JP7364899B2 - Melting method of cold iron source with slag reduction - Google Patents
Melting method of cold iron source with slag reduction Download PDFInfo
- Publication number
- JP7364899B2 JP7364899B2 JP2020031243A JP2020031243A JP7364899B2 JP 7364899 B2 JP7364899 B2 JP 7364899B2 JP 2020031243 A JP2020031243 A JP 2020031243A JP 2020031243 A JP2020031243 A JP 2020031243A JP 7364899 B2 JP7364899 B2 JP 7364899B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- molten
- iron source
- cold iron
- charged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 332
- 239000002893 slag Substances 0.000 title claims description 300
- 229910052742 iron Inorganic materials 0.000 title claims description 170
- 238000002844 melting Methods 0.000 title claims description 35
- 230000008018 melting Effects 0.000 title claims description 35
- 238000000034 method Methods 0.000 title claims description 34
- 230000009467 reduction Effects 0.000 title claims description 26
- 238000009628 steelmaking Methods 0.000 claims description 82
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 46
- 239000003607 modifier Substances 0.000 claims description 25
- 239000002994 raw material Substances 0.000 claims description 23
- 239000003575 carbonaceous material Substances 0.000 claims description 17
- 230000002829 reductive effect Effects 0.000 claims description 15
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 14
- 238000003756 stirring Methods 0.000 claims description 14
- 229910019142 PO4 Inorganic materials 0.000 claims description 12
- 239000003638 chemical reducing agent Substances 0.000 claims description 12
- 239000010452 phosphate Substances 0.000 claims description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 7
- 239000002699 waste material Substances 0.000 claims description 6
- 238000007599 discharging Methods 0.000 claims description 2
- 238000005255 carburizing Methods 0.000 claims 1
- 238000011978 dissolution method Methods 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 22
- 229910052698 phosphorus Inorganic materials 0.000 description 22
- 238000006722 reduction reaction Methods 0.000 description 22
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 16
- 229910000831 Steel Inorganic materials 0.000 description 15
- 239000010959 steel Substances 0.000 description 15
- 238000005261 decarburization Methods 0.000 description 13
- 239000007789 gas Substances 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000011574 phosphorus Substances 0.000 description 10
- 239000000292 calcium oxide Substances 0.000 description 9
- 235000012255 calcium oxide Nutrition 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000007664 blowing Methods 0.000 description 7
- 238000006477 desulfuration reaction Methods 0.000 description 7
- 230000023556 desulfurization Effects 0.000 description 7
- 238000007670 refining Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 238000009749 continuous casting Methods 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 6
- 229910000805 Pig iron Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 238000002407 reforming Methods 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000011449 brick Substances 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000002686 phosphate fertilizer Substances 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000003337 fertilizer Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 239000002956 ash Substances 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical group [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000010079 rubber tapping Methods 0.000 description 2
- 239000010801 sewage sludge Substances 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- -1 scrap Chemical compound 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Manufacture Of Iron (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Description
本発明は、スラグ還元を伴った冷鉄源の溶解方法に関するものである。 The present invention relates to a method for melting cold iron sources with slag reduction.
製鋼スラグの排出量については、溶銑予備処理の改善により排出スラグ量が削減されつつある。一方、排出された製鋼スラグの利用については、製鋼スラグは高塩基度のため、利用に当たっては水浸膨張や高pH水溶出といった課題がある。それに対しては蒸気エージング等の対策が施されている。 Regarding the amount of steelmaking slag discharged, improvements in hot metal pretreatment are beginning to reduce the amount of discharged slag. On the other hand, regarding the use of the discharged steelmaking slag, since steelmaking slag has a high basicity, there are problems with its utilization such as expansion due to water immersion and elution with high pH water. Measures such as steam aging are being taken to counter this.
一方で、排出スラグを還元・改質して高炉スラグと同等のスラグに転換し、用途の拡大を図ると同時に、スラグに含まれる有価なFeやPを回収する技術が開発されている。その際、必要エネルギーを最小にするためには、高温の製鋼スラグを冷却固化せずにそのまま還元処理することが効果的であり、その方法が種々考案されている。 On the other hand, technology has been developed to reduce and reform discharged slag to convert it into slag equivalent to blast furnace slag, to expand its uses, and at the same time to recover valuable Fe and P contained in the slag. At this time, in order to minimize the required energy, it is effective to directly reduce the high-temperature steelmaking slag without cooling and solidifying it, and various methods have been devised for this purpose.
特許文献1には、電気炉内に収容された溶鉄上に、スラグ供給容器(スラグ保持炉)から熱間製鋼スラグを流入させ、溶融スラグ層に還元材を供給し、溶鉄及び溶融スラグ層を通電して加熱し、溶融スラグ層の溶融スラグ、又は、前記溶鉄を間歇的に排出しながら、熱間製鋼スラグの還元処理を非酸化性雰囲気で継続する、製鋼スラグ還元処理方法が開示されている。製鋼スラグの還元処理を行い、製鋼スラグを、セメント原料、土工材料、セラミック製品等の種々の用途に使用可能な材料に改質するとともに、製鋼スラグ中のMn、P等の有価元素を溶鉄中に還元回収し、その後、Fe及びMnは、製鉄プロセスへリサイクルし、Pは溶鉄に酸化処理を施して酸化物として回収し、リン酸肥料やリン酸原料として利用することを目的としている。特許文献1の構造は、溶融スラグを電気炉に直接投入するのではなく、電気炉に隣接配置されたスラグ保持炉に一旦保持し、電気炉内の溶鉄層上に溶融スラグ層を緩衝帯として形成した上で、注入量を調整しながら、溶融スラグを徐々に注入しているため、設備の規模が大きくなるとの課題を有している。 Patent Document 1 discloses that hot steelmaking slag is flowed from a slag supply container (slag holding furnace) onto molten iron housed in an electric furnace, a reducing agent is supplied to the molten slag layer, and the molten iron and the molten slag layer are A steelmaking slag reduction treatment method is disclosed, which continues the reduction treatment of hot steelmaking slag in a non-oxidizing atmosphere while heating the hot steelmaking slag by applying electricity and intermittently discharging the molten slag in the molten slag layer or the molten iron. There is. Reduction treatment of steelmaking slag is carried out to reform the steelmaking slag into materials that can be used for various purposes such as cement raw materials, earthwork materials, ceramic products, etc., and also to remove valuable elements such as Mn and P from the steelmaking slag into molten iron. After that, Fe and Mn are recycled to the steel manufacturing process, and P is recovered as an oxide by subjecting the molten iron to oxidation treatment, and the purpose is to use it as a phosphate fertilizer or a phosphate raw material. In the structure of Patent Document 1, molten slag is not directly charged into an electric furnace, but is temporarily held in a slag holding furnace placed adjacent to the electric furnace, and a molten slag layer is placed on the molten iron layer in the electric furnace as a buffer zone. After the molten slag is formed, molten slag is gradually injected while adjusting the injection amount, which poses a problem in that the scale of the equipment increases.
特許文献2に記載の発明は、溶鉄層と溶融スラグ層を形成する電気炉において、炉底部に浅底部を有し、スラグは搬送容器から溶融スラグを浅底部に向けて投入することを特徴とする。電気炉内で連続的に還元溶融改質することで、溶融スラグ中の有価物(Fe、P等の有価元素)を溶融スラグ層の下層である溶鉄層に回収する。回収された高リン溶鉄に対して脱リン処理を施して、溶鉄中のPを酸化させてスラグ中に移行させることで、高リン溶鉄が高リン酸スラグと溶鉄とに分離される。高リン酸スラグは、リン酸肥料やリン酸原料等としてリサイクルすることができる。また、溶鉄は製鋼工程にリサイクルされ、転炉等に投入される。溶融スラグが浅底部に注入されるので、注入された直後の溶融スラグと電気炉内の溶鉄層とが激しく混合されることを防止でき、フォーミング生成を防止できる。一方、浅底部を設けた結果として、炉内容積が減少するという課題を有する。
The invention described in
電気炉では、スクラップなどの冷鉄源を溶解して溶鋼を形成する。電気炉で溶製した溶鋼を、転炉工場にて転炉で溶製した溶鋼とともに二次精錬、連続鋳造を行おうとすると、電気炉は通常転炉に比べてヒートサイズが小さく、転炉工場では既存の2次精錬、連鋳機とは取鍋容量が合致せず、時間的マッチングもうまくとれないため、転炉と併設することは難しい。また、電気炉鋼は、[N]やトランプエレメントが高く、転炉鋼でなければできない鋼種がある。 In an electric furnace, a source of cold iron, such as scrap, is melted to form molten steel. When attempting to perform secondary refining and continuous casting of molten steel melted in an electric furnace together with the molten steel melted in a converter at a converter factory, the heat size of an electric furnace is usually smaller than that of a converter. However, since the ladle capacity does not match the existing secondary refining and continuous casting machines, and the timing cannot be matched well, it is difficult to install it alongside a converter. In addition, electric furnace steel has high [N] and tramp elements, and there are steel types that can only be produced using converter steel.
特許文献3には、溶解室と、溶解室の上部に直結するシャフト型の予熱室とを具備し、溶解室で発生する排ガスを予熱室に導入して予熱室内の冷鉄源を予熱するアーク炉を用いた、アーク炉の操業方法が開示されている。アーク炉から出湯する溶湯の炭素濃度を1mass%以上としてアーク炉を操業する。溶湯の炭素濃度を1mass%以上とすることで、アーク炉を用いて製造した溶銑(溶湯)を高炉溶銑と混合し、高炉-転炉法によるプロセスフローの一部に組み込むことができる。
本発明は、溶鉄を収容する電気炉において製鋼スラグの還元処理を行い、製鋼スラグを、セメント原料、土工材料、セラミック製品等の種々の用途に使用可能な材料に改質するとともに、製鋼スラグ中のMn、P等の有価元素を溶鉄中に還元回収し、その後、Fe及びMnを回収した溶鉄を製鉄プロセスへリサイクルするに際し、特許文献1に記載のように規模が大きな設備を用いることなく、電気炉炉底形状において特許文献2に記載のような浅底部を設ける必要がなく、転炉プロセスにリサイクルが容易な溶鉄を製造することのできる、スラグ還元を伴った冷鉄源の溶解方法を提供することを目的とする。さらに、製鋼スラグを還元して生成したPは、溶鉄に酸化処理を施して酸化物として回収し、リン酸肥料やリン酸原料として利用することをも目的とする。
The present invention reduces steelmaking slag in an electric furnace containing molten iron, reforming the steelmaking slag into a material that can be used for various purposes such as cement raw materials, earthwork materials, and ceramic products. When reducing and recovering valuable elements such as Mn and P in molten iron, and then recycling the molten iron from which Fe and Mn have been recovered to the steel manufacturing process, without using large-scale equipment as described in Patent Document 1, A method for melting a cold iron source accompanied by slag reduction, which does not require the provision of a shallow bottom part as described in
即ち、本発明の要旨とするところは以下のとおりである。
[1]種湯が収容された電気炉内に冷鉄源を装入し、冷鉄源の堆積部の上から溶融状態の製鋼スラグを装入し、直流または交流アーク加熱によって冷鉄源を部分溶解した後、溶融プールに還元剤として炭材を投入するとともに、成分組成としてSiO2とAl2O3の少なくとも一方を含むスラグ改質剤を投入して、スラグを還元すると共に溶解した溶鉄を加炭し、溶鉄を出湯孔から種湯を残して排出した後、還元スラグをスラグ排出口から排出することを特徴とするスラグ還元を伴った冷鉄源の溶解方法。
[2]前記製鋼スラグの装入は、前記電気炉の炉蓋を移動させるか、または炉蓋のスラグ投入口を開けることで形成する開口部を経由して行い、製鋼スラグを収容したスラグ鍋から直接または樋を介して装入するものとし、その際、装入する製鋼スラグは前記冷鉄源の堆積部の上、あるいは当該冷鉄源の堆積部の上にさらに堆積した固化した製鋼スラグの上に装入することを特徴とする[1]に記載のスラグ還元を伴った冷鉄源の溶解方法。
[3]前記還元剤およびスラグ改質剤を、アーク加熱をしながら炉蓋上に設けた原料投入管を通して供給することを特徴とする[1]又は[2]記載のスラグ還元を伴った冷鉄源の溶解方法。
[4]スラグの還元中はランスをスラグ層内に挿入し、前記ランスを経由して攪拌ガスを吹いてスラグ内攪拌を行い、通電終了後は、溶鉄層内で底吹きまたはランスからガス攪拌することを特徴とする[1]~[3]のいずれか1つに記載のスラグ還元を伴った冷鉄源の溶解方法。
[5]前記還元剤、スラグ改質剤とともに、リン酸を含む廃棄物と高リン鉄鉱石の一方又は両方を、原料投入管を通じて投入することを特徴とする[1]~[4]のいずれか1つに記載のスラグ還元を伴った冷鉄源の溶解方法。
That is, the gist of the present invention is as follows.
[1] A cold iron source is charged into an electric furnace containing seed hot water, molten steelmaking slag is charged from above the pile of cold iron source, and cold iron is heated by direct current or alternating current arc heating. After partially melting the slag, a carbonaceous material is introduced into the molten pool as a reducing agent, and a slag modifier containing at least one of SiO 2 and Al 2 O 3 is introduced to reduce and dissolve the slag. A method for melting a cold iron source accompanied by slag reduction, characterized in that the molten iron is carburized, the molten iron is discharged from a tap hole leaving a seed metal, and the reduced slag is discharged from a slag discharge port.
[2] The steelmaking slag is charged through an opening formed by moving the furnace lid of the electric furnace or opening the slag inlet of the furnace lid, and the steelmaking slag is charged into a slag pot containing the steelmaking slag. In this case, the steelmaking slag to be charged is the solidified steelmaking slag that has been further deposited on the pile of the cold iron source or on the pile of the cold iron source. The method for melting a cold iron source accompanied by slag reduction according to [1], characterized in that the melting method is performed by charging the source above the slag.
[3] The cooling with slag reduction described in [1] or [2], characterized in that the reducing agent and the slag modifier are supplied through a raw material input pipe provided on the furnace lid while being arc heated. How to dissolve iron sources.
[4] During slag reduction, a lance is inserted into the slag layer, and stirring gas is blown through the lance to stir the slag. After energization, the molten iron layer is blown from the bottom or gas is stirred from the lance. The method for melting a cold iron source accompanied by slag reduction according to any one of [1] to [3].
[5] Any one of [1] to [4], characterized in that, together with the reducing agent and the slag modifier, one or both of waste containing phosphoric acid and high-phosphate iron ore is input through a raw material input pipe. A method for melting a cold iron source accompanied by slag reduction according to item 1.
本発明は、溶鉄を収容する電気炉において製鋼スラグの還元処理を行い、製鋼スラグを、セメント原料、土工材料、セラミック製品等の種々の用途に使用可能な材料に改質するとともに、製鋼スラグ中のFe、P等の有価元素を溶鉄中に還元回収し、その後、Fe分を回収した溶鉄を製鉄プロセスへリサイクルするに際し、種湯が収容された電気炉内に冷鉄源を装入し、冷鉄源の堆積部の上から溶融状態または高温固化した製鋼スラグを装入することにより、設備の規模を大きくすることなく、また炉内容積を減少させることもなく、処理を行うことが可能となる。 The present invention reduces steelmaking slag in an electric furnace containing molten iron, reforming the steelmaking slag into a material that can be used for various purposes such as cement raw materials, earthwork materials, and ceramic products. Valuable elements such as Fe and P are reduced and recovered in molten iron, and then when the molten iron with recovered Fe content is recycled to the steelmaking process, a cold iron source is charged into an electric furnace containing a seed bath, By charging molten steelmaking slag or high-temperature solidified steelmaking slag from above the pile of cold iron sources, processing can be carried out without increasing the scale of the equipment or reducing the internal volume of the furnace. becomes.
以下、図面を参照して本発明に好適な実施形態について詳細に説明する。
まず、本発明の電気炉を使用して行う、スラグ還元を伴った冷鉄源の溶解方法の概要を説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
First, an outline of a method for melting a cold iron source accompanied by slag reduction using the electric furnace of the present invention will be explained.
製銑工程で高炉を用いて溶銑が製造され、製鋼工程で転炉等を用いて銑鉄が鋼に精錬される。この製鋼工程は、溶銑中の硫黄、リン、炭素等を除去する脱硫、脱リン、脱炭の各工程と、溶鋼中に残った水素等の気体や硫黄等を除去して成分調整を行う二次精錬工程と、連続鋳造機で溶鋼を鋳造する鋳造工程とを含む。 In the pig iron making process, hot metal is produced using a blast furnace, and in the steel making process, pig iron is refined into steel using a converter or the like. This steelmaking process consists of two steps: desulfurization, dephosphorization, and decarburization, which remove sulfur, phosphorus, carbon, etc. from the molten metal, and composition adjustment by removing gases such as hydrogen and sulfur remaining in the molten steel. It includes a subsequent refining process and a casting process in which molten steel is cast using a continuous casting machine.
製鋼工程のうち、主に脱リン、脱炭が転炉にて行われる。転炉内で、酸化カルシウムを主成分とするフラックスを用いて溶銑が精錬される。この際、転炉内に吹き込まれた酸素により溶銑中のC、Si、P、Mn等が酸化され、当該酸化物は酸化カルシウムと結び付きスラグになる。また、脱硫、脱リン、脱炭の各工程では、それぞれ成分の異なるスラグ(脱硫スラグ、脱リンスラグ、脱炭スラグ)が生成される。連続鋳造が完了した取鍋内に残存するスラグは、取鍋スラグと呼ばれる。 In the steelmaking process, dephosphorization and decarburization are mainly performed in converters. Inside the converter, hot metal is refined using a flux whose main component is calcium oxide. At this time, C, Si, P, Mn, etc. in the hot metal are oxidized by the oxygen blown into the converter, and the oxides combine with calcium oxide to become slag. Furthermore, in each of the desulfurization, dephosphorization, and decarburization steps, slags having different components (desulfurization slag, dephosphorization slag, and decarburization slag) are generated. The slag remaining in the ladle after continuous casting is called ladle slag.
本発明で製鋼スラグとは、製鋼工程で生成されるスラグの総称であり、当該製鋼スラグは、脱硫スラグ、脱リンスラグ、脱炭スラグ、取鍋スラグを含む概念である。また、高温の溶融状態にある製鋼スラグを溶融スラグと称し、同様に、溶融状態にある脱硫スラグ、脱炭スラグ、脱リンスラグをそれぞれ、溶融脱硫スラグ、溶融脱リンスラグ、溶融脱炭スラグと称する。 In the present invention, steelmaking slag is a general term for slag generated in a steelmaking process, and the steelmaking slag is a concept that includes desulfurization slag, dephosphorization slag, decarburization slag, and ladle slag. Further, steelmaking slag in a high temperature molten state is referred to as molten slag, and similarly, desulfurization slag, decarburization slag, and dephosphorization slag in molten state are respectively referred to as molten desulfurization slag, molten dephosphorization slag, and molten decarburization slag.
スラグ処理工程では、上記製鋼工程で生成された製鋼スラグを、溶融状態のままで転炉から電気炉に搬送し、電気炉内に装入した製鋼スラグを連続的に還元溶融改質することで、溶融スラグ中の有価物(Fe、P等の有価元素)を溶融スラグ層の下層である溶鉄層に回収する。 In the slag treatment process, the steelmaking slag produced in the above steelmaking process is transported in its molten state from the converter to the electric furnace, and the steelmaking slag charged into the electric furnace is continuously reduced, melted, and reformed. , Valuables (valuable elements such as Fe and P) in the molten slag are recovered to the molten iron layer which is the lower layer of the molten slag layer.
従来、電気炉内に予め溶鉄浴を形成し、この溶鉄浴の上から溶融した製鋼スラグを添加し、溶融プールに還元剤として炭材を投入して、スラグの還元溶融改質処理が行われていた。この際、スラグ投入時のスラグフォーミングを抑制することが重要である。このため前述のように、特許文献1においては、電気炉内の溶鉄層上に還元された溶融スラグ層を緩衝帯として形成した上で、注入量を調整しながら、溶融スラグを徐々に注入する手段を採用している。また、特許文献2では、電気炉の炉底部に浅底部を有し、スラグは搬送容器から溶融スラグを浅底部に向けて投入することを特徴とする。
Conventionally, a molten iron bath is formed in advance in an electric furnace, molten steelmaking slag is added to the molten iron bath, and carbonaceous material is introduced into the molten pool as a reducing agent to perform slag reduction melting and reforming treatment. was. At this time, it is important to suppress slag forming when slag is introduced. For this reason, as mentioned above, in Patent Document 1, a reduced molten slag layer is formed as a buffer zone on a molten iron layer in an electric furnace, and then molten slag is gradually injected while adjusting the injection amount. means are adopted. Furthermore,
ところで、電気炉においては、鉄スクラップ、型銑、還元鉄等の冷鉄源を電気炉内に装入し、アーク加熱によって溶解して溶鉄を形成している。冷鉄源の溶解促進のため、電気炉内には種湯が形成され、種湯及び溶解が進行した溶鉄中の炭素濃度を高めることにより、冷鉄源の溶解が促進される。冷鉄源を電気炉内に装入した後の溶解初期においては、電気炉の底部に種湯が貯留し、冷鉄源が山積みで堆積部を形成している。 By the way, in an electric furnace, a cold iron source such as iron scrap, pig iron, reduced iron, etc. is charged into the electric furnace and melted by arc heating to form molten iron. In order to promote dissolution of the cold iron source, a seed bath is formed in the electric furnace, and by increasing the carbon concentration in the seed bath and the melted molten iron, the melting of the cold iron source is promoted. In the early stage of melting after the cold iron source is charged into the electric furnace, seed hot water is stored at the bottom of the electric furnace, and the cold iron source is piled up to form a deposited area.
本発明においては、冷鉄源が電気炉内に装入されて冷鉄源の堆積部が形成されている段階で、溶融した製鋼スラグを冷鉄源の堆積部の上から注ぎ込むことにより、溶融スラグと溶鉄との攪拌を抑制し、結果としてスラグのフォーミングを抑制することを着想した。
そして図1、図4に示すように、種湯28が収容された電気炉1内に冷鉄源23を装入し、冷鉄源23の堆積部の上から溶融状態または高温固化した製鋼スラグ24を装入し、直流または交流アーク加熱によって冷鉄源23を部分溶解した後、図2、図5に示すように、溶融プールに還元剤として炭材26を投入することにより、スラグフォーミングが抑制され、スラグの還元溶融改質が良好に進行することを見いだした。この際、電気炉内では、スラグ改質剤27の投入によってスラグの塩基度の調整処理などが行われ、溶融スラグ中のFe、P等の酸化物の還元や、スラグから粒鉄(鉄分)の分離が進行する。スラグが投入される直下に形成された冷鉄源23の堆積厚さが十分ではない場合、固化スラグ25を投入し、冷鉄源23堆積部の上に固化スラグ25を堆積させ、製鋼スラグを山積み状態の固化スラグ25及び未溶解冷鉄源23の上に装入することとしても良い(図4参照)。
In the present invention, when a cold iron source is charged into an electric furnace and a cold iron source pile is formed, molten steelmaking slag is poured over the cold iron source pile. The idea was to suppress the stirring of slag and molten iron, and as a result, suppress the forming of slag.
As shown in FIGS. 1 and 4, the
電気炉内に装入する冷鉄源としては、鉄スクラップ、型銑、還元鉄等を用いることができる。電気炉に冷鉄源を予熱する予熱炉を併設し、予熱炉で予熱した冷鉄源を電気炉内に装入することとすると好ましい。予熱炉としては、図4に示すように、電気炉の上部に直結するシャフト型の予熱炉7を具備し、電気炉内で発生する排ガスを予熱炉に導入して予熱炉7内の冷鉄源を予熱することができる。
As the cold iron source charged into the electric furnace, iron scrap, shaped pig iron, reduced iron, etc. can be used. It is preferable that the electric furnace is provided with a preheating furnace for preheating the cold iron source, and the cold iron source preheated in the preheating furnace is charged into the electric furnace. As shown in FIG. 4, the preheating furnace is equipped with a shaft-
電気炉内に装入する製鋼スラグとしては、溶融状態にある製鋼スラグ、または高温固化した製鋼スラグを用いることができる。 As the steelmaking slag charged into the electric furnace, steelmaking slag in a molten state or steelmaking slag solidified at a high temperature can be used.
還元剤及び加炭材として用いる炭材には、コークス、石炭などを用いることができる。炭材を添加することにより、スラグ層中Fe、P等の酸化物の還元反応を進行させ、また溶鉄層に加炭して溶鉄の炭素濃度を上昇させる。溶鉄の炭素濃度を1質量%以上とすれば、溶鉄をそのまま、あるいは溶鉄の脱リン処理を行った上で、高炉溶銑と混合して転炉装入主原料とすることができる。 Coke, coal, etc. can be used as the carbon material used as the reducing agent and carburizer. By adding the carbonaceous material, the reduction reaction of oxides such as Fe and P in the slag layer proceeds, and the molten iron layer is carburized to increase the carbon concentration of the molten iron. When the carbon concentration of the molten iron is 1% by mass or more, the molten iron can be used as it is, or after dephosphorizing the molten iron, it can be mixed with blast furnace hot metal and used as the main raw material charged in the converter.
電気炉内に装入する製鋼スラグは、塩基度(CaO/SiO2質量比)が高い高塩基度スラグであり、そのままでは融点が高いので溶解しづらい。また、スラグ中のP成分を還元して溶鉄層中に移行するためには、スラグの塩基度が低い方が好ましい。そこで本発明では、電気炉内にはさらに、成分組成としてSiO2とAl2O3の少なくとも一方を含むスラグ改質剤を投入する。製鋼スラグとスラグ改質剤が混合することにより、スラグの塩基度が低下し、Al2O3濃度が増大し、結果として混合後のスラグの融点を低下させることができ、製鋼スラグの溶解とスラグ還元を速やかに進行させることが可能となる。スラグ改質剤添加後のスラグ成分として、塩基度が0.8~1.3、Al2O3が8~13質量%の範囲とすれば好適である。 The steelmaking slag charged into the electric furnace is a high basicity slag with high basicity (CaO/SiO 2 mass ratio), and is difficult to melt as it is because of its high melting point. Furthermore, in order to reduce the P component in the slag and transfer it into the molten iron layer, it is preferable that the basicity of the slag is low. Therefore, in the present invention, a slag modifier containing at least one of SiO 2 and Al 2 O 3 is further introduced into the electric furnace. By mixing the steelmaking slag and the slag modifier, the basicity of the slag decreases, the Al 2 O 3 concentration increases, and as a result, the melting point of the slag after mixing can be lowered, which improves the dissolution of the steelmaking slag. It becomes possible to proceed with slag reduction quickly. It is preferable that the slag component after addition of the slag modifier has a basicity of 0.8 to 1.3 and an Al 2 O 3 content of 8 to 13% by mass.
スラグ改質剤中のSiO2濃度、Al2O3濃度、スラグ改質剤の添加量(装入する製鋼スラグに対する比率)の好適範囲については、装入する製鋼スラグの成分によっても変動する。製鋼スラグとスラグ改質剤が混合した後において、スラグの塩基度が1.3以下、Al2O3濃度が8質量%以上となれば良い。例えば、SiO2濃度99質量%の珪砂、Al2O3濃度83質量%のレンガ屑、およびSiO2濃度59質量%、Al2O3濃度23質量%のフライアッシュを適切に配合することにより、スラグ組成を最適範囲に調整し、スラグ溶解を好適に促進させることができる。スラグ改質剤としては、フライアッシュ、珪砂、レンガ屑の他に、下水汚泥灰、アルミドロス、等を用いることができる。 The preferred ranges of the SiO 2 concentration, Al 2 O 3 concentration in the slag modifier, and the amount of the slag modifier added (ratio to the steelmaking slag to be charged) vary depending on the components of the steelmaking slag to be charged. After the steelmaking slag and the slag modifier are mixed, it is sufficient that the basicity of the slag is 1.3 or less and the Al 2 O 3 concentration is 8% by mass or more. For example, by appropriately blending silica sand with a SiO2 concentration of 99% by mass, brick waste with an Al2O3 concentration of 83% by mass, and fly ash with a SiO2 concentration of 59% by mass and an Al2O3 concentration of 23% by mass , By adjusting the slag composition to an optimum range, slag dissolution can be suitably promoted. As the slag modifier, in addition to fly ash, silica sand, and brick waste, sewage sludge ash, aluminum dross, and the like can be used.
この結果、溶融スラグから分離されたリン分等を含む高リン溶鉄が回収されるとともに、製鋼スラグである溶融スラグが還元・改質されて、高炉スラグ相当の高品質の還元スラグが回収される。この還元スラグは、還元前と比べてFeO、P2O5等の含有量が低いため、セメント原料、セラミック製品等にリサイクルできる。また、溶融スラグの塩基度が低くなるように成分を調整すれば低膨張性となるため、路盤材や骨材、石材として使用できる。 As a result, high-phosphorus molten iron containing phosphorus separated from molten slag is recovered, and the molten slag, which is steelmaking slag, is reduced and reformed to recover high-quality reduced slag equivalent to blast furnace slag. . This reduced slag has a lower content of FeO, P 2 O 5 , etc. than before reduction, so it can be recycled into cement raw materials, ceramic products, etc. Furthermore, if the components of the molten slag are adjusted so that its basicity is low, it will have low expansion properties, so it can be used as a roadbed material, aggregate, or stone.
さらに、上記回収された高リン溶鉄に対して脱リン処理を施して、溶鉄中のPを酸化させてスラグ中に移行させることで、高リン溶鉄が高リン酸スラグと溶鉄(低リン溶銑)とに分離される。高リン酸スラグは、リン酸肥料やリン酸原料等として製品化することができる。また、溶鉄(低リン溶銑)は、製鋼工程にリサイクルされ、高炉溶銑と混合した上で転炉等に投入される。 Furthermore, by dephosphorizing the recovered high-phosphorus molten iron and oxidizing the P in the molten iron and transferring it to the slag, the high-phosphorus molten iron becomes high-phosphate slag and molten iron (low-phosphorus hot metal). It is separated into High phosphate slag can be commercialized as phosphate fertilizer, phosphate raw material, etc. Furthermore, molten iron (low-phosphorus hot metal) is recycled into the steelmaking process, mixed with blast furnace hot metal, and then fed into a converter or the like.
以上、本実施形態に係るスラグ処理プロセスの概要について説明した。本プロセスは、上記製鋼工程で生成される種々の製鋼スラグのうち、溶融脱リンスラグを処理対象とすることが好ましい。溶融脱リンスラグは、溶融脱炭スラグよりも低温であるが、粒鉄やリン酸を多く含有しており、また一般に低塩基度である。このため、溶融脱リンスラグを、酸化処理ではなく、還元処理によって溶融改質することで、本プロセスによる有価元素(Fe、P等)の回収効率が高くなる、また低塩基度化のための改質剤を削減できるため必要エネルギーの低減にもつながる。そこで、以下の説明では、処理対象の溶融スラグとして、主に溶融脱リンスラグを用いる例について説明する。しかし、本発明の溶融した製鋼スラグとしては、溶融脱リンスラグに限定されず、溶融脱硫スラグ、溶融脱炭スラグ等、製鋼工程で発生する任意の製鋼スラグを使用することが可能である。 The outline of the slag treatment process according to this embodiment has been described above. This process preferably targets molten dephosphorization slag among the various steelmaking slags produced in the steelmaking process. Molten dephosphorization slag has a lower temperature than molten decarburization slag, but contains more granulated iron and phosphoric acid, and generally has a lower basicity. Therefore, by melting and reforming the molten dephosphorization slag through reduction treatment rather than oxidation treatment, the recovery efficiency of valuable elements (Fe, P, etc.) in this process can be increased, and the modification to lower basicity can be achieved. It also reduces the amount of energy required because it reduces the amount of material used. Therefore, in the following description, an example in which molten dephosphorization slag is mainly used as the molten slag to be treated will be described. However, the molten steelmaking slag of the present invention is not limited to molten dephosphorization slag, and any steelmaking slag generated in the steelmaking process, such as molten desulfurization slag and molten decarburization slag, can be used.
電気炉で還元することにより、スラグの上熱が有利に働き、スラグ中に還元剤を懸濁させることによって、スラグメタル間のCO反応を抑制し、スラグフォーミングを抑制することができる。 By reducing in an electric furnace, the upper heat of the slag works advantageously, and by suspending the reducing agent in the slag, it is possible to suppress the CO reaction between the slag metals and suppress slag foaming.
本発明で用いる電気炉として、据置式の直流電流炉、傾動式の直流電流炉、交流電流炉のいずれを用いてもよい。図2、図4に示すように、電気炉1の炉蓋2を通して電極3が設けられており、電極3による加熱で、冷鉄源、製鋼スラグを加熱し、電気炉内に溶鉄層21、溶融したスラグ層22を形成する。
As the electric furnace used in the present invention, any of a stationary DC current furnace, a tilting DC current furnace, and an AC current furnace may be used. As shown in FIGS. 2 and 4, an
図1~図3に示す電気炉では、炉蓋にスラグ投入口が設けられておらず、電気炉1にスラグを装入するに際しては、炉蓋2を横に移動し、それによって形成された開口部を経由してスラグ鍋4から電気炉1内に製鋼スラグ24を装入する(図1参照)。
In the electric furnaces shown in FIGS. 1 to 3, the furnace lid is not provided with a slag inlet, and when charging slag into the electric furnace 1, the
図4、5に示す電気炉では、炉蓋2にスラグ投入口6が設置されている。炉蓋2のスラグ投入口6を開けることで形成する開口部を経由して電気炉内に製鋼スラグを装入する。図4に示す例では、樋5が設けられ、スラグ鍋4を傾転して製鋼スラグ24を樋5に流下し、樋5を経由してスラグ投入口6から電気炉1内に製鋼スラグ24が装入される。また図4、5に示す電気炉は、炉蓋2に予熱炉7が配置されている。冷鉄源ホッパー8から予熱炉7内に冷鉄源が供給され、電気炉排ガスの顕熱を利用し、予熱炉7内で冷鉄源を昇温する。電気炉1において、スラグ投入口6と予熱炉7の配置位置に関しては、図4に示す例では電気炉1の中心軸に対してスラグ投入口6と予熱炉7が互いに180°の位置に配置されているように作図している。好ましくは、電気炉1の中心軸に対してスラグ投入口6と予熱炉7が互いに90~120°の位置に配置されていると良い。
In the electric furnace shown in FIGS. 4 and 5, a
炉蓋2には、図2、図5に示すように、原料投入管9が配設されている。原料投入管9を経由して、炭材26、スラグ改質剤27を電気炉内に投入することができる。炭材26、スラグ改質剤27を顆粒状とし、アーク加熱をしながら原料投入管9から供給すると好ましい。電気炉内への空気の侵入による脱炭ロスを防ぐためには、できるだけ電気炉の密閉状態を維持し、非酸化性雰囲気での還元処理及び加炭を行うと好ましい。炭材の添加については、粉体の炭材をスラグ層に吹き込んで添加することとしても良い。
As shown in FIGS. 2 and 5, a raw
本発明で好ましくは、電気炉1内のスラグ層22あるいは溶鉄層21内にランス13を挿入し、ランス13先端から攪拌ガスを吹き込むことにより、スラグ層22あるいは溶鉄層21を攪拌することができる。ランス13は、電気炉1のスラグドア12を開放し、その開放部から炉内に挿入することができる(図3、図5参照)。
Preferably in the present invention, the
スラグの還元中において、アーク加熱でスラグを優先的に加熱し、スラグ内攪拌を促進させるためには、スラグ層内にガス吹込ランスを挿入してガス攪拌を行うとよい。図5に示す例では、スラグドア12を経由して挿入したランス13の先端がスラグ層22中に浸漬し、ランス13先端から不活性ガスを吹き込むことにより、スラグ層22の攪拌を行っている。
During reduction of the slag, in order to preferentially heat the slag by arc heating and promote stirring within the slag, a gas blowing lance may be inserted into the slag layer to stir the gas. In the example shown in FIG. 5, the tip of the
冷鉄源が完全に溶解し、溶鉄層中の炭素濃度が上昇するとともに温度が上昇した時点で通電を停止し、通電終了後、ランス13の先端を溶鉄層21内に浸漬してガス攪拌を行うことにより、スラグメタル温度の均一化を図ることができる。図3に示す例では、スラグドア12を経由して挿入したランス13の先端が溶鉄層21中に浸漬し、ランス13先端から不活性ガスを吹き込むことにより、溶鉄層21及びスラグ層22の攪拌を行っている。溶鉄層21内へのガスの吹き込みは、上記ランス浸漬に代えて、底吹きによってガスを吹き込んでも良い。
When the cold iron source is completely melted, the carbon concentration in the molten iron layer increases, and the temperature rises, the energization is stopped, and after the energization is finished, the tip of the
前記還元剤、スラグ改質剤とともに、リン酸を含む廃棄物と高リン鉄鉱石の一方又は両方を、原料投入管を通じて投入することができる。リン酸を含む廃棄物としては、下水処理等で発生するリン酸源も回収可能であり、そこに含まれるシリカ源はスラグ改質剤として利用できる。特に汚泥焼却灰を好ましく用いることができる。これにより、溶鉄中のP濃度を上昇し、次工程で溶鉄の脱リン処理を行い、脱リンスラグ中のP2O5濃度を増大し、リン酸肥料原料またはその他のリン製品原料としての価値を増すことができる。下水汚泥に含まれるCdやAs、Pbといった低沸点の有害元素は、高温のアークフレームによって気化除去され、溶銑や高リン酸スラグには残らないため、安全にリサイクルできる。
製鋼スラグの装入量を増やすことにより、溶鉄中のP濃度を上昇させることもできる。
Along with the reducing agent and slag modifier, one or both of waste containing phosphoric acid and high-phosphate iron ore can be input through the raw material input pipe. As waste containing phosphoric acid, phosphoric acid sources generated in sewage treatment etc. can also be recovered, and the silica source contained therein can be used as a slag modifier. In particular, sludge incineration ash can be preferably used. This increases the P concentration in the molten iron, dephosphorsizes the molten iron in the next process, increases the P 2 O 5 concentration in the dephosphorization slag, and increases its value as a raw material for phosphate fertilizers or other phosphorus products. can be increased. Harmful elements with low boiling points such as Cd, As, and Pb contained in sewage sludge are vaporized and removed by the high-temperature arc flame and do not remain in the hot metal or high-phosphate slag, so they can be safely recycled.
By increasing the amount of steelmaking slag charged, the P concentration in the molten iron can also be increased.
電気炉を用いた冷鉄源の溶解方法において、本発明を適用することにより、冷鉄源溶解時に新たなフラックスを投入する必要がなく、P2O5濃度の高い製鋼スラグで代用することができる。 By applying the present invention to a method for melting cold iron sources using an electric furnace, there is no need to introduce new flux when melting cold iron sources, and steelmaking slag with a high concentration of P 2 O 5 can be used instead. can.
高炉法で製造される鉄源は、鉄鉱石をコークスで還元して製造するため、CO2発生量が多い。そのため、地球温暖化対策の一環として、高炉法の比率を下げ、鉄スクラップを電気エネルギーで溶解する電気炉製鋼法の比率増大が求められている。一方、前述のように、電気炉で溶製した溶鋼を、転炉工場にて転炉で溶製した溶鋼とともに二次精錬、連続鋳造を行おうとすると、電気炉は通常転炉に比べてヒートサイズが小さく、転炉工場では既存の2次精錬、連鋳機とは取鍋容量が合致せず、時間的マッチングもうまくとれないため、転炉と併設することは難しい。また、電気炉鋼は、[N]やトランプエレメントが高く、転炉鋼でなければできない鋼種がある。 Iron sources produced using the blast furnace method are produced by reducing iron ore with coke, and therefore generate a large amount of CO2 . Therefore, as part of global warming countermeasures, there is a need to reduce the ratio of blast furnace steelmaking and increase the ratio of electric furnace steelmaking, which melts iron scrap using electrical energy. On the other hand, as mentioned above, when attempting to perform secondary refining and continuous casting of molten steel melted in an electric furnace together with the molten steel melted in a converter at a converter factory, the electric furnace heats up more than the normal converter. Due to its small size, the ladle capacity does not match the existing secondary refining and continuous casting machines at converter plants, and the timing cannot be matched well, so it is difficult to install it alongside a converter. In addition, electric furnace steel has high [N] and tramp elements, and there are steel types that can only be produced using converter steel.
それに対して本発明においては、電気炉で炭素濃度が1質量%以上の溶銑を溶製する。たとえ電気炉のヒートサイズが転炉のヒートサイズに比較して小さい場合でも、電気炉で製造した溶銑と高炉溶銑とを混合することにより、転炉のヒートサイズに合致させることができる。その結果、転炉を有する製鋼工場において、電気炉で溶銑を製造することが可能となる。また、電気炉で冷鉄源を溶解しても、そのあと高炉溶銑で稀釈し、転炉で吹錬することにより、トランプエレメント濃度および溶鋼窒素濃度を低減することができる。 In contrast, in the present invention, hot metal having a carbon concentration of 1% by mass or more is melted in an electric furnace. Even if the heat size of the electric furnace is smaller than the heat size of the converter, it can be made to match the heat size of the converter by mixing hot metal produced in the electric furnace and blast furnace hot metal. As a result, it becomes possible to produce hot metal in an electric furnace in a steelmaking factory that has a converter. Further, even if the cold iron source is melted in an electric furnace, the tramp element concentration and molten steel nitrogen concentration can be reduced by diluting it with blast furnace hot metal and blowing it in a converter.
[実施例1]
図1、図2に示すように、電気炉1の炉蓋2を外して鉄源を装入する電気炉を用いて、本発明を実施した。
[Example 1]
As shown in FIGS. 1 and 2, the present invention was carried out using an electric furnace in which the
種湯28として溶銑約40tの入った電気炉1(直流または交流電気炉)の炉蓋2をスライドして開け、装入バケット(図示せず)で800℃に予熱された冷鉄源60tを電気炉内に装入した。冷鉄源として鉄スクラップと型銑を用いた。図1に示すように、電気炉1内において、底部に種湯28の層が形成され、冷鉄源23が堆積部を形成している。
Slide open the
製鋼スラグ24として転炉で生成した溶融脱炭スラグまたは溶融脱リンスラグを用い、スラグ鍋4で搬送し、図1に示すように、スラグ鍋4を傾動することにより、電気炉1内に山積みされた冷鉄源23の上方から溶融状態のまま50tの製鋼スラグ24を装入した。装入された製鋼スラグは、温度:1350℃、成分組成がCaO:37.1%、SiO2:15.3%、T.Fe:21%、P2O5:3.2%であった。
Molten decarburization slag or molten dephosphorization slag produced in a converter is used as the
製鋼スラグ装入完了後、炉蓋2を閉めて電極3を降下し、50MWの出力でアーク加熱処理を開始した(図2参照)。
溶融プールができた段階で、図2に示すように、炉蓋2に設けた原料投入管9を経由して、炭材26としてコークス粉を上方からトータル7.5t、断続的に投入した。空気の侵入による脱炭ロスを防ぐためにできるだけ密閉状態を維持した。
途中、炉蓋を開けて60tの冷鉄源の追加装入を行った。
炭材26の添加と合わせて、スラグ改質剤27として珪砂7.0t、アルミナ主体のレンガ屑4.0tを添加した。スラグ改質剤27の全体平均組成は、SiO2:63質量%、Al2O3:30質量%であった。スラグ中の還元反応およびメタル層への浸炭促進のために、スラグドア12からランス13を炉内に挿入し、スラグ層内にランスを浸漬し、60Nm3/hで窒素ガス攪拌を行った(ランス13の配置について図5参照)。
After the steelmaking slag charging was completed, the
When the molten pool was formed, as shown in FIG. 2, a total of 7.5 tons of coke powder was intermittently introduced from above as carbonaceous material 26 via the raw
On the way, the furnace lid was opened and an additional 60 tons of cold iron source was charged.
In addition to the addition of the carbonaceous material 26, 7.0 tons of silica sand and 4.0 tons of brick scraps mainly consisting of alumina were added as the slag modifier 27. The overall average composition of the slag modifier 27 was 63% by mass of SiO 2 and 30% by mass of Al 2 O 3 . In order to promote the reduction reaction in the slag and the carburization of the metal layer, the
冷鉄源が完全に溶解し、溶銑[C]2%、温度1500℃を超えた時点で通電を停止し、図3に示すようにランス13先端を溶鉄層21内に浸漬して60Nm3/hの窒素ガス攪拌を行い、スラグメタル温度の均一化を図った。
When the cold iron source is completely melted, the hot metal [C] is 2%, and the temperature exceeds 1500°C, the electricity supply is stopped, and the tip of the
電気炉精錬完了後、電気炉を傾動して溶鉄層21を構成する溶銑を出湯孔11から取鍋(図示せず)に排出し、炉内に種湯約40tを残した。電気炉を反対側に傾動し、スラグドア12を開けてスラグ排出口とし、スラグ口から還元スラグを排出した。排出された溶銑量は133t、還元スラグは46tであった。メタル成分はC:2.1%、P:0.41%、Si:0.12%であった。スラグ成分は、T.Fe:1.0%、P2O5:0.31%、CaO:39.6%、SiO2:31.6%であった。
After the electric furnace refining was completed, the electric furnace was tilted to discharge the hot metal constituting the
取鍋に収容した溶銑は、酸素および酸化鉄の酸化剤と生石灰を含む脱リン剤で脱リン処理を行って、溶銑中のP:0.11%とした。脱リン処理後溶銑に高炉溶銑137tを加えて270tとし、転炉に装入した。脱リン処理で得られたスラグは6.1tで、スラグ成分は、T.Fe:12.5%、P2O5:15.1%で、冷却後、粉砕して肥料原料とした。 The hot metal contained in the ladle was subjected to dephosphorization treatment with a dephosphorization agent containing oxygen, an oxidizing agent of iron oxide, and quicklime, so that P in the hot metal was 0.11%. After the dephosphorization treatment, 137 tons of blast furnace hot metal was added to the hot metal to make 270 tons, and the mixture was charged into a converter. The amount of slag obtained from the dephosphorization treatment was 6.1 tons, and the slag components were T. Fe: 12.5%, P 2 O 5 : 15.1%, and after cooling, it was pulverized to obtain a fertilizer raw material.
[実施例2]
図4、図5に示すように、予熱炉7を併設し、予熱炉7から冷鉄源を装入する電気炉1を用いて、本発明を実施した。冷鉄源として鉄スクラップを用いた。炉蓋2には、電気炉1の中心軸に対して予熱炉7から120°の位置に、スラグ投入口6が配置されている。また、スラグ鍋4から流出した溶融スラグをスラグ投入口6に導くための樋5が設けられている。
[Example 2]
As shown in FIGS. 4 and 5, the present invention was carried out using an electric furnace 1 equipped with a preheating
冷鉄源ホッパー8から予熱炉7に冷鉄源を投入し、予熱炉7で冷鉄源23を約800℃に昇温した後、断続的に冷鉄源23を電気炉1内に払い出した。次いで、スラグ投入口6の蓋をあけた。スラグ投入口6の直下に形成された冷鉄源23の堆積厚さが若干薄かったので、スラグ投入口6から固化した製鋼スラグ(固化スラグ25)を20t投入し、冷鉄源23堆積部の上に固化スラグ25を堆積させた。次いで、スラグ鍋4から、樋5を経由して溶融した30tの製鋼スラグ24をスラグ投入口6から炉内に注入し、直下の山積み状態の固化スラグ25及び未溶解冷鉄源23の上に全量装入した。その際、スラグの還元反応を抑制するため、通電は中止した。装入された製鋼スラグは、温度:1350℃、成分組成がCaO:37.1%、SiO2:15.3%、T.Fe:21%、P2O5:3.2%であった。
The
スラグ装入完了後、スラグ投入口6を閉めて電極3を降下し、50MWの出力でアーク加熱処理を開始した。
溶融プールができた段階で、図5に示すように、炉蓋2に設けた原料投入管9を経由して、炭材26としてコークス粉を上方からトータル7.5t、断続的に投入した。空気の侵入による脱炭ロスを防止するため、できるだけ密閉状態を維持した。
炭材26添加と合わせて、スラグ改質剤27として珪砂7.0t、アルミナ主体のレンガ屑4.0tを添加した。スラグ改質剤27の全体平均組成は、SiO2:63質量%、Al2O3:30質量%であった。スラグ層中の還元反応および溶鉄層への浸炭促進のために、スラグドア12からランス13を炉内に挿入し、図5に示すように、ランス13先端からスラグ層22内に、60Nm3/hで窒素ガスを吹込み、攪拌を行った。
After the slag charging was completed, the
When the molten pool was formed, as shown in FIG. 5, a total of 7.5 tons of coke powder was intermittently introduced from above as carbonaceous material 26 via the raw
In addition to the addition of the carbonaceous material 26, 7.0 tons of silica sand and 4.0 tons of brick scraps mainly consisting of alumina were added as the slag modifier 27. The overall average composition of the slag modifier 27 was 63% by mass of SiO 2 and 30% by mass of Al 2 O 3 . In order to promote the reduction reaction in the slag layer and the carburization of the molten iron layer, the
装入した120tの冷鉄源が完全に溶解し、溶鉄層21のC:2%、温度1500℃を超えた時点で通電を停止した。ランス13の先端が溶鉄層21内に浸漬する位置までランス13を下降し(図3を参照)、60Nm3/hの窒素ガス吹込み攪拌を行い、スラグメタル温度の均一化を図った。
When the charged cold iron source of 120 t was completely melted and the C content of the
電気炉精錬完了後、電気炉を傾動して溶鉄層21を構成する溶銑を出湯孔11から取鍋(図示せず)に排出し、炉内に種湯約40tを残した。電気炉を反対側に傾動し、スラグドア12を開け、スラグ口から還元スラグを排出した。排出された溶銑量は133t、還元スラグは52tであった。メタル成分はC:2.1%、P:0.41%、Si:0.12%であった。スラグ成分は、T.Fe:1.0%、P2O5:0.31%、CaO:39.6%、SiO2:31.6%であった。
After the electric furnace refining was completed, the electric furnace was tilted to discharge the hot metal constituting the
取鍋に収容した溶銑は、酸素および酸化鉄の酸化剤と生石灰を含む脱リン剤で脱リン処理を行って、溶銑中のP:0.11%とした。脱リン処理後溶銑に高炉溶銑137tを加えて270tとし、転炉に装入した。脱リンで得られたスラグは6.1tで、スラグ成分は、T.Fe:12.5%、P2O5:15.1%で、冷却後、粉砕して肥料原料とした。 The hot metal contained in the ladle was subjected to dephosphorization treatment with a dephosphorization agent containing oxygen, an oxidizing agent of iron oxide, and quicklime, so that P in the hot metal was 0.11%. After the dephosphorization treatment, 137 tons of blast furnace hot metal was added to the hot metal to make 270 tons, and the mixture was charged into a converter. The slag obtained by dephosphorization weighed 6.1 tons, and the slag components were T. Fe: 12.5%, P 2 O 5 : 15.1%, and after cooling, it was pulverized to obtain a fertilizer raw material.
1 電気炉
2 炉蓋
3 電極
4 スラグ鍋
5 樋
6 スラグ投入口
7 予熱炉
8 冷鉄源ホッパー
9 原料投入管
11 出湯孔
12 スラグドア
13 ランス
21 溶鉄層
22 スラグ層
23 冷鉄源
24 製鋼スラグ
25 固化スラグ
26 炭材
27 スラグ改質剤
28 種湯
1
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020031243A JP7364899B2 (en) | 2020-02-27 | 2020-02-27 | Melting method of cold iron source with slag reduction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020031243A JP7364899B2 (en) | 2020-02-27 | 2020-02-27 | Melting method of cold iron source with slag reduction |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021134386A JP2021134386A (en) | 2021-09-13 |
JP7364899B2 true JP7364899B2 (en) | 2023-10-19 |
Family
ID=77660469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020031243A Active JP7364899B2 (en) | 2020-02-27 | 2020-02-27 | Melting method of cold iron source with slag reduction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7364899B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117858968A (en) | 2021-09-30 | 2024-04-09 | 日本制铁株式会社 | Method for producing molten iron |
CN115029487A (en) * | 2022-06-24 | 2022-09-09 | 北京崎基环保科技有限公司 | Mobile steel slag reduction modification system and treatment method |
CN115852078A (en) * | 2022-12-09 | 2023-03-28 | 射日能源贸易有限公司 | Submerged arc furnace equipment and method for reducing iron by using hydrogen |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009114023A (en) | 2007-11-06 | 2009-05-28 | Nippon Steel Corp | Method of treating steelmaking slag |
JP2011006301A (en) | 2009-06-26 | 2011-01-13 | Nippon Steel Corp | Method for treating steelmaking slag and reformed slag |
JP2011084811A (en) | 2009-09-15 | 2011-04-28 | Jfe Steel Corp | Method for producing molten pig iron |
JP2012092435A (en) | 2010-09-29 | 2012-05-17 | Jfe Steel Corp | Steelmaking method using iron scrap |
JP2014521830A (en) | 2011-11-29 | 2014-08-28 | ヒュンダイ スチール カンパニー | Equipment for recovering valuable metals using slag and producing multifunctional aggregates |
WO2015012354A1 (en) | 2013-07-24 | 2015-01-29 | 新日鐵住金株式会社 | Exhaust gas treatment method and exhaust gas treatment device |
JP2019151535A (en) | 2018-03-06 | 2019-09-12 | 日本製鉄株式会社 | Method of producing phosphate slag fertilizer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5687614A (en) * | 1979-12-14 | 1981-07-16 | Nippon Steel Corp | Stable desiliconization operating method |
-
2020
- 2020-02-27 JP JP2020031243A patent/JP7364899B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009114023A (en) | 2007-11-06 | 2009-05-28 | Nippon Steel Corp | Method of treating steelmaking slag |
JP2011006301A (en) | 2009-06-26 | 2011-01-13 | Nippon Steel Corp | Method for treating steelmaking slag and reformed slag |
JP2011084811A (en) | 2009-09-15 | 2011-04-28 | Jfe Steel Corp | Method for producing molten pig iron |
JP2012092435A (en) | 2010-09-29 | 2012-05-17 | Jfe Steel Corp | Steelmaking method using iron scrap |
JP2014521830A (en) | 2011-11-29 | 2014-08-28 | ヒュンダイ スチール カンパニー | Equipment for recovering valuable metals using slag and producing multifunctional aggregates |
WO2015012354A1 (en) | 2013-07-24 | 2015-01-29 | 新日鐵住金株式会社 | Exhaust gas treatment method and exhaust gas treatment device |
JP2019151535A (en) | 2018-03-06 | 2019-09-12 | 日本製鉄株式会社 | Method of producing phosphate slag fertilizer |
Also Published As
Publication number | Publication date |
---|---|
JP2021134386A (en) | 2021-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101560512B1 (en) | Steel slag reduction method | |
JP7364899B2 (en) | Melting method of cold iron source with slag reduction | |
JP5954551B2 (en) | Converter steelmaking | |
JP6164151B2 (en) | Method for refining molten iron using a converter-type refining furnace | |
WO2018110174A1 (en) | Electric furnace | |
JP5236926B2 (en) | Manufacturing method of molten steel | |
KR100266826B1 (en) | The steel making process and plant | |
WO2018110171A1 (en) | Electric furnace | |
JP2010265485A (en) | Method for operating arc-furnace | |
CA2398344C (en) | Method for treating slags or slag mixtures on an iron bath | |
JP5909957B2 (en) | Steel making method using steel scrap | |
JP5589688B2 (en) | Hot metal production method | |
ZA200109971B (en) | Method for conditioning slag with the addition of metallurgical residual materials and an installation for the same. | |
JP5625654B2 (en) | Hot metal production method | |
JP5581760B2 (en) | Method for removing copper in steel scrap and method for producing molten steel using steel scrap as an iron source | |
JP2019151535A (en) | Method of producing phosphate slag fertilizer | |
JP4762420B2 (en) | Method of smelting reduction of iron oxide using a rotary kiln | |
JP4112989B2 (en) | Operation method of heating storage furnace | |
JP7518455B2 (en) | Molten iron production method | |
RU2813429C1 (en) | Method of producing liquid cast iron from dri-product | |
JP4581136B2 (en) | Method for smelting reduction of iron oxide | |
JP6947024B2 (en) | Hot metal desulfurization method | |
RU2201970C2 (en) | Method of making steel in high-power electric arc furnaces | |
JP3121894B2 (en) | Metal melting furnace | |
JPH02209410A (en) | Method for melting scrap in molten iron pre-treating furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230918 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7364899 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |