JP2010265485A - Method for operating arc-furnace - Google Patents

Method for operating arc-furnace Download PDF

Info

Publication number
JP2010265485A
JP2010265485A JP2009115069A JP2009115069A JP2010265485A JP 2010265485 A JP2010265485 A JP 2010265485A JP 2009115069 A JP2009115069 A JP 2009115069A JP 2009115069 A JP2009115069 A JP 2009115069A JP 2010265485 A JP2010265485 A JP 2010265485A
Authority
JP
Japan
Prior art keywords
melting chamber
chamber
iron source
molten metal
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009115069A
Other languages
Japanese (ja)
Other versions
JP5552754B2 (en
Inventor
Sumihito Ozawa
純仁 小澤
Hidekazu Tsuruta
秀和 鶴田
Minoru Asanuma
稔 浅沼
Teruo Fujibayashi
晃夫 藤林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009115069A priority Critical patent/JP5552754B2/en
Publication of JP2010265485A publication Critical patent/JP2010265485A/en
Application granted granted Critical
Publication of JP5552754B2 publication Critical patent/JP5552754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating an arc-furnace by which electric power consumption can be reduced and operational time can be shortened by efficiently melting cold-iron source in the case of producing molten metal by using the cold-iron source. <P>SOLUTION: In the method for operating the arc-furnace, the arc-furnace 1, which comprises a melting chamber 2 and a shaft-type pre-heating chamber 3 directly connected to the upper part of the melting chamber 2, and pre-heats the cold-iron source 15 in the pre-heating chamber 3 by introducing waste gas generated in the melting chamber 2 into the pre-heating chamber 3, is used. When the cold-iron source 15 is melted by being heated with the arc in the melting chamber 2 while supplying the cold-iron source 15 into the pre-heating chamber 3 so that the cold-iron source 15 holds the existing state in the pre-heating chamber 3 and the melting chamber 2, carbon-concentration of the molten iron tapped off from the arc-furnace 1, is defined as ≥1 mass%. It is desirable that carbonaceous material is added in the melting chamber 2 and, the carbonaceous material to be added into the melting chamber 2 is derived from biomass. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉄スクラップ、直接還元鉄、冷銑等の冷鉄源をアーク炉により溶解するアーク炉の操業方法に関するものである。   The present invention relates to a method for operating an arc furnace in which a cold iron source such as iron scrap, directly reduced iron, and cold iron is melted by an arc furnace.

製鋼用アーク炉では、アーク熱にて鉄スクラップ等の鉄源を加熱・溶解し、その後炉内で精錬して溶鋼を製造するが、多くの電力を消費するため、溶解中にアーク炉の溶解室から発生する高温の排ガスを利用して鉄スクラップを予熱し、予熱した鉄スクラップを溶解することで電力使用量を削減する方法が多数提案されている。   In an arc furnace for steelmaking, an iron source such as iron scrap is heated and melted with arc heat, and then refined in the furnace to produce molten steel. However, since much electric power is consumed, the arc furnace melts during melting. Many methods have been proposed for preheating iron scrap using high-temperature exhaust gas generated from a room and melting the preheated iron scrap to reduce power consumption.

その代表的なものが、特許文献1に開示されるように、溶解室と、溶解室に直結し、溶解室で発生する排ガスが導入されるシャフト型の予熱室と、を具備したアーク炉を用い、鉄スクラップが予熱室と溶解室とに連続して存在する状態を保つように、鉄スクラップを連続的又は断続的に予熱室へ装入しながら、溶解室の鉄スクラップをアークにて加熱して鉄スクラップを溶解し、溶解室に少なくとも1ヒート分の溶湯が溜まった時点で、鉄スクラップが予熱室と溶解室とに連続して存在する状態で溶湯を出湯するアーク炉でのスクラップ溶解方法である。尚、「1ヒート分の溶鋼」とは、連続鋳造等の鋳造作業に用いる取鍋等の溶鋼保持搬送容器の1つの容器に収容される溶鋼量であり、これは鋳造作業を実施する建物のクレーン等の吊り上げ荷重から決まる量である。   As disclosed in Patent Document 1, an arc furnace having a melting chamber and a shaft-type preheating chamber that is directly connected to the melting chamber and into which exhaust gas generated in the melting chamber is introduced is disclosed. Used to heat the iron scrap in the melting chamber with an arc while continuously or intermittently charging the iron scrap into the preheating chamber so that the iron scrap is continuously present in the preheating chamber and the melting chamber. When the iron scrap is melted and at least one heat of molten metal has accumulated in the melting chamber, scrap melting in an arc furnace that discharges the molten metal in a state where the iron scrap is continuously present in the preheating chamber and the melting chamber Is the method. Note that the “molten steel for one heat” is the amount of molten steel accommodated in one container of a molten steel holding and conveying container such as a ladle used for casting operations such as continuous casting. The amount is determined from the lifting load of a crane or the like.

一方、電力使用量を削減することを目的として溶銑を鉄スクラップと共に鉄源として使用する操業が知られている。   On the other hand, an operation is known in which hot metal is used as an iron source together with iron scrap for the purpose of reducing power consumption.

例えば、特許文献2に開示されるように、溶解室と、溶解室に直結し、溶解室で発生する排ガスが導入されるシャフト型の予熱室と、を具備したアーク炉での操業方法であって、高炉溶銑を溶解室に直接装入すると共に、鉄スクラップが予熱室と溶解室とに連続して存在する状態を保つように、鉄スクラップを連続的又は断続的に予熱室へ装入しながら、溶解室の鉄スクラップ及び高炉溶銑をアークにて加熱して鉄スクラップを溶解し、溶解室に少なくとも1ヒート分の溶鋼が溜まった時点で、鉄スクラップが予熱室と溶解室とに連続して存在する状態で溶鋼を出鋼することを特徴とするアーク炉操業方法が提案されている。   For example, as disclosed in Patent Document 2, an operation method in an arc furnace including a melting chamber and a shaft-type preheating chamber that is directly connected to the melting chamber and into which exhaust gas generated in the melting chamber is introduced. In addition, the blast furnace hot metal is directly charged into the melting chamber, and the scrap is continuously or intermittently charged into the preheating chamber so that the iron scrap is continuously present in the preheating chamber and the melting chamber. However, when the iron scrap in the melting chamber and the blast furnace hot metal are heated with an arc to melt the iron scrap, and at least one heat of molten steel has accumulated in the melting chamber, the iron scrap continues into the preheating chamber and the melting chamber. There has been proposed an arc furnace operating method characterized in that molten steel is discharged in the existing state.

特開平10−292990号公報JP-A-10-292990 特開2000−17319号公報JP 2000-17319 A

上記の特許文献2に記載の技術を用いることで、スクラップを予熱して効率よくアーク溶解すると同時に、50%程度の高炉溶銑を混合して用いることにより、電力使用量を削減することが出来るが、スクラップの溶解量は半分になるために、スクラップの処理効率が低下し、生産性が悪くなるという問題がある。   By using the technique described in Patent Document 2 above, scrap can be preheated and efficiently arc-melted, and at the same time, about 50% blast furnace hot metal can be mixed and used to reduce power consumption. Since the amount of scrap dissolved is halved, there is a problem that the processing efficiency of scrap is lowered and the productivity is deteriorated.

また、鉄鋼プロセスでのアーク炉の位置付けは、溶鋼製造プロセスであり、後工程のプロセス制約の関係上、一般的に出湯時の炭素濃度は1mass%未満で操業されている。例えば、特許文献2では出鋼時の炭素濃度は0.1mass%であり、溶銑を使用して溶解を行った場合、炭素を下げるための吹練時間が長くなるという問題も発生する。更に、炭素濃度が低くなると共に鉄の液相線温度(融点)は高くなり、出湯温度を高くする必要があることから、電力使用量の増大と操業時間の延長、という問題も発生する。   Moreover, the position of the arc furnace in the steel process is a molten steel manufacturing process, and the carbon concentration at the time of tapping is generally operated at less than 1 mass% due to the process restrictions in the subsequent process. For example, in Patent Document 2, the carbon concentration at the time of steelmaking is 0.1 mass%, and when melting is performed using hot metal, there is a problem that the blowing time for lowering the carbon becomes long. Furthermore, since the liquidus temperature (melting point) of iron becomes higher as the carbon concentration becomes lower and the hot water temperature needs to be raised, there is a problem that the amount of power used is increased and the operation time is extended.

本発明はこのような事情に鑑みなされたもので、その目的とするところは、冷鉄源を使用して溶湯を製造する際に、効率良く冷鉄源を溶解して電力使用量の削減と操業時間の短縮を可能とするアーク炉の操業方法を提供することである。   The present invention has been made in view of such circumstances, and the object of the present invention is to efficiently melt the cold iron source and reduce the amount of power used when manufacturing the molten metal using the cold iron source. The object is to provide an arc furnace operating method capable of shortening the operation time.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)、溶解室と、該溶解室の上部に直結するシャフト型の予熱室とを具備し、前記溶解室で発生する排ガスを前記予熱室に導入して該予熱室内の冷鉄源を予熱するアーク炉を用い、前記冷鉄源が前記予熱室と前記溶解室とに存在する状態を保つように前記冷鉄源を前記予熱室へ供給しながら、前記溶解室でアーク加熱にて前記冷鉄源を溶解する際に、前記アーク炉から出湯する溶湯の炭素濃度を1mass%以上とすることを特徴とするアーク炉の操業方法。
(2)、溶解室内に炭材を添加することを特徴とする(1)に記載のアーク炉の操業方法。
(3)、溶解室内に添加する炭材がバイオマス由来であることを特徴とする(2)に記載のアーク炉の操業方法。
(4)、溶解室内に酸素を吹き込むことを特徴とする(1)乃至(3)のいずれかに記載のアーク炉の操業方法。
(5)、(1)乃至(4)のいずれかに記載のアーク炉の操業方法によって製造された溶湯を、転炉で精錬して溶鋼を得ることを特徴とする溶鋼の製造方法。
(6)、(1)乃至(4)のいずれかに記載のアーク炉の操業方法によって製造された溶湯の少なくとも一部を高炉溶銑と混合して、転炉で精錬して溶鋼を得ることを特徴とする溶鋼の製造方法。
The features of the present invention for solving such problems are as follows.
(1) A melting chamber and a shaft-type preheating chamber directly connected to the upper portion of the melting chamber are provided, and exhaust gas generated in the melting chamber is introduced into the preheating chamber to preheat a cold iron source in the preheating chamber. The cold iron source is supplied to the preheating chamber so that the cold iron source is maintained in the preheating chamber and the melting chamber, and the cooling iron is heated by arc heating in the melting chamber. An arc furnace operating method characterized in that, when the iron source is melted, the carbon concentration of the molten metal discharged from the arc furnace is 1 mass% or more.
(2) The method for operating an arc furnace according to (1), wherein a carbonaceous material is added to the melting chamber.
(3) The method for operating an arc furnace according to (2), wherein the carbonaceous material added to the melting chamber is derived from biomass.
(4) The method for operating an arc furnace according to any one of (1) to (3), wherein oxygen is blown into the melting chamber.
(5) A method for producing molten steel, characterized in that molten steel produced by the method for operating an arc furnace according to any one of (1) to (4) is refined in a converter to obtain molten steel.
(6), mixing at least part of the molten metal produced by the method for operating an arc furnace according to any one of (1) to (4) with blast furnace hot metal, and refining in a converter to obtain molten steel A method for producing molten steel.

本発明によれば、冷鉄源を使用して溶湯を製造する際に、効率良く冷鉄源を溶解して電力使用量の削減と操業時間の短縮が出来る。   According to the present invention, when producing a molten metal using a cold iron source, the cold iron source can be efficiently melted to reduce the amount of power used and the operation time.

また、バイオマス由来の炭材を使用することで、硫黄混入の防止と二酸化炭素の排出量を低減することが出来る。   Moreover, the use of biomass-derived charcoal can prevent sulfur contamination and reduce carbon dioxide emissions.

本発明の実施に用いるアーク炉の一実施形態であり、アーク炉設備の縦断面概略図である。It is one Embodiment of the arc furnace used for implementation of this invention, and is a longitudinal cross-sectional schematic diagram of an arc furnace equipment. 本発明の実施に用いるアーク炉の一実施形態であり、アーク炉設備の縦断面概略図である。It is one Embodiment of the arc furnace used for implementation of this invention, and is a longitudinal cross-sectional schematic diagram of an arc furnace equipment.

本発明においては、溶解室と、溶解室の上部に直結するシャフト型の予熱室とを具備し、溶解室で発生する排ガスを予熱室に導入して予熱室内の冷鉄源を予熱するアーク炉を用い、冷鉄源が予熱室と溶解室とに存在する状態を保つように冷鉄源を予熱室へ供給しながら、溶解室でアーク加熱にて冷鉄源を溶解する際に、アーク炉から出湯する溶湯の炭素濃度を1mass%以上としてアーク炉を操業する。アーク炉から出湯する溶湯の炭素濃度を1mass%以上とし、出湯温度を低くすることで、冷鉄源を少ない電力使用量で迅速に溶解することが可能となる。   In the present invention, an arc furnace having a melting chamber and a shaft-type preheating chamber directly connected to the upper portion of the melting chamber and introducing the exhaust gas generated in the melting chamber into the preheating chamber to preheat the cold iron source in the preheating chamber When melting the cold iron source by arc heating in the melting chamber while supplying the cold iron source to the preheating chamber so that the cold iron source exists in the preheating chamber and the melting chamber The arc furnace is operated with the carbon concentration of the molten metal discharged from the furnace being 1 mass% or more. By setting the carbon concentration of the molten metal discharged from the arc furnace to 1 mass% or more and lowering the temperature of the molten metal, it becomes possible to quickly melt the cold iron source with a small amount of power consumption.

アーク炉から出湯する溶湯の炭素濃度を1mass%以上に保つことにより、高炉溶銑と混ぜる時の発塵、スプラッシュの問題がなくなるという効果もある。炭素濃度が1mass%未満であると高炉溶銑鉄と混ぜる際に、高炉溶銑中のCとアーク炉からの溶湯中の酸素の反応によりC−O反応がおこり、これにより、発塵し、環境上の問題になる。また、スプラッシュが発生した場合、安全上の問題になる。   By maintaining the carbon concentration of the molten metal discharged from the arc furnace at 1 mass% or more, there is an effect that the problem of dust generation and splash when mixed with the blast furnace molten iron is eliminated. When the carbon concentration is less than 1 mass%, a C—O reaction occurs due to the reaction of C in the blast furnace molten iron and oxygen in the molten metal from the arc furnace when mixed with the blast furnace molten iron. It becomes a problem. Also, when splash occurs, it becomes a safety problem.

一方、省エネルギー及びCO2削減による地球温暖化防止の観点からも、スクラップ利用の促進が望まれている。高炉での溶銑の製造には、鉄鉱石を還元し且つ溶融するための多大なエネルギーを要するのに対し、スクラップは溶解熱のみを必要としており、鉄鉱石の還元熱分のエネルギー使用量を少なくすることができるという利点がある。 On the other hand, from the viewpoint of energy saving and prevention of global warming by CO 2 reduction, promotion of scrap utilization is desired. The production of hot metal in a blast furnace requires a great deal of energy to reduce and melt iron ore, while scrap requires only heat of melting, reducing the amount of energy consumed for the reduction heat of iron ore. There is an advantage that you can.

従来は、高炉―転炉法によるプロセスフローのスクラップ利用では、スクラップを転炉へ直接投入して使用されることが多い。しかし、転炉は、スクラップの溶解熱として溶銑中炭素の燃焼熱を利用していることから、一定量以上のスクラップの配合比率を高めることができないという欠点があった。また、転炉において、スクラップの配合率を高めるために溶解熱源として炭材を添加すること、吹練時間が長くなり生産性が低下する問題があった。さらに、転炉においてスクラップを多量に使用すると、製造される溶鋼の成分調整が難しいという問題があった。   Conventionally, in the process flow scrap utilization by the blast furnace-converter method, the scrap is often directly used for the converter. However, since the converter uses the combustion heat of carbon in the hot metal as the melting heat of the scrap, there is a disadvantage that the blending ratio of a certain amount or more of scrap cannot be increased. Further, in the converter, there has been a problem that the carbonaceous material is added as a melting heat source in order to increase the scrap mixing ratio, and the blowing time becomes longer and the productivity is lowered. Furthermore, when a large amount of scrap is used in the converter, there is a problem that it is difficult to adjust the composition of the molten steel to be produced.

溶湯の炭素濃度を1mass%以上とすることで、アーク炉を用いて製造した溶銑を高炉―転炉法によるプロセスフローの一部に組み込むことができる。例えば、高炉から転炉までに行われる溶銑予備処理(脱珪、脱硫、脱燐)の温度は、1250℃から1450℃で行われるため、アーク炉からの出湯炭素濃度を4mass%以上にすれば、各種の溶銑予備処理を行うことができる。   By setting the carbon concentration of the molten metal to 1 mass% or more, the hot metal produced using the arc furnace can be incorporated into a part of the process flow by the blast furnace-converter method. For example, since the temperature of the hot metal preliminary treatment (desiliconization, desulfurization, dephosphorization) performed from the blast furnace to the converter is performed at 1250 ° C. to 1450 ° C., if the concentration of tapping carbon from the arc furnace is set to 4 mass% or more. Various hot metal pretreatments can be performed.

アーク炉から出湯する溶湯の炭素濃度を1mass%以上とするためには、溶解室内に加炭および補助熱源として炭材を添加することが好ましい。下記に述べるように溶解室内に酸素吹込みを行う場合は、アーク炉内に添加する炭材と酸素の量を酸素1Nm3に対し炭材(炭素分として)1kg以上とすることが好ましい。これにより、酸素を吹き込んでも、溶湯中の炭素の低減を防止することができる。 In order to set the carbon concentration of the molten metal discharged from the arc furnace to 1 mass% or more, it is preferable to add carbonaceous material as a carburizing and auxiliary heat source in the melting chamber. As described below, when oxygen is blown into the melting chamber, the amount of carbon and oxygen added to the arc furnace is preferably 1 kg or more with respect to 1 Nm 3 of oxygen (carbon content). Thereby, even if oxygen is blown in, reduction of carbon in the molten metal can be prevented.

溶解室内に酸素を吹き込むことが好ましい。酸素を吹き込むことで溶銑中炭素を酸素で燃焼させることができる。また、溶解室内に添加された炭材が溶鉄中に浸炭し、酸素を吹き込むことで溶銑中炭素を酸素で燃焼させると、炭素の燃焼熱が電力エネルギーの代替になると同時に、発生する高温のCOガスがシャフト内の鉄スクラップを予熱するので、電力原単位の低減と溶解の迅速性とが一層促進される。また、炭材を酸素により燃焼させることで、炭材は溶銑中炭素と同一の作用効果を発揮して電力原単位の低減に寄与する。   It is preferable to blow oxygen into the dissolution chamber. By blowing oxygen, the carbon in the hot metal can be burned with oxygen. In addition, when the carbon material added to the melting chamber is carburized into molten iron and oxygen is blown to burn the carbon in the hot metal with oxygen, the combustion heat of carbon becomes an alternative to electric power energy, and at the same time, the generated high-temperature CO Since the gas preheats the iron scrap in the shaft, the reduction of the power consumption and the speed of melting are further promoted. Moreover, by burning the carbonaceous material with oxygen, the carbonaceous material exhibits the same effect as the carbon in the hot metal and contributes to the reduction of the power consumption.

溶解室内に添加する炭材は、バイオマス由来であることが好ましい。炭材として一般的に使用されているコークスは硫黄(S)を含有しているが、バイオマス由来とすることで炭材からのS混入を防止できる。更に、バイオマスはカーボンニュートラルであることから地球温暖化の原因の一つである二酸化炭素の排出量を低減することが出来る。   The carbonaceous material added to the melting chamber is preferably derived from biomass. Coke generally used as a carbon material contains sulfur (S), but it can prevent S contamination from the carbon material by being derived from biomass. Furthermore, since biomass is carbon neutral, it is possible to reduce carbon dioxide emissions, which is one of the causes of global warming.

冷鉄源として、高炭素含有冷鉄源を用いることが好ましい。冷鉄源とは上記したように、鉄スクラップ、鉄屑、直接還元鉄、冷銑等の鉄を主成分とするものであればよいが、特に高炭素含有冷鉄源を用いた場合、少ない電力使用量で迅速に溶解することが出来る。炭材の添加も不要となる場合がある。尚、本発明の高炭素含有冷鉄源とは、炭素濃度が1.0mass%以上の冷鉄源であり、例えば、直接還元鉄(炭素濃度;1〜2mass%)や冷銑(炭素濃度;3〜5mass%)等であり、炭素濃度の低い鋼を主体とした鉄スクラップに比べて格段に炭素含有量が多い冷鉄源である。又、冷銑とは高炉や溶融還元炉、又はキュポラ等で製造された溶銑を凝固させたものである。更に、これらの高炭素含有冷鉄源は不純元素の少ないことから、鉄スクラップに起因するCu、Sn、Cr等の不純物元素を希釈することもでき、高炉―転炉法で製造する高級鋼に匹敵する鋼が製造できる。   As the cold iron source, a high carbon content cold iron source is preferably used. As described above, the cold iron source only needs to have iron as a main component such as iron scrap, iron scrap, directly reduced iron, cold iron, etc., but particularly when a high carbon content cold iron source is used. It can be dissolved quickly with the amount of power used. The addition of charcoal may be unnecessary. In addition, the high carbon content cold iron source of the present invention is a cold iron source having a carbon concentration of 1.0 mass% or more, for example, directly reduced iron (carbon concentration; 1 to 2 mass%) or cold iron (carbon concentration; 3 to 5 mass%), which is a cold iron source with a much higher carbon content than steel scrap mainly composed of steel with a low carbon concentration. The cold iron is obtained by solidifying hot metal produced in a blast furnace, a smelting reduction furnace, or a cupola. Furthermore, since these high carbon-containing cold iron sources have few impure elements, it is possible to dilute impurity elements such as Cu, Sn, and Cr resulting from iron scrap, and to high-grade steel produced by the blast furnace-converter method. Comparable steel can be manufactured.

上記の発明において、アーク炉からの溶湯の出湯は、冷鉄源が予熱室と溶解室とに連続して存在する状態で行うことが好ましい。   In the above invention, it is preferable that the molten metal is discharged from the arc furnace in a state where the cold iron source is continuously present in the preheating chamber and the melting chamber.

次に、本発明を図面に基づき説明する。図1及び図2は、本発明の実施に用いるアーク炉の一実施形態である。図1及び図2は、アーク炉設備の縦断面概略図であり、図1は溶解室への炭材の吹き込みがランスからの場合を示す図であり、図2は溶解室への炭材をランスと炭材供給装置の併用、もしくは炭材供給装置のみから行う場合を示す図である。   Next, the present invention will be described with reference to the drawings. 1 and 2 show an embodiment of an arc furnace used for carrying out the present invention. 1 and 2 are schematic longitudinal sectional views of an arc furnace facility, FIG. 1 is a diagram showing a case where carbon material is blown into a melting chamber from a lance, and FIG. 2 is a diagram showing carbon material into the melting chamber. It is a figure which shows the case where it uses from the combined use of a lance and a carbonaceous material supply apparatus, or only a carbonaceous material supply apparatus.

図1及び図2において、アーク炉1は溶解室2と予熱室3とを具備し、内部を耐火物で構築され、底部に炉底電極6を備えた溶解室2の上部には、シャフト型の予熱室3と水冷構造の炉壁4とが配置され、この予熱室3で覆われない炉壁4の上部開口部は、開閉自在な水冷構造の炉蓋5で覆われている。この炉蓋5を貫通して、溶解室2内へ上下移動可能な黒鉛製の上部電極7が設けられ、直流式のアーク炉1の基部が構成されている。炉底電極6と上部電極7とは直流電源(図示せず)に連結し、炉底電極6と上部電極7との間でアーク19を発生させる。   1 and 2, an arc furnace 1 includes a melting chamber 2 and a preheating chamber 3, the inside of which is constructed of a refractory, and a shaft type is provided at the top of the melting chamber 2 having a furnace bottom electrode 6 at the bottom. The preheating chamber 3 and the water-cooled furnace wall 4 are disposed, and the upper opening of the furnace wall 4 not covered with the pre-heating chamber 3 is covered with a water-cooling furnace lid 5 that can be freely opened and closed. An upper electrode 7 made of graphite that can move up and down into the melting chamber 2 through the furnace lid 5 is provided, and the base of the DC arc furnace 1 is configured. The furnace bottom electrode 6 and the upper electrode 7 are connected to a DC power source (not shown), and an arc 19 is generated between the furnace bottom electrode 6 and the upper electrode 7.

予熱室3の上方には、走行台車24に吊り下げられた底開き型の供給用バケット13が設けられ、この供給用バケット13から、予熱室3の上部に設けた開閉自在な供給口20を介して冷鉄源(例えば鉄スクラップ)15が予熱室3内に装入される。そして、予熱室3の上端に設けられたダクト21は集塵機(図示せず)に連結し、溶解室2で発生する高温の排ガスは、予熱室3及びダクト21を順に通って吸引され、予熱室3内の冷鉄源15は予熱される。そして、予熱された冷鉄源15は、溶解室2内で溶解される冷鉄源15の量に見合って、溶解室2内に自由落下し、溶解室2へ装入される。   Above the preheating chamber 3, a bottom-opening type supply bucket 13 suspended from the traveling carriage 24 is provided, and an openable / closable supply port 20 provided at the upper portion of the preheating chamber 3 is provided from the supply bucket 13. A cold iron source (for example, iron scrap) 15 is charged into the preheating chamber 3. The duct 21 provided at the upper end of the preheating chamber 3 is connected to a dust collector (not shown), and the high-temperature exhaust gas generated in the melting chamber 2 is sucked through the preheating chamber 3 and the duct 21 in this order, and the preheating chamber. The cold iron source 15 in 3 is preheated. The preheated cold iron source 15 falls freely into the melting chamber 2 in accordance with the amount of the cold iron source 15 melted in the melting chamber 2 and is inserted into the melting chamber 2.

炉蓋5を貫通して、溶解室2内を上下移動可能な酸素吹き込みランス8と炭材吹き込みランス9とが設けられ、酸素吹き込みランス8からは酸素が溶解室2内に吹き込まれ、炭材吹き込みランス9からは空気や窒素等を搬送用ガスとしてコークス、チャー、石炭、木炭、黒鉛、バイオマス炭等、もしくはこれらの混合物の炭材が溶解室2内に吹き込まれる。又、溶解室2の予熱室3を設置した部位の反対側には、その炉底に、扉22で出口側を押さえ付けられて内部に詰め砂又はマッド剤が充填された出鋼口11と、その側壁に、扉23で出口側を押さえ付けられて内部に詰め砂又はマッド剤が充填された出滓口12とが設けられている。この出鋼口11の鉛直上方に対応する部位の炉蓋5には、バーナー10が取り付けられている。バーナー10は、重油、灯油、微粉炭、プロパンガス、天然ガス等の化石燃料やバイオマス燃料を、空気又は酸素若しくは酸素富化空気により溶解室2内で燃焼させる。バーナー10は必要に応じて取り付けることができる。   An oxygen blowing lance 8 and a carbonaceous material blowing lance 9 that pass through the furnace lid 5 and can move up and down in the melting chamber 2 are provided, and oxygen is blown into the melting chamber 2 from the oxygen blowing lance 8, and the carbonaceous material. From the blowing lance 9, coke, char, coal, charcoal, graphite, biomass charcoal, or a mixture of these materials is blown into the melting chamber 2 using air, nitrogen, or the like as a carrier gas. Also, on the opposite side of the melting chamber 2 from the part where the preheating chamber 3 is installed, there is a steel outlet 11 in which the outlet side is pressed against the furnace bottom by a door 22 and filled with packed sand or mud agent. The side wall is provided with an outlet 12 that is pressed on the outlet side by a door 23 and filled with stuffed sand or mud agent. A burner 10 is attached to the furnace cover 5 at a position corresponding to the upper part of the steel outlet 11. The burner 10 burns fossil fuel and biomass fuel such as heavy oil, kerosene, pulverized coal, propane gas, and natural gas in the dissolution chamber 2 with air, oxygen, or oxygen-enriched air. The burner 10 can be attached as needed.

図2の場合では、溶解室2の上方には、ホッパー26と、ホッパー26の下部に設けた切り出し装置28と、その上端が切り出し装置28に連結し、その下端が炉蓋5を貫通する供給シュート29とで構成される炭材供給装置25が設置されている。そしてホッパー26には、コークス、チャー、石炭、木炭、黒鉛、バイオマス炭等、もしくはこれらの混合物の炭材27が収納されており、炭材27は、切り出し装置28にて装入量を制御され、供給シュート29を介して溶解室2に直接装入することもできる。   In the case of FIG. 2, above the melting chamber 2, there is a hopper 26, a cutting device 28 provided at the lower part of the hopper 26, and an upper end thereof connected to the cutting device 28, and a lower end passing through the furnace lid 5. A charcoal material supply device 25 configured with the chute 29 is installed. The hopper 26 contains a carbonaceous material 27 of coke, char, coal, charcoal, graphite, biomass charcoal, etc., or a mixture thereof, and the charging amount of the carbonaceous material 27 is controlled by a cutting device 28. The melting chamber 2 can be directly charged via the supply chute 29.

溶解室2の上方にはクレーン(図示せず)が設置されており、上部電極7、酸素吹き込みランス8、炭材吹き込みランス9、バーナー10、及び炭材供給装置25が予め取り外された炉蓋5を開放して、溶解室2内に冷鉄源15を装入することができる構造になっている。   A crane (not shown) is installed above the melting chamber 2 and the upper electrode 7, the oxygen blowing lance 8, the charcoal blowing lance 9, the burner 10, and the charcoal supply device 25 are removed in advance. 5 is opened, and the cold iron source 15 can be charged into the melting chamber 2.

この直流式のアーク炉1における操業は、先ず、供給用バケット13より予熱室3内に冷鉄源15を装入する。予熱室3内に装入された冷鉄源15は、溶解室2内にも装入され、やがて予熱室3内を充填する。尚、溶解室2内へ冷鉄源15を均一に装入するため、炉蓋5を開けた状態で、予熱室3と反対側の溶解室2内に冷鉄源15や炭材を装入することもできる。又、冷鉄源15の装入の際に、溶銑を溶解室2に装入しても良い。溶銑を使用することで、溶銑の有する熱により、電力使用量を大幅に削減することができる。溶銑は供給用取鍋(図示せず)や溶解室2に連結する溶銑樋(図示せず)にて溶解室2に装入することができる。   In operation in the DC arc furnace 1, first, the cold iron source 15 is charged into the preheating chamber 3 from the supply bucket 13. The cold iron source 15 charged into the preheating chamber 3 is also charged into the melting chamber 2 and eventually fills the preheating chamber 3. In order to uniformly charge the cold iron source 15 into the melting chamber 2, the cold iron source 15 and the carbonaceous material are charged into the melting chamber 2 opposite to the preheating chamber 3 with the furnace lid 5 opened. You can also Further, hot metal may be charged into the melting chamber 2 when the cold iron source 15 is charged. By using hot metal, the amount of power used can be significantly reduced by the heat of the hot metal. The hot metal can be charged into the melting chamber 2 with a ladle for supply (not shown) or a hot metal (not shown) connected to the melting chamber 2.

次いで、炉底電極6と上部電極7との間に直流電流を給電しつつ上部電極7を昇降させ、炉底電極6と上部電極7との間、又は、装入された冷鉄源15と上部電極7との間でアーク19を発生させ、アーク熱により冷鉄源15を溶解する。同時に、フラックスを溶解して溶融スラグ18を生成させる。溶融スラグ18は、生成される溶湯17を保温する。溶融スラグ18の量が多すぎる場合には、操業中でも出滓口12から、排滓することができる。   Next, while feeding a direct current between the furnace bottom electrode 6 and the upper electrode 7, the upper electrode 7 is moved up and down, and between the furnace bottom electrode 6 and the upper electrode 7, or the inserted cold iron source 15 and An arc 19 is generated between the upper electrode 7 and the cold iron source 15 is melted by the arc heat. At the same time, the flux is melted to produce molten slag 18. The molten slag 18 keeps the generated molten metal 17 warm. If the amount of the molten slag 18 is too large, it can be discharged from the spout 12 during operation.

通電後、酸素吹き込みランス8及び炭材吹き込みランス9の溶解室2内への挿入が可能となったら、図1、2に示すように、酸素吹き込みランス8及び炭材吹き込みランス9から、酸素及び炭材を溶解室2内の溶湯17又は溶融スラグ18中に吹き込むことが好ましい。炭材の添加はランス8と炭材供給装置25から行うことができる。   When the oxygen blowing lance 8 and the carbonaceous material blowing lance 9 can be inserted into the melting chamber 2 after energization, as shown in FIGS. It is preferable to blow the carbon material into the molten metal 17 or the molten slag 18 in the melting chamber 2. The carbon material can be added from the lance 8 and the carbon material supply device 25.

溶湯17中の炭素は酸素と反応して脱炭され、反応生成物のCOガスが溶融スラグ18をフォーミングさせ、アーク19が溶融スラグ18に包まれるので、アーク19の着熱効率が上昇する。又、大量に発生する高温のCOガスと、このCOガスが燃焼して生成するCO2ガスとが、予熱室3内の鉄スクラップ15を効率良く予熱する。酸素吹き込み量は、溶解開始から出湯までの間に溶解室2内で滞留する溶湯17のトン当たり15Nm3(以下、「Nm3/t」と記載する。)以上とすることが好ましい。 The carbon in the molten metal 17 reacts with oxygen and is decarburized, and the reaction product CO gas forms the molten slag 18 and the arc 19 is wrapped in the molten slag 18, so that the heat receiving efficiency of the arc 19 is increased. Further, the high-temperature CO gas generated in a large amount and the CO 2 gas generated by burning this CO gas efficiently preheats the iron scrap 15 in the preheating chamber 3. Oxygen blowing amount per tonne 15 Nm 3 of the molten metal 17 to be retained in the melting chamber 2 between the dissolution start to tapping (hereinafter referred to as "Nm 3 / t".) Is preferably not less than.

溶解室2内に添加された、溶湯17中に溶解した炭材又は溶融スラグ18中に懸濁した炭材は、酸素と反応して燃焼熱を発生し、補助熱源として作用して電力使用量を節約すると同時に、アーク19の着熱効率を上昇させると共に、冷鉄源15の予熱効率を向上させる。この炭材の添加量は、酸素吹き込み量に対応して決められる。即ち、炭材の炭素量が、吹き込まれる酸素の化学等量に等しいまたはそれ以上の炭材を吹き込むこととすることが好ましい。炭素量が吹き込まれる酸素ガスに比べて少ないと、溶湯17の過剰な酸化と炭素濃度が低下するので好ましくない。   Carbon material dissolved in the molten metal 17 or suspended in the molten slag 18 added to the melting chamber 2 reacts with oxygen to generate combustion heat, and acts as an auxiliary heat source to use power. And at the same time, the heating efficiency of the arc 19 is increased and the preheating efficiency of the cold iron source 15 is improved. The amount of the carbon material added is determined according to the oxygen blowing amount. That is, it is preferable to blow in a carbon material whose carbon content is equal to or greater than the chemical equivalent of oxygen to be blown. If the amount of carbon is smaller than the oxygen gas blown in, excessive oxidation of the molten metal 17 and the carbon concentration are lowered, which is not preferable.

又、溶解室2内の冷鉄源15の溶解に伴い、予熱室3内の冷鉄源15は溶解室2内で溶解された量に見合って溶解室2内に自由落下して減少するので、この減少分を補うために供給用バケット13から予熱室3へ冷鉄源15を装入する。この冷鉄源15の予熱室3内への装入は、冷鉄源15が予熱室3と溶解室2とに連続して存在する状態を保つように、連続的又は断続的に行う。その際に、予熱室3と溶解室2とに連続して存在する冷鉄源15の量を、1回の出湯量の冷鉄源15の50mass%以上とすることが好ましい。   Further, as the cold iron source 15 in the melting chamber 2 is melted, the cold iron source 15 in the preheating chamber 3 falls into the melting chamber 2 according to the amount melted in the melting chamber 2 and decreases. In order to compensate for this decrease, the cold iron source 15 is charged from the supply bucket 13 to the preheating chamber 3. The cold iron source 15 is charged into the preheating chamber 3 continuously or intermittently so that the cold iron source 15 is continuously present in the preheating chamber 3 and the melting chamber 2. At that time, it is preferable that the amount of the cold iron source 15 continuously present in the preheating chamber 3 and the melting chamber 2 is 50 mass% or more of the cold iron source 15 of a single hot water output.

このようにして冷鉄源15及び溶湯17を加熱して冷鉄源15を溶解し、溶解室2内に溶湯17を溜めると共に、溶湯17の炭素濃度を測定し、必要により炭材吹き込みランス9や炭材供給装置25からの炭材の添加量を調整して溶湯17の炭素濃度を1mass%以上に調整する。次いで、傾動装置(図示せず)により溶解室2を傾動して出湯口11から溶湯17を出湯する。この場合、溶湯17中に冷鉄源15が埋没して共存しているので、大きな溶湯過熱度を得ることができない。そのため、溶湯温度の低下に出湯口11の閉塞等の伴うトラブルを防止するため、出湯時にバーナー10で溶湯17を加熱することが好ましい。   In this way, the cold iron source 15 and the molten metal 17 are heated to melt the cold iron source 15, the molten metal 17 is stored in the melting chamber 2, the carbon concentration of the molten metal 17 is measured, and if necessary, the carbon material blowing lance 9. And the carbon concentration of the molten metal 17 is adjusted to 1 mass% or more by adjusting the amount of carbon material added from the carbon material supply device 25. Next, the melting chamber 2 is tilted by a tilting device (not shown), and the molten metal 17 is discharged from the hot water outlet 11. In this case, since the cold iron source 15 is buried in the molten metal 17 and coexists, a large degree of molten metal superheat cannot be obtained. Therefore, it is preferable to heat the molten metal 17 with the burner 10 at the time of hot water discharge in order to prevent troubles such as blockage of the hot water outlet 11 due to a decrease in the molten metal temperature.

出湯後、脱硫を行う脱硫工程を経て、転炉で脱炭処理を行い、溶鋼を得る。また、アーク炉からの溶湯の少なくとも一部を高炉溶銑と混合して、脱硫を行う脱硫工程を経て、転炉で脱炭処理を行い、溶鋼を得ることもできる。   After the hot water is passed through a desulfurization step of desulfurization, decarburization treatment is performed in a converter to obtain molten steel. Also, molten steel can be obtained by mixing at least part of the molten metal from the arc furnace with blast furnace hot metal and performing a desulfurization process in which desulfurization is performed, and performing a decarburization process in the converter.

溶湯17を出湯し、更に溶融スラグ18を排滓した後、溶解室2を傾動装置にて水平に戻し、出湯口11及び出滓口12内に詰め砂又はマッド材を充填した後、次回ヒートの溶解を開始する。   After the molten metal 17 is discharged and the molten slag 18 is further discharged, the melting chamber 2 is returned to the horizontal position by the tilting device, and the hot water 11 and the hot water outlet 12 are filled with sand or mud material, and then the next heat is applied. Start dissolving.

このようにして、冷鉄源15を加熱・溶解することで、その後のヒートで溶解される冷鉄源15は全て予熱されて予熱効率の極めて高い状態で操業可能となることにより、生産性の向上と電力原単位の低減とが可能になる。   Thus, by heating and melting the cold iron source 15, all the cold iron sources 15 that are melted by the subsequent heat are preheated and can be operated with extremely high preheating efficiency. It is possible to improve and reduce power consumption.

また、アーク炉出湯後の溶湯を高炉溶銑と混合すれば、希釈効果により高級鋼の製造にも用いることができる。この際に、アーク炉から出湯される溶湯の炭素濃度を1mass%以上に保つことで、上記したようにアーク炉から出湯される溶湯と高炉溶銑とを混ぜる場合の発塵の問題も避けることができる。   Moreover, if the molten metal after the arc furnace tapping is mixed with the blast furnace hot metal, it can be used for the production of high-grade steel due to the dilution effect. At this time, by maintaining the carbon concentration of the molten metal discharged from the arc furnace at 1 mass% or more, the problem of dust generation when the molten metal discharged from the arc furnace and the blast furnace molten iron are mixed as described above can be avoided. it can.

上記説明では、アーク炉1が直流式の場合について説明したが、交流式アーク炉を用いる場合であっても全く支障なく本発明を適用することができる。   In the above description, the case where the arc furnace 1 is a direct current type has been described, but the present invention can be applied without any problem even if an alternating current type arc furnace is used.

図1に示す直流式アーク炉を用いた場合の本発明の実施例を以下に説明する。アーク炉は、溶解室が炉径7.2m、高さ4m、予熱室が幅3m、長さ5m、高さ7m、炉容量が180トンである。   An embodiment of the present invention using the DC arc furnace shown in FIG. 1 will be described below. In the arc furnace, the melting chamber has a furnace diameter of 7.2 m, a height of 4 m, the preheating chamber has a width of 3 m, a length of 5 m, a height of 7 m, and a furnace capacity of 180 tons.

先ず、予熱室に約70トンの常温の冷鉄源を装入し、次いで、溶解室に50トンの常温の冷鉄源と1トンのコークスを装入して直径30インチの黒鉛製上部電極を用い、最大750V、130KAの電源容量により溶解を開始した。又、通電直後、生石灰と蛍石とを吹き込むと共に、2本の酸素吹き込みランスから酸素を1800Nm3/hr、炭材吹き込みランスからコークスを200kg/minとして溶解室内に吹き込んだ。生石灰及び蛍石は加熱されて溶融スラグとなり、そして、酸素とコークスの吹き込みにより、溶融スラグはフォーミングして上部電極の先端は溶融スラグ中に埋没した。この時の電圧を550Vに設定した。なお、スクラップの溶解に対しては酸素吹き込み量は15Nm3/t、及びコークス吹き込み量は56kg/tの条件で、電力の使用量は270kWh/tであった。 First, about 70 tons of cold iron source at room temperature is charged into the preheating chamber, then 50 tons of cold iron source at room temperature and 1 ton of coke are charged into the melting chamber, and a graphite upper electrode with a diameter of 30 inches. Was used to start dissolution with a power supply capacity of 750 V and 130 KA at maximum. Immediately after energization, quick lime and fluorite were blown, and oxygen was blown into the melting chamber from two oxygen blowing lances at 1800 Nm 3 / hr and carbon material was blown into coke at 200 kg / min. Quicklime and fluorite were heated to form molten slag, and by blowing oxygen and coke, the molten slag formed and the tip of the upper electrode was buried in the molten slag. The voltage at this time was set to 550V. For scrap dissolution, the oxygen blowing rate was 15 Nm 3 / t, the coke blowing rate was 56 kg / t, and the power consumption was 270 kWh / t.

その後、予熱室内の鉄スクラップが溶解につれて下降したら、供給用バケットにて鉄スクラップを予熱室に装入し、予熱室内の鉄スクラップ高さを一定の高さに保持しながら溶解を続け、そして、溶解室内に140トン以上の溶湯が生成した時点で、140トンの溶湯を取鍋に出湯した。出湯時、重油バーナーにより溶湯を加熱した。出湯時の溶湯の炭素濃度は3.9mass%、硫黄濃度は0.04mass%、溶湯温度は1390℃であった。140トン出湯後、送酸とコークス吹き込みを行いながらスラグフォーミング操業を行って溶解を継続し、再び溶湯量が140トン以上になったら140トン出湯することを繰り返し実施した。   After that, when the iron scrap in the preheating chamber descends as it melts, the iron scrap is charged into the preheating chamber with the supply bucket, and continues to melt while maintaining the iron scrap height in the preheating chamber at a constant height, and When 140 tons or more of molten metal was generated in the melting chamber, 140 tons of molten metal was discharged into a ladle. The molten metal was heated with a heavy oil burner when the hot water was discharged. The carbon concentration of the molten metal at the time of tapping was 3.9 mass%, the sulfur concentration was 0.04 mass%, and the molten metal temperature was 1390 ° C. After 140 tons of hot water, slag forming operation was carried out while feeding acid and coke, and melting was continued. When the amount of molten metal reached 140 tons or more, 140 tons of hot water was repeatedly carried out.

出湯後の溶湯は、約35トンを265トンの高炉溶銑に混ぜ、トータル300トンにしにて脱硫し、その後転炉で脱炭し、1620℃に昇温した後、溶鋼を出鋼して連続鋳造機により鋳造した。アーク炉から取鍋に出湯した残りの溶湯も同様に処理して鋳造した。   About 35 tons of molten metal after tapping is mixed with 265 tons of blast furnace hot metal, desulfurized to a total of 300 tons, then decarburized in a converter, heated to 1620 ° C, and then the molten steel is discharged and continuously Casted by a casting machine. The remaining molten metal discharged from the arc furnace to the ladle was similarly processed and cast.

次に比較例として、図1に示す直流式アーク炉において、予熱室に約70トンの常温の冷鉄源を装入し、次いで、溶解室に50トンの常温の冷鉄源と1トンのコークスを装入して直径30インチの黒鉛製上部電極を用い、最大750V、130KAの電源容量により溶解を開始した。又、通電直後、生石灰と蛍石とを吹き込むと共に、酸素吹き込みランスから酸素を1800Nm3/hr、炭材吹き込みランスからコークスを48kg/minとして溶解室内に吹き込んだ。生石灰及び蛍石は加熱されて溶融スラグとなり、そして、酸素とコークスの吹き込みにより、溶融スラグはフォーミングして上部電極の先端は溶融スラグ中に埋没した。この時の電圧を550Vに設定した。なお、スクラップの溶解に対しては酸素吹き込み量は15Nm3/t、及びコークス吹き込み量は15kg/tの条件で、電力の使用量は360kWh/tであった。 Next, as a comparative example, in the DC arc furnace shown in FIG. 1, about 70 tons of cold iron source at room temperature is charged in the preheating chamber, and then 50 tons of cold iron source at room temperature and 1 ton of cold iron in the melting chamber. Coke was charged and a graphite upper electrode having a diameter of 30 inches was used, and melting was started at a maximum power supply capacity of 750 V and 130 KA. Immediately after energization, quick lime and fluorite were blown into the melting chamber, oxygen was supplied from an oxygen blowing lance at 1800 Nm 3 / hr, and coke was blown from a charcoal blowing lance at 48 kg / min. Quicklime and fluorite were heated to form molten slag, and by blowing oxygen and coke, the molten slag formed and the tip of the upper electrode was buried in the molten slag. The voltage at this time was set to 550V. For scrap dissolution, the oxygen blowing rate was 15 Nm 3 / t, the coke blowing rate was 15 kg / t, and the power consumption was 360 kWh / t.

その後、予熱室内の鉄スクラップが溶解につれて下降したら、供給用バケットにて鉄スクラップを予熱室に装入し、予熱室内の鉄スクラップ高さを一定の高さに保持しながら溶解を続け、そして、溶解室内に140トン以上の溶湯が生成した時点で、140トンの溶湯を取鍋に出湯した。出湯時、重油バーナーにより溶湯を加熱した。出湯時の溶湯の炭素濃度は0.2mass%、硫黄濃度は0.04mass%、溶湯温度は1600℃であった。140トン出湯後、送酸とコークス吹き込みを行いながらスラグフォーミング操業を行って溶解を継続し、再び溶湯量が140トン以上になったら140トン出湯することを繰り返し実施した。   After that, when the iron scrap in the preheating chamber descends as it melts, the iron scrap is charged into the preheating chamber with the supply bucket, and continues to melt while maintaining the iron scrap height in the preheating chamber at a constant height, and When 140 tons or more of molten metal was generated in the melting chamber, 140 tons of molten metal was discharged into a ladle. The molten metal was heated with a heavy oil burner when the hot water was discharged. The molten steel had a carbon concentration of 0.2 mass%, a sulfur concentration of 0.04 mass%, and a molten metal temperature of 1600 ° C. After 140 tons of hot water, slag forming operation was carried out while feeding acid and coke, and melting was continued. When the amount of molten metal reached 140 tons or more, 140 tons of hot water was repeatedly carried out.

表1に、上記の出湯時の溶湯の炭素濃度が3.9mass%の場合を実施例1とし、出湯時の溶湯の炭素濃度が0.2mass%の場合を比較例として、操業条件及び操業結果を示す。   In Table 1, the case where the carbon concentration of the molten metal at the time of tapping is 3.9 mass% is referred to as Example 1, and the case where the carbon concentration of the molten metal at the time of tapping is 0.2 mass% is a comparative example. Indicates.

Figure 2010265485
Figure 2010265485

溶湯の炭素濃度が0.2mass%の場合に比較して、炭素濃度が3.9mass%の場合は出湯温度を低下させた操業を行なうことができた。また、電力原単位が低下し、tap−tap時間も短縮することができた。尚、tap−tap時間とは、出湯開始時刻から次の出湯開始時刻までの時間である。   Compared with the case where the carbon concentration of the molten metal was 0.2 mass%, when the carbon concentration was 3.9 mass%, it was possible to perform the operation with the temperature of the molten metal lowered. In addition, the power consumption rate decreased, and the tap-tap time could be shortened. The tap-tap time is the time from the start of hot water to the next start of hot water.

図2に示す直流式アーク炉を用いた場合の本発明の実施例を以下に説明する。図2に示す直流式アーク炉は図1に示す直流式アーク炉に炭材供給装置を設置したものである。   An embodiment of the present invention using the DC arc furnace shown in FIG. 2 will be described below. The DC arc furnace shown in FIG. 2 is obtained by installing a carbonaceous material supply device on the DC arc furnace shown in FIG.

先ず、予熱室に約70トンの常温の冷鉄源を装入し、次いで、溶解室に50トンの常温の冷鉄源と1トンのコークスを装入して直径30インチの黒鉛製上部電極を用い、最大750V、130KAの電源容量により溶解を開始した。又、通電直後、生石灰と蛍石とを吹き込むと共に、酸素吹き込みランスから酸素を1800Nm3/hr、炭材吹き込みランスからコークスを96kg/minとして溶解室内に吹き込んだ。生石灰及び蛍石は加熱されて溶融スラグとなり、そして、酸素とコークスの吹き込みにより、溶融スラグはフォーミングして上部電極の先端は溶融スラグ中に埋没した。この時の電圧を550Vに設定した。この後、溶解室の上方にある炭材供給装置からコークスを500kg/minで溶解室内に連続投入して溶解を継続した。スクラップの溶解に対しては酸素吹き込み量は15Nm3/t、及びランスからのコークス吹き込み量は20kg/t、炭材供給装置からのコークスの添加量は36kg/tの条件で、電力の使用量は280kWh/tであった。 First, about 70 tons of cold iron source at room temperature is charged into the preheating chamber, then 50 tons of cold iron source at room temperature and 1 ton of coke are charged into the melting chamber, and a graphite upper electrode with a diameter of 30 inches. Was used to start dissolution with a power supply capacity of 750 V and 130 KA at maximum. Immediately after energization, quick lime and fluorite were blown into the melting chamber, oxygen from the oxygen blowing lance was 1800 Nm 3 / hr, and coke was blown from the carbon material blowing lance to 96 kg / min. Quicklime and fluorite were heated to form molten slag, and by blowing oxygen and coke, the molten slag formed and the tip of the upper electrode was buried in the molten slag. The voltage at this time was set to 550V. Thereafter, coke was continuously fed into the melting chamber at 500 kg / min from a carbonaceous material supply device located above the melting chamber to continue melting. For scrap melting, the amount of power used is 15 Nm 3 / t, the amount of coke blown from the lance is 20 kg / t, and the amount of coke added from the carbon material feeder is 36 kg / t. Was 280 kWh / t.

その後、予熱室内の鉄スクラップが溶解につれて下降したら、供給用バケットにて鉄スクラップを予熱室に装入し、予熱室内の鉄スクラップ高さを一定の高さに保持しながら溶解を続け、そして、溶解室内に140トン以上の溶湯が生成した時点で、140トンの溶湯を取鍋に出湯した。出湯時、重油バーナーにより溶湯を加熱した。出湯時の溶湯の炭素濃度は4.1mass%、硫黄濃度は0.04mass%、溶湯温度は1390℃であった。140トン出湯後、送酸とコークス吹き込みを行いながらスラグフォーミング操業を行って溶解を継続し、再び溶湯量が140トン以上になったら140トン出湯することを繰り返し実施した。   After that, when the iron scrap in the preheating chamber descends as it melts, the iron scrap is charged into the preheating chamber with the supply bucket, and continues to melt while maintaining the iron scrap height in the preheating chamber at a constant height, and When 140 tons or more of molten metal was generated in the melting chamber, 140 tons of molten metal was discharged into a ladle. The molten metal was heated with a heavy oil burner when the hot water was discharged. The carbon concentration of the molten metal at the time of tapping was 4.1 mass%, the sulfur concentration was 0.04 mass%, and the molten metal temperature was 1390 ° C. After 140 tons of hot water, slag forming operation was carried out while feeding acid and coke, and melting was continued. When the amount of molten metal reached 140 tons or more, 140 tons of hot water was repeatedly carried out.

操業条件及び操業結果を表1に併せて示す。   Table 1 shows the operation conditions and the operation results.

図2に示す直流式アーク炉を用いた場合は、炭材の添加量は同じでも、出湯時の溶湯の炭素濃度を高めることができた。また、ランスからの炭材の吹き込み量が低減することで吹き込み時間が短くなり、tap−tap時間を短縮することができた。   When the DC arc furnace shown in FIG. 2 was used, the carbon concentration of the molten metal at the time of tapping could be increased even if the amount of carbonaceous material added was the same. Further, the amount of carbon material blown from the lance was reduced, so that the blowing time was shortened and the tap-tap time was shortened.

実施例1の条件にて、コークスの替わりにバイオコークスとしてヤシガラ(PKS)炭を用いた。   Under the conditions of Example 1, coconut shell (PKS) charcoal was used as bio-coke instead of coke.

操業条件及び操業結果を表1に併せて示す。   Table 1 shows the operation conditions and the operation results.

ヤシガラ炭を用いても問題無く操業ができ、溶湯の硫黄濃度は0.01mass%以下であり、バイオマス由来の炭材であるバイオコークスを用いることで溶湯中の硫黄濃度を低減することができた。   Operation was possible without problems even when using coconut husk charcoal, and the sulfur concentration of the molten metal was 0.01 mass% or less, and the sulfur concentration in the molten metal could be reduced by using bio-coke, which is a biomass-derived charcoal. .

実施例2の条件にて、コークスの替わりにバイオコークスとしてヤシガラ(PKS)炭を用いた。   Under the conditions of Example 2, coconut shell (PKS) charcoal was used as bio-coke instead of coke.

操業条件及び操業結果を表1に併せて示す。   Table 1 shows the operation conditions and the operation results.

ヤシガラ炭を用いても問題無く操業ができ、溶湯の硫黄濃度は0.01mass%以下であり、バイオマス由来の炭材であるバイオコークスを用いることで溶湯中の硫黄濃度を低減することができた。   Operation was possible without problems even when using coconut husk charcoal, and the sulfur concentration of the molten metal was 0.01 mass% or less, and the sulfur concentration in the molten metal could be reduced by using bio-coke, which is a biomass-derived charcoal. .

実施例2の条件にて、コークスの添加量をスクラップの溶解に対して、ランスからは15kg/t、炭材供給装置からは20kg/tに変更して行った。出湯時の溶湯の炭素濃度は1.9mass%、硫黄濃度は0.04mass%、溶湯温度は1500℃であった。   Under the conditions of Example 2, the amount of coke added was changed to 15 kg / t from the lance and 20 kg / t from the carbonaceous material supply device for the dissolution of scrap. The carbon concentration of the molten metal at the time of tapping was 1.9 mass%, the sulfur concentration was 0.04 mass%, and the molten metal temperature was 1500 ° C.

操業条件及び操業結果を表1に併せて示す。   Table 1 shows the operation conditions and the operation results.

溶湯の炭素濃度が0.2mass%の場合に比較して、炭素濃度が1.9mass%の場合は出湯温度を低下させた操業を行うことができた。また、電力原単位が低下し、tap−tap時間も短縮することができた。   Compared with the case where the carbon concentration of the molten metal is 0.2 mass%, when the carbon concentration is 1.9 mass%, it was possible to perform the operation with the temperature of the molten metal lowered. In addition, the power consumption rate decreased, and the tap-tap time could be shortened.

実施例2の条件にて、コークスの添加量をスクラップの溶解に対して、ランスからは18kg/t、炭材供給装置からは20kg/tに変更して行った。出湯時の溶湯の炭素濃度は2.2mass%、硫黄濃度は0.04mass%、溶湯温度は1500℃であった。   Under the conditions of Example 2, the amount of coke added was changed to 18 kg / t from the lance and 20 kg / t from the carbonaceous material supply device for the dissolution of scrap. The carbon concentration of the molten metal at the time of tapping was 2.2 mass%, the sulfur concentration was 0.04 mass%, and the molten metal temperature was 1500 ° C.

操業条件及び操業結果を表1に併せて示す。   Table 1 shows the operation conditions and the operation results.

溶湯の炭素濃度が0.2mass%の場合に比較して、炭素濃度が2.2mass%の場合は出湯温度を低下させた操業を行うことができた。また、電力原単位が低下し、tap−tap時間も短縮することができた。   Compared with the case where the carbon concentration of the molten metal was 0.2 mass%, when the carbon concentration was 2.2 mass%, it was possible to perform the operation with the temperature of the molten metal lowered. In addition, the power consumption rate decreased, and the tap-tap time could be shortened.

アーク炉から出湯する溶湯と高炉溶銑と混ぜる時の発塵やスプラッシュの影響を明確にするために調査試験を行った。実験方法は、まず、溶解炉にて炭素濃度4.6mass%の溶銑を212kg溶解し(溶湯A)、鍋状の容器に移した。この溶銑の入った容器に炭素濃度を0.2〜4.2mass%まで0.4mass%間隔で変更した溶湯(溶湯B)を28kg注いで発塵とスプラッシュの量を目視にて調査した。結果を表2に示す。   In order to clarify the influence of dust generation and splash when mixing the molten metal discharged from the arc furnace and the blast furnace molten iron, a survey test was conducted. In the experiment method, first, 212 kg of hot metal having a carbon concentration of 4.6 mass% was melted in a melting furnace (molten metal A) and transferred to a pan-like container. 28 kg of molten metal (molten metal B) whose carbon concentration was changed from 0.2 to 4.2 mass% at intervals of 0.4 mass% was poured into this hot metal-containing container, and the amount of dust and splash was visually examined. The results are shown in Table 2.

Figure 2010265485
Figure 2010265485

溶湯Bの炭素濃度が1.0mass%以下である試験No.1およびNo.2では、C−O反応に伴う発塵およびスプラッシュが多量であり、環境上問題があった。また、鍋の溶湯で発泡(フォーミング)が起き、溶湯が溢れ出した。したがって危険なため操業の継続は困難であった。   Test No. 1 in which the carbon concentration of the molten metal B is 1.0 mass% or less. 1 and no. In No. 2, there was a large amount of dust and splash accompanying the C—O reaction, and there was an environmental problem. Moreover, foaming (forming) occurred in the molten metal in the pan, and the molten metal overflowed. Therefore, it was difficult to continue the operation because of the danger.

発塵とスプラッシュは溶湯Bの炭素濃度が上昇すると少なくなる傾向であり、試験No.3〜6では、C−O反応に伴う発塵およびスプラッシュが少量であり、また、フォーミングが少量で鍋から溶湯が溢れ出すこともなく安全に操業ができた。   Dust generation and splash tend to decrease as the carbon concentration of the molten metal B increases. In Nos. 3 to 6, dust generation and splash associated with the CO reaction were small, and the operation could be safely performed without forming the molten metal from the pan with a small amount of forming.

試験No.7およびNo.8では、発塵、スプラッシュおよびフォーミングが認められず、さらに環境上好ましい状態で操業を行うことができた。   Test No. 7 and no. In No. 8, dust generation, splash and forming were not recognized, and the operation could be performed in an environmentally favorable state.

1 アーク炉
2 溶解室
3 予熱室
4 炉壁
5 炉蓋
6 炉底電極
7 上部電極
8 酸素吹き込みランス
9 炭材吹き込みランス
10 バーナー
11 出鋼口
12 出滓口
13 供給用バケット
15 冷鉄源
17 溶湯
18 溶融スラグ
19 アーク
20 供給口
21 ダクト
22 扉
23 扉
24 走行台車
25 炭材供給装置
26 ホッパー
27 炭材
28 切り出し装置
29 供給シュート
DESCRIPTION OF SYMBOLS 1 Arc furnace 2 Melting chamber 3 Preheating chamber 4 Furnace wall 5 Furnace lid 6 Furnace bottom electrode 7 Upper electrode 8 Oxygen blowing lance 9 Carbon material blowing lance 10 Burner 11 Steel outlet 12 Steel outlet 13 Supply bucket 15 Cold iron source 17 Molten metal 18 Molten slag 19 Arc 20 Supply port 21 Duct 22 Door 23 Door 24 Traveling cart 25 Charcoal material supply device 26 Hopper 27 Carbon material 28 Cutting device 29 Supply chute

Claims (6)

溶解室と、該溶解室の上部に直結するシャフト型の予熱室とを具備し、前記溶解室で発生する排ガスを前記予熱室に導入して該予熱室内の冷鉄源を予熱するアーク炉を用い、前記冷鉄源が前記予熱室と前記溶解室とに存在する状態を保つように前記冷鉄源を前記予熱室へ供給しながら、前記溶解室でアーク加熱にて前記冷鉄源を溶解する際に、前記アーク炉から出湯する溶湯の炭素濃度を1mass%以上とすることを特徴とするアーク炉の操業方法。   An arc furnace comprising a melting chamber and a shaft-type preheating chamber directly connected to an upper portion of the melting chamber, and introducing an exhaust gas generated in the melting chamber into the preheating chamber to preheat a cold iron source in the preheating chamber. Used to melt the cold iron source by arc heating in the melting chamber while supplying the cold iron source to the preheating chamber so that the cold iron source remains in the preheating chamber and the melting chamber. When performing, the carbon concentration of the molten metal discharged from the said arc furnace shall be 1 mass% or more, The operating method of the arc furnace characterized by the above-mentioned. 溶解室内に炭材を添加することを特徴とする請求項1に記載のアーク炉の操業方法。   The method for operating an arc furnace according to claim 1, wherein a carbonaceous material is added to the melting chamber. 溶解室内に添加する炭材がバイオマス由来であることを特徴とする請求項2に記載のアーク炉の操業方法。   The method for operating an arc furnace according to claim 2, wherein the carbonaceous material added to the melting chamber is derived from biomass. 溶解室内に酸素を吹き込むことを特徴とする請求項1乃至請求項3のいずれかに記載のアーク炉の操業方法。   The method of operating an arc furnace according to any one of claims 1 to 3, wherein oxygen is blown into the melting chamber. 請求項1乃至請求項4のいずれかに記載のアーク炉の操業方法によって製造された溶湯を、転炉で精錬して溶鋼を得ることを特徴とする溶鋼の製造方法。   A molten steel produced by the arc furnace operating method according to any one of claims 1 to 4, wherein a molten steel is obtained by refining in a converter. 請求項1乃至請求項4のいずれかに記載のアーク炉の操業方法によって製造された溶湯の少なくとも一部を高炉溶銑と混合して、転炉で精錬して溶鋼を得ることを特徴とする溶鋼の製造方法。   A molten steel obtained by mixing at least a part of the molten metal produced by the method for operating an arc furnace according to any one of claims 1 to 4 with a blast furnace hot metal and refining in a converter to obtain molten steel. Manufacturing method.
JP2009115069A 2009-05-12 2009-05-12 Arc furnace operation method Active JP5552754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115069A JP5552754B2 (en) 2009-05-12 2009-05-12 Arc furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115069A JP5552754B2 (en) 2009-05-12 2009-05-12 Arc furnace operation method

Publications (2)

Publication Number Publication Date
JP2010265485A true JP2010265485A (en) 2010-11-25
JP5552754B2 JP5552754B2 (en) 2014-07-16

Family

ID=43362712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115069A Active JP5552754B2 (en) 2009-05-12 2009-05-12 Arc furnace operation method

Country Status (1)

Country Link
JP (1) JP5552754B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082997A (en) * 2011-09-28 2013-05-09 Jfe Steel Corp Converter steelmaking method
CN103185463A (en) * 2011-12-27 2013-07-03 钢铁普蓝特克股份有限公司 Arc furnace
JP2013136799A (en) * 2011-12-28 2013-07-11 Jfe Steel Corp Method for producing high-carbon molten iron using iron scrap
WO2013128786A1 (en) * 2012-02-29 2013-09-06 Jfeスチール株式会社 Rising heat material for converter
KR101320313B1 (en) 2011-12-14 2013-10-22 주식회사 포스코 Tilting apparatus for changing lower electrode of electric furnace
CN103791725A (en) * 2012-11-02 2014-05-14 西林钢铁集团有限公司 Method and device for storing ferroalloy
JP2017179574A (en) * 2016-03-31 2017-10-05 大陽日酸株式会社 Melting-refining furnace for cold iron source and operating method for the melting-refining furnace
WO2021035821A1 (en) * 2019-08-30 2021-03-04 东北大学 Cyclone flashing-speed reduction direct steelmaking system and process
CN114616349A (en) * 2019-11-06 2022-06-10 杰富意钢铁株式会社 Method for manufacturing molten iron based on electric furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344287A (en) * 1998-04-01 1999-12-14 Nkk Corp Operation of arc furnace
JP2000017319A (en) * 1998-06-26 2000-01-18 Nkk Corp Operation of arc furnace
JP2002173716A (en) * 2000-09-28 2002-06-21 Nkk Corp Method of recycling treatment for used automobile or used household electrical appliance
JP2002285225A (en) * 2001-03-23 2002-10-03 Nkk Corp Recycle treatment method for spent car or spent electric home appliances
JP2004100028A (en) * 2002-09-12 2004-04-02 Nippon Steel Corp Cold iron source melting method excellent in heat conductive efficiency
JP2004131778A (en) * 2002-10-09 2004-04-30 Kobe Steel Ltd Method of producing raw material for producing molten metal, and method of producing molten metal
JP2009046726A (en) * 2007-08-20 2009-03-05 Jp Steel Plantech Co Steelmaking method in arc furnace
JP2009102697A (en) * 2007-10-24 2009-05-14 Jfe Steel Corp Method for producing molten steel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344287A (en) * 1998-04-01 1999-12-14 Nkk Corp Operation of arc furnace
JP2000017319A (en) * 1998-06-26 2000-01-18 Nkk Corp Operation of arc furnace
JP2002173716A (en) * 2000-09-28 2002-06-21 Nkk Corp Method of recycling treatment for used automobile or used household electrical appliance
JP2002285225A (en) * 2001-03-23 2002-10-03 Nkk Corp Recycle treatment method for spent car or spent electric home appliances
JP2004100028A (en) * 2002-09-12 2004-04-02 Nippon Steel Corp Cold iron source melting method excellent in heat conductive efficiency
JP2004131778A (en) * 2002-10-09 2004-04-30 Kobe Steel Ltd Method of producing raw material for producing molten metal, and method of producing molten metal
JP2009046726A (en) * 2007-08-20 2009-03-05 Jp Steel Plantech Co Steelmaking method in arc furnace
JP2009102697A (en) * 2007-10-24 2009-05-14 Jfe Steel Corp Method for producing molten steel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082997A (en) * 2011-09-28 2013-05-09 Jfe Steel Corp Converter steelmaking method
KR101320313B1 (en) 2011-12-14 2013-10-22 주식회사 포스코 Tilting apparatus for changing lower electrode of electric furnace
CN103185463A (en) * 2011-12-27 2013-07-03 钢铁普蓝特克股份有限公司 Arc furnace
CN103185463B (en) * 2011-12-27 2015-04-01 钢铁普蓝特克股份有限公司 Arc furnace
JP2013136799A (en) * 2011-12-28 2013-07-11 Jfe Steel Corp Method for producing high-carbon molten iron using iron scrap
CN104160042A (en) * 2012-02-29 2014-11-19 杰富意钢铁株式会社 Rising heat material for converter
WO2013128786A1 (en) * 2012-02-29 2013-09-06 Jfeスチール株式会社 Rising heat material for converter
JPWO2013128786A1 (en) * 2012-02-29 2015-07-30 Jfeスチール株式会社 Heat converter for converter
CN103791725A (en) * 2012-11-02 2014-05-14 西林钢铁集团有限公司 Method and device for storing ferroalloy
JP2017179574A (en) * 2016-03-31 2017-10-05 大陽日酸株式会社 Melting-refining furnace for cold iron source and operating method for the melting-refining furnace
US11053559B2 (en) 2016-03-31 2021-07-06 Taiyo Nippon Sanso Corporation Melting and refining furnace for cold iron source and method of operating melting and refining furnace
WO2021035821A1 (en) * 2019-08-30 2021-03-04 东北大学 Cyclone flashing-speed reduction direct steelmaking system and process
CN114616349A (en) * 2019-11-06 2022-06-10 杰富意钢铁株式会社 Method for manufacturing molten iron based on electric furnace
CN114616349B (en) * 2019-11-06 2024-04-02 杰富意钢铁株式会社 Method for manufacturing molten iron based on electric furnace

Also Published As

Publication number Publication date
JP5552754B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5552754B2 (en) Arc furnace operation method
SU1496637A3 (en) Method and apparatus for continuous refining of steel in electric furnace
JP5413043B2 (en) Converter steelmaking method using a large amount of iron scrap
JP5236926B2 (en) Manufacturing method of molten steel
JP5909957B2 (en) Steel making method using steel scrap
JPH0726318A (en) Operation of electric furnace for steelmaking
JP5589688B2 (en) Hot metal production method
EA029843B1 (en) Method for making steel in an electric arc furnace and electric arc furnace
JP5625654B2 (en) Hot metal production method
JP3721154B2 (en) Method for refining molten metal containing chromium
JP5549198B2 (en) Steel making method using steel scrap
JP4077533B2 (en) Metal melting method
JP5942425B2 (en) Method for producing high-carbon molten iron using iron scrap
JP6237664B2 (en) Arc furnace operating method and molten steel manufacturing method
WO2022234762A1 (en) Electric furnace and steelmaking method
JP2000017319A (en) Operation of arc furnace
JP5581760B2 (en) Method for removing copper in steel scrap and method for producing molten steel using steel scrap as an iron source
RU2610975C2 (en) Method of steel production in electric arc furnace
JPH11344287A (en) Operation of arc furnace
WO2023054345A1 (en) Molten iron production method
JPH02200713A (en) Device and method for producing molten iron
WO2022163219A1 (en) Method for refining molten iron
RU2437941C1 (en) Procedure for melting steel in arc steel melting furnace with increased consumption of liquid iron
JPH09165613A (en) Scrap melting method
JP2000008115A (en) Melting of cold iron source

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5552754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250