 3 /. The nitrogen gas of h was stirred to make the slag metal temperature uniform.

電気炉精錬完了後、電気炉を傾動して溶鉄層21を構成する溶銑を出湯孔11から取鍋(図示せず)に排出し、炉内に種湯約40tを残した。電気炉を反対側に傾動し、スラグドア12を開けてスラグ排出口とし、スラグ口から還元スラグを排出した。排出された溶銑量は133t、還元スラグは46tであった。メタル成分はC:2.1%、P:0.41%、Si:0.12%であった。スラグ成分は、T.Fe:1.0%、P:0.31%、CaO:39.6%、SiO:31.6%であった。 After the completion of the electric furnace refining, the electric furnace was tilted to discharge the hot metal constituting the molten iron layer 21 from the hot water outlet hole 11 into a ladle (not shown), leaving about 40 tons of seed hot water in the furnace. The electric furnace was tilted to the opposite side, the slag door 12 was opened to serve as a slag discharge port, and reduced slag was discharged from the slag port. The amount of hot metal discharged was 133 tons, and the amount of reduced slag was 46 tons. The metal components were C: 2.1%, P: 0.41%, and Si: 0.12%. The slag component is T.I. Fe: 1.0%, P 2 O 5 : 0.31%, CaO: 39.6%, SiO 2 : 31.6%.

取鍋に収容した溶銑は、酸素および酸化鉄の酸化剤と生石灰を含む脱リン剤で脱リン処理を行って、溶銑中のP:0.11%とした。脱リン処理後溶銑に高炉溶銑137tを加えて270tとし、転炉に装入した。脱リン処理で得られたスラグは6.1tで、スラグ成分は、T.Fe:12.5%、P:15.1%で、冷却後、粉砕して肥料原料とした。 The hot metal contained in the ladle was dephosphorized with a dephosphorizing agent containing an oxidizing agent of oxygen and iron oxide and quicklime to obtain P: 0.11% in the hot metal. After the dephosphorization treatment, 137 tons of blast furnace hot metal was added to the hot metal to make 270 tons, which was charged into the converter. The slag obtained by the dephosphorization treatment was 6.1 tons, and the slag component was T.I. Fe: 12.5%, P 2 O 5 : 15.1%, and after cooling, it was crushed to use as a fertilizer raw material.

[実施例2]
図4、図5に示すように、予熱炉7を併設し、予熱炉7から冷鉄源を装入する電気炉1を用いて、本発明を実施した。冷鉄源として鉄スクラップを用いた。炉蓋2には、電気炉1の中心軸に対して予熱炉7から120°の位置に、スラグ投入口6が配置されている。また、スラグ鍋4から流出した溶融スラグをスラグ投入口6に導くための樋5が設けられている。
[Example 2]
As shown in FIGS. 4 and 5, the present invention was carried out using an electric furnace 1 in which a preheating furnace 7 is installed and a cold iron source is charged from the preheating furnace 7. Iron scrap was used as the cold iron source. The slag inlet 6 is arranged in the furnace lid 2 at a position 120 ° from the preheating furnace 7 with respect to the central axis of the electric furnace 1. Further, a gutter 5 for guiding the molten slag flowing out of the slag pan 4 to the slag inlet 6 is provided.

冷鉄源ホッパー8から予熱炉7に冷鉄源を投入し、予熱炉7で冷鉄源23を約800℃に昇温した後、断続的に冷鉄源23を電気炉1内に払い出した。次いで、スラグ投入口6の蓋をあけた。スラグ投入口6の直下に形成された冷鉄源23の堆積厚さが若干薄かったので、スラグ投入口6から固化した製鋼スラグ(固化スラグ25)を20t投入し、冷鉄源23堆積部の上に固化スラグ25を堆積させた。次いで、スラグ鍋4から、樋5を経由して溶融した30tの製鋼スラグ24をスラグ投入口6から炉内に注入し、直下の山積み状態の固化スラグ25及び未溶解冷鉄源23の上に全量装入した。その際、スラグの還元反応を抑制するため、通電は中止した。装入された製鋼スラグは、温度:1350℃、成分組成がCaO:37.1%、SiO:15.3%、T.Fe:21%、P:3.2%であった。 The cold iron source was charged into the preheating furnace 7 from the cold iron source hopper 8, the temperature of the cold iron source 23 was raised to about 800 ° C. in the preheating furnace 7, and then the cold iron source 23 was intermittently discharged into the electric furnace 1. .. Next, the lid of the slag inlet 6 was opened. Since the deposited thickness of the cold iron source 23 formed directly under the slag input port 6 was slightly thin, 20 tons of solidified steelmaking slag (solidified slag 25) was charged from the slag input port 6 to form the cold iron source 23 deposited portion. Solidified slag 25 was deposited on top. Next, from the slag pot 4, 30 tons of steelmaking slag 24 melted via the gutter 5 is injected into the furnace from the slag inlet 6, and is placed on the solidified slag 25 and the undissolved cold iron source 23 in a piled state directly below. The whole amount was charged. At that time, energization was stopped in order to suppress the reduction reaction of slag. The charged steelmaking slag had a temperature of 1350 ° C., a component composition of CaO: 37.1%, SiO 2 : 15.3%, and T.I. Fe: 21%, P 2 O 5 : 3.2%.

スラグ装入完了後、スラグ投入口6を閉めて電極3を降下し、50MWの出力でアーク加熱処理を開始した。
溶融プールができた段階で、図5に示すように、炉蓋2に設けた原料投入管9を経由して、炭材26としてコークス粉を上方からトータル7.5t、断続的に投入した。空気の侵入による脱炭ロスを防止するため、できるだけ密閉状態を維持した。
炭材26添加と合わせて、スラグ改質剤27として珪砂7.0t、アルミナ主体のレンガ屑4.0tを添加した。スラグ改質剤27の全体平均組成は、SiO:63質量%、Al:30質量%であった。スラグ層中の還元反応および溶鉄層への浸炭促進のために、スラグドア12からランス13を炉内に挿入し、図5に示すように、ランス13先端からスラグ層22内に、60Nm/hで窒素ガスを吹込み、攪拌を行った。
After the slag charging was completed, the slag inlet 6 was closed, the electrode 3 was lowered, and the arc heat treatment was started with an output of 50 MW.
At the stage when the molten pool was formed, as shown in FIG. 5, coke powder was intermittently charged as a coal material 26 from above for a total of 7.5 tons via the raw material charging pipe 9 provided in the furnace lid 2. In order to prevent decarburization loss due to air intrusion, the sealed state was maintained as much as possible.
Together with the addition of the charcoal material 26, 7.0 tons of silica sand and 4.0 tons of alumina-based brick scraps were added as the slag modifier 27. Overall average composition of the slag Aratameshitsuzai 27, SiO 2: 63 wt%, Al 2 O 3: was 30 wt%. In order to promote the reduction reaction in the slag layer and carburizing into the molten iron layer, the lance 13 was inserted into the furnace from the slag door 12, and as shown in FIG. 5, 60 Nm 3 / h from the tip of the lance 13 into the slag layer 22. Nitrogen gas was blown in and stirred.

装入した120tの冷鉄源が完全に溶解し、溶鉄層21のC:2%、温度1500℃を超えた時点で通電を停止した。ランス13の先端が溶鉄層21内に浸漬する位置までランス13を下降し(図3を参照)、60Nm/hの窒素ガス吹込み攪拌を行い、スラグメタル温度の均一化を図った。 When the charged 120 tons of cold iron source was completely melted and the C: 2% of the molten iron layer 21 and the temperature exceeded 1500 ° C., the energization was stopped. The lance 13 was lowered to a position where the tip of the lance 13 was immersed in the molten iron layer 21 (see FIG. 3), and nitrogen gas was blown in and stirred at 60 Nm 3 / h to make the slag metal temperature uniform.

電気炉精錬完了後、電気炉を傾動して溶鉄層21を構成する溶銑を出湯孔11から取鍋(図示せず)に排出し、炉内に種湯約40tを残した。電気炉を反対側に傾動し、スラグドア12を開け、スラグ口から還元スラグを排出した。排出された溶銑量は133t、還元スラグは52tであった。メタル成分はC:2.1%、P:0.41%、Si:0.12%であった。スラグ成分は、T.Fe:1.0%、P:0.31%、CaO:39.6%、SiO:31.6%であった。 After the completion of the electric furnace refining, the electric furnace was tilted to discharge the hot metal constituting the molten iron layer 21 from the hot water outlet hole 11 into a ladle (not shown), leaving about 40 tons of seed hot water in the furnace. The electric furnace was tilted to the opposite side, the slag door 12 was opened, and the reduced slag was discharged from the slag port. The amount of hot metal discharged was 133 tons, and the amount of reduced slag was 52 tons. The metal components were C: 2.1%, P: 0.41%, and Si: 0.12%. The slag component is T.I. Fe: 1.0%, P 2 O 5 : 0.31%, CaO: 39.6%, SiO 2 : 31.6%.

取鍋に収容した溶銑は、酸素および酸化鉄の酸化剤と生石灰を含む脱リン剤で脱リン処理を行って、溶銑中のP:0.11%とした。脱リン処理後溶銑に高炉溶銑137tを加えて270tとし、転炉に装入した。脱リンで得られたスラグは6.1tで、スラグ成分は、T.Fe:12.5%、P:15.1%で、冷却後、粉砕して肥料原料とした。 The hot metal contained in the ladle was dephosphorized with a dephosphorizing agent containing an oxidizing agent of oxygen and iron oxide and quicklime to obtain P: 0.11% in the hot metal. After the dephosphorization treatment, 137 tons of blast furnace hot metal was added to the hot metal to make 270 tons, which was charged into the converter. The slag obtained by dephosphorization was 6.1 tons, and the slag component was T.I. Fe: 12.5%, P 2 O 5 : 15.1%, and after cooling, it was crushed to use as a fertilizer raw material.

1 電気炉
2 炉蓋
3 電極
4 スラグ鍋
5 樋
6 スラグ投入口
7 予熱炉
8 冷鉄源ホッパー
9 原料投入管
11 出湯孔
12 スラグドア
13 ランス
21 溶鉄層
22 スラグ層
23 冷鉄源
24 製鋼スラグ
25 固化スラグ
26 炭材
27 スラグ改質剤
28 種湯
1 Electric furnace 2 Furnace lid 3 Electrode 4 Slag pot 5 Slag 6 Slag inlet 7 Preheating furnace 8 Cold iron source hopper 9 Raw material inlet pipe 11 Hot water hole 12 Slug door 13 Lance 21 Molten iron layer 22 Slag layer 23 Cold iron source 24 Steelmaking slag 25 Solidified slag 26 Charcoal material 27 Slag modifier 28 Seed hot water

Claims (5)

種湯が収容された電気炉内に冷鉄源を装入し、冷鉄源の堆積部の上から溶融状態または高温固化した製鋼スラグを装入し、直流または交流アーク加熱によって冷鉄源を部分溶解した後、溶融プールに還元剤として炭材を投入するとともに、成分組成としてSiOとAlの少なくとも一方を含むスラグ改質剤を投入して、スラグを還元すると共に溶解した溶鉄を加炭し、溶銑を出湯孔から種湯を残して排出した後、還元スラグをスラグ排出口から排出することを特徴とするスラグ還元を伴った冷鉄源の溶解方法。 A cold iron source is charged into the electric furnace containing the seed water, and a molten or high-temperature solidified steel slag is charged from above the accumulated portion of the cold iron source, and the cold iron source is heated by direct or AC arc heating. After partial dissolution, a carbonaceous material is added as a reducing agent to the molten pool, and a slag modifier containing at least one of SiO 2 and Al 2 O 3 is added as a component composition to reduce the slag and melt the molten iron. A method for melting a cold iron source with slag reduction, which comprises charcoalizing the hot metal, discharging the hot metal from the hot water hole leaving the seed water, and then discharging the reduced slag from the slag discharge port. 前記製鋼スラグの装入は、前記電気炉の炉蓋を移動させるか、または炉蓋のスラグ投入口を開けることで形成する開口部を経由して行い、製鋼スラグを収容したスラグ鍋から直接または樋を介して装入するものとし、その際、装入する製鋼スラグは前記冷鉄源の堆積部の上、あるいは当該冷鉄源の堆積部の上にさらに堆積した固化スラグの上に装入することを特徴とする請求項1に記載のスラグ還元を伴った冷鉄源の溶解方法。 The steelmaking slag is charged by moving the furnace lid of the electric furnace or via an opening formed by opening the slag inlet of the furnace lid, and directly from a slag pot containing the steelmaking slag or. It shall be charged through a trough, and at that time, the steelmaking slag to be charged shall be charged on the deposited portion of the cold iron source or on the solidified slag further deposited on the deposited portion of the cold iron source. The method for melting a cold iron source with slag reduction according to claim 1. 前記還元剤およびスラグ改質剤を、アーク加熱をしながら炉蓋上に設けた原料投入管を通して供給することを特徴とする請求項1又は請求項2記載のスラグ還元を伴った冷鉄源の溶解方法。 The cold iron source with slag reduction according to claim 1 or 2, wherein the reducing agent and the slag modifier are supplied through a raw material input pipe provided on the furnace lid while performing arc heating. Dissolution method. スラグの還元中はランスをスラグ層内に挿入し、前記ランスを経由して攪拌ガスを吹いてスラグ内攪拌を行い、通電終了後は、溶鉄層内で底吹きまたはランスからガス攪拌することを特徴とする請求項1〜請求項3のいずれか1項に記載のスラグ還元を伴った冷鉄源の溶解方法。 During the reduction of the slag, the lance is inserted into the slag layer, and the stirring gas is blown through the lance to stir the inside of the slag. The method for melting a cold iron source with slag reduction according to any one of claims 1 to 3, which is characteristic. 前記還元剤、スラグ改質剤とともに、リン酸を含む廃棄物と高リン鉄鉱石の一方又は両方を、原料投入管を通じて投入することを特徴とする請求項1〜請求項4のいずれか1項に記載のスラグ還元を伴った冷鉄源の溶解方法。 One of claims 1 to 4, wherein one or both of the waste containing phosphoric acid and the high-phosphorus iron ore are charged through the raw material input pipe together with the reducing agent and the slag modifier. The method for melting a cold iron source with slag reduction according to.
JP2020031243A 2020-02-27 2020-02-27 Melting method of cold iron source with slag reduction Active JP7364899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020031243A JP7364899B2 (en) 2020-02-27 2020-02-27 Melting method of cold iron source with slag reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020031243A JP7364899B2 (en) 2020-02-27 2020-02-27 Melting method of cold iron source with slag reduction

Publications (2)

Publication Number Publication Date
JP2021134386A true JP2021134386A (en) 2021-09-13
JP7364899B2 JP7364899B2 (en) 2023-10-19

Family

ID=77660469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020031243A Active JP7364899B2 (en) 2020-02-27 2020-02-27 Melting method of cold iron source with slag reduction

Country Status (1)

Country Link
JP (1) JP7364899B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054345A1 (en) 2021-09-30 2023-04-06 日本製鉄株式会社 Molten iron production method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114023A (en) 2007-11-06 2009-05-28 Nippon Steel Corp Method of treating steelmaking slag
JP5444883B2 (en) 2009-06-26 2014-03-19 新日鐵住金株式会社 Modified slag
JP5625654B2 (en) 2009-09-15 2014-11-19 Jfeスチール株式会社 Hot metal production method
JP5909957B2 (en) 2010-09-29 2016-04-27 Jfeスチール株式会社 Steel making method using steel scrap
KR101330970B1 (en) 2011-11-29 2013-11-18 현대제철 주식회사 Device for recovering valuable metal and producing of multi-functional aggregate using slag
BR112016001146B1 (en) 2013-07-24 2020-03-03 Nippon Steel Corporation EXHAUST GAS TREATMENT METHOD AND EXHAUST GAS TREATMENT INSTALLATION
JP6992604B2 (en) 2018-03-06 2022-01-13 日本製鉄株式会社 Phosphate slag fertilizer manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054345A1 (en) 2021-09-30 2023-04-06 日本製鉄株式会社 Molten iron production method
KR20240035546A (en) 2021-09-30 2024-03-15 닛폰세이테츠 가부시키가이샤 Molten iron manufacturing method

Also Published As

Publication number Publication date
JP7364899B2 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
KR101560512B1 (en) Steel slag reduction method
JP5408369B2 (en) Hot metal pretreatment method
JP5954551B2 (en) Converter steelmaking
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
WO2009110627A1 (en) Process for removal of copper contained in steel scraps
JP2010265485A (en) Method for operating arc-furnace
CN110073161B (en) Electric stove
JP5236926B2 (en) Manufacturing method of molten steel
RU2238331C2 (en) Method for processing of slag or slag mixture
JP5589688B2 (en) Hot metal production method
JP2003520899A5 (en)
JP5909957B2 (en) Steel making method using steel scrap
JP5625654B2 (en) Hot metal production method
JP7364899B2 (en) Melting method of cold iron source with slag reduction
JP5408379B2 (en) Hot metal pretreatment method
JP3721154B2 (en) Method for refining molten metal containing chromium
JP2013044029A (en) Method for recovering iron and phosphorus from steelmaking slag
JP2004143492A (en) Method of melting extra-low phosphorus stainless steel
JP2002241820A (en) Smelting reduction method for iron oxide using rotary kiln
JP4112989B2 (en) Operation method of heating storage furnace
WO2023054345A1 (en) Molten iron production method
JP2019151535A (en) Method of producing phosphate slag fertilizer
JP2002069526A (en) Method for regeneration treating of dephosphorized slag
JP5581760B2 (en) Method for removing copper in steel scrap and method for producing molten steel using steel scrap as an iron source
JP6947024B2 (en) Hot metal desulfurization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R151 Written notification of patent or utility model registration

Ref document number: 7364899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151