JP2009102697A - Method for producing molten steel - Google Patents

Method for producing molten steel Download PDF

Info

Publication number
JP2009102697A
JP2009102697A JP2007276052A JP2007276052A JP2009102697A JP 2009102697 A JP2009102697 A JP 2009102697A JP 2007276052 A JP2007276052 A JP 2007276052A JP 2007276052 A JP2007276052 A JP 2007276052A JP 2009102697 A JP2009102697 A JP 2009102697A
Authority
JP
Japan
Prior art keywords
melting chamber
iron
molten
chamber
scrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007276052A
Other languages
Japanese (ja)
Other versions
JP5236926B2 (en
Inventor
Hideaki Mizukami
秀昭 水上
Katsuhiro Iwasaki
克博 岩崎
Takeshi Nakayama
剛 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
JFE Steel Corp
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Engineering Corp filed Critical JFE Steel Corp
Priority to JP2007276052A priority Critical patent/JP5236926B2/en
Publication of JP2009102697A publication Critical patent/JP2009102697A/en
Application granted granted Critical
Publication of JP5236926B2 publication Critical patent/JP5236926B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing molten steel by which in production of the molten steel using iron-scrap and blast furnace molten iron together, electric power consumption is reduced by efficiently melting the iron-scrap and at the same time, steel coming up to a high-class steel produced by a blast furnace-converter method can be produced by decreasing the concentration of impurities such as Cu mixed from the scraps as much as possible. <P>SOLUTION: The method for producing the molten steel is characterized in that the method is carried out using an arc-furnace provided with a melting chamber and a shaft type preheating chamber which is directly connected with the melting chamber and into which exhaust gas generated in the melting chamber is introduced, and that the blast furnace molten iron is directly charged into the melting chamber and also, while continuously or intermittently charging the iron-scrap into the preheating chamber so as to keep a state where the iron-scrap is present continuously in the preheating chamber and the melting chamber, the iron-scrap and the blast furnace molten iron in the melting chamber are heated with arc and the iron-scrap is melted to tap off the molten metal, then after mixing at least a part of the molten metal with the blast furnace molten iron thereby desulfurizing the molten metal, the molten metal is refined in a converter to obtain the molten steel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉄源として鉄スクラップと高炉溶銑とを併用して溶鋼を製造する方法に関するものである。   The present invention relates to a method for producing molten steel using iron scrap and blast furnace hot metal as an iron source.

製鋼用アーク炉では、アーク熱にて鉄スクラップ等の鉄源を加熱・溶解し、その後炉内で精錬して溶鋼を製造するが、多くの電力を消費するため、溶解中にアーク炉の溶解室から発生する高温の排ガスを利用して鉄スクラップを予熱し、予熱した鉄スクラップを溶解することで電力使用量を削減する方法が多数提案されている。   In an arc furnace for steelmaking, an iron source such as iron scrap is heated and melted with arc heat, and then refined in the furnace to produce molten steel. However, since much electric power is consumed, the arc furnace melts during melting. Many methods have been proposed for preheating iron scrap using high-temperature exhaust gas generated from a room and melting the preheated iron scrap to reduce power consumption.

その代表的なものが、本発明者らが先に提案した発明で、溶解室と、溶解室に直結し、溶解室で発生する排ガスが導入されるシャフト型の予熱室と、を具備したアーク炉を用い、鉄スクラップが予熱室と溶解室とに連続して存在する状態を保つように、鉄スクラップを連続的又は断続的に予熱室へ装入しながら、溶解室の鉄スクラップをアークにて加熱して鉄スクラップを溶解し、溶解室に少なくとも1ヒート分の溶湯が溜まった時点で、鉄スクラップが予熱室と溶解室とに連続して存在する状態で溶湯を出湯するアーク炉でのスクラップ溶解方法である(特許文献1参照。)。   A typical example of the invention previously proposed by the present inventors is an arc comprising a melting chamber and a shaft type preheating chamber directly connected to the melting chamber and into which exhaust gas generated in the melting chamber is introduced. Use a furnace to arc the iron scrap in the melting chamber while charging the steel scrap continuously or intermittently into the preheating chamber so that the iron scrap is continuously present in the preheating chamber and the melting chamber. When the iron scrap is melted by heating and melts at least one heat in the melting chamber, the iron scrap is discharged in a state where the iron scrap is continuously present in the preheating chamber and the melting chamber. This is a scrap melting method (see Patent Document 1).

一方、最近のアーク炉による製造品種の高級鋼化に伴い、鉄スクラップから混入するCu、Sn、Cr等の不純物を希釈するために、溶銑を鉄スクラップと共に鉄源として使用する操業が開示されている。   On the other hand, with the recent production of high-grade steel in an arc furnace, an operation in which hot metal is used as an iron source together with iron scrap to dilute impurities such as Cu, Sn, and Cr mixed from iron scrap is disclosed. Yes.

例えば、本発明者らは先に、溶解室と、溶解室に直結し、溶解室で発生する排ガスが導入されるシャフト型の予熱室と、を具備したアーク炉での操業方法であって、高炉溶銑を溶解室に直接装入すると共に、鉄スクラップが予熱室と溶解室とに連続して存在する状態を保つように、鉄スクラップを連続的又は断続的に予熱室へ装入しながら、溶解室の鉄スクラップ及び高炉溶銑をアークにて加熱して鉄スクラップを溶解し、溶解室に少なくとも1ヒート分の溶鋼が溜まった時点で、鉄スクラップが予熱室と溶解室とに連続して存在する状態で溶鋼を出鋼することを特徴とするアーク炉操業方法を提案している(特許文献2参照。)。   For example, the present inventors are an operating method in an arc furnace including a melting chamber and a shaft-type preheating chamber that is directly connected to the melting chamber and into which exhaust gas generated in the melting chamber is introduced, While charging the blast furnace hot metal directly into the melting chamber and continuously charging iron scrap into the preheating chamber continuously or intermittently so that the iron scrap is continuously present in the preheating chamber and the melting chamber, When the iron scrap in the melting room and the blast furnace hot metal are heated with an arc to melt the iron scrap, the iron scrap is continuously present in the preheating chamber and the melting chamber when at least one heat of molten steel has accumulated in the melting chamber. An arc furnace operating method is proposed (see Patent Document 2).

さらに、本発明者らは、Cuを多量に含む使用済み自動車又は使用済み家電機器からシュレッダー処理を施さずに得られた廃車プレス屑又は廃家電屑を上記の特許文献1、2に記載のアーク炉と同様のアーク溶解炉で溶解して溶銑を製造し、溶解室内に所定量の溶銑が生成した時点で出湯した後、高炉溶銑と混ぜて(希釈して)その後転炉で精錬して溶鋼を製造することを特徴とする使用済み自動車又は使用済み家電機器のリサイクル処理方法を提案している(特許文献3参照。)。
特開平10−292990号公報 特開2000−17319号公報 特開2002−173716号公報
Furthermore, the present inventors use the arcs described in Patent Documents 1 and 2 above as waste car press waste or waste home appliance waste obtained without performing shredder processing from a used automobile or used home appliance containing a large amount of Cu. It is melted in the same arc melting furnace as the furnace to produce hot metal. After a predetermined amount of hot metal is produced in the melting chamber, the hot water is poured out, and then mixed (diluted) with the blast furnace hot metal and then refined in the converter to obtain molten steel Has been proposed (see Patent Document 3).
JP-A-10-292990 JP 2000-17319 A JP 2002-173716 A

上記の特許文献2に記載の技術により、スクラップを予熱して効率よくアーク溶解すると同時に、50%程度の高炉溶銑を混合して用いることにより、鉄スクラップから混入するCu、Sn等の不純物濃度を希釈できるが、これでも高炉―転炉法で製造される鋼の不純物濃度にはほど遠く、薄板等の高級鋼種には適用できない。例えばCu濃度が0.2mass%程度の溶鋼は製造できるが、0.05mass%以下とするのは困難である。これは、高炉溶銑のCu濃度は0.01〜0.02mass%程度であるが、スクラップ中のCu濃度は0.4mass%程度であり、スクラップと溶銑の配合比率が1:1でCu濃度は約0.2mass%となるためである。   By the technique described in Patent Document 2 above, the scrap is preheated and efficiently arc-melted, and at the same time, by mixing and using about 50% of blast furnace hot metal, the concentration of impurities such as Cu and Sn mixed from iron scrap can be reduced. Although it can be diluted, it is still far from the impurity concentration of steel produced by the blast furnace-converter method and cannot be applied to high-grade steel grades such as thin plates. For example, molten steel having a Cu concentration of about 0.2 mass% can be produced, but it is difficult to make it 0.05 mass% or less. This is because the Cu concentration in the blast furnace hot metal is about 0.01 to 0.02 mass%, but the Cu concentration in the scrap is about 0.4 mass%, the mixing ratio of scrap and hot metal is 1: 1, and the Cu concentration is It is because it becomes about 0.2 mass%.

一方、特許文献3に記載の技術によりスクラップを溶解して、溶銑を電気炉で製造し、高炉溶銑と混合することでCuを希釈することができる(例えば、電気炉溶銑1に対し高炉溶銑4の割合で混ぜると、0.05mass%のCu濃度となる)。しかし、炭素(C)濃度が0.1〜0.5mass%の鋼組成のスクラップを、電気炉でコークス等炭材を添加しながら溶解し、C濃度およそ4mass%の溶銑を製造するのには、コークス塊を溶湯中に投入して溶湯中に浸炭させる方法では非常に時間がかかり、通常の1ヒート分の溶鋼量の溶製時間(およそ40分から1時間以内)内では不可能である。また、浸炭を早くする目的で1〜2mm以下の粒径の微細なコークス粉を溶湯中に吹き込む方法があるが、この方法ではコークス粉が溶湯中に歩留まらず、飛散してしまうことが問題である。尚、上記の「1ヒート分の溶鋼量」とは、取鍋等の溶鋼保持搬送容器の1つの容器に収容される溶鋼量である。   On the other hand, it is possible to dilute the scrap by melting the scrap by the technique described in Patent Document 3, manufacturing the hot metal in an electric furnace, and mixing it with the blast furnace hot metal (for example, the blast furnace hot metal 4 relative to the electric furnace hot metal 1). If it mixes in the ratio, it will become 0.05 mass% Cu density | concentration). However, in order to produce a hot metal having a C concentration of about 4 mass%, a steel composition scrap having a carbon (C) concentration of 0.1 to 0.5 mass% is melted while adding a carbonaceous material such as coke in an electric furnace. The method in which the coke lump is put into the molten metal and carburized in the molten metal takes a very long time, and is impossible within the normal melting time (approximately 40 minutes to 1 hour) of the molten steel for one heat. In addition, there is a method in which fine coke powder having a particle size of 1 to 2 mm or less is blown into the molten metal for the purpose of speeding carburization, but this method has a problem that the coke powder does not stay in the molten metal and is scattered. It is. In addition, said "the amount of molten steel for 1 heat" is the amount of molten steel accommodated in one container of molten steel holding | maintenance conveyance containers, such as a ladle.

本発明はこのような事情に鑑みなされたもので、その目的とするところは、鉄スクラップと高炉溶銑とを併用して溶鋼を製造する際に、効率良く鉄スクラップを溶解して電力使用量を削減すると同時にスクラップから混入するCu等不純物の濃度を極力下げて、高炉―転炉法で製造する高級鋼に匹敵する鋼の製造を可能とする、溶鋼の製造方法を提供することである。   The present invention has been made in view of such circumstances. The purpose of the present invention is to efficiently melt iron scrap and reduce the amount of power used when manufacturing molten steel using iron scrap and blast furnace hot metal in combination. It is an object of the present invention to provide a method for producing molten steel, which can reduce the concentration of impurities such as Cu mixed from scraps as much as possible and can produce steel comparable to high-grade steel produced by a blast furnace-converter method.

このような課題を解決するための本発明の特徴は以下の通りである。
第1の発明による溶鋼の製造方法は、溶解室と、溶解室に直結し、溶解室で発生する排ガスが導入されるシャフト型の予熱室と、を具備したアーク炉を用い、高炉溶銑を溶解室に直接装入すると共に、鉄スクラップが予熱室と溶解室とに連続して存在する状態を保つように、鉄スクラップを連続的又は断続的に予熱室へ装入しながら、溶解室の鉄スクラップ及び高炉溶銑をアークにて加熱して鉄スクラップを溶解して溶湯を出湯し、次に、この溶湯の少なくとも一部を高炉溶銑と混合して脱硫した後、転炉で精錬して溶鋼を得ることを特徴とする溶鋼の製造方法。
第2の発明による溶鋼の製造方法は、第1の発明において、溶解室内に酸素を吹き込むことを特徴とするものである。
第3の発明による溶鋼の製造方法は、第2の発明において、溶解室内に補助熱源として炭材を吹き込むことを特徴とするものである。
第4の発明による溶鋼の製造方法は、第3の発明を行う際に、アーク炉から出湯する溶湯の炭素濃度を2mass%以上とすることを特徴とするものである。
The features of the present invention for solving such problems are as follows.
According to a first aspect of the present invention, there is provided a molten steel manufacturing method using an arc furnace including a melting chamber and a shaft-type preheating chamber directly connected to the melting chamber and into which exhaust gas generated in the melting chamber is introduced. In addition to charging directly into the chamber, the iron in the melting chamber is charged while continuously or intermittently charging the iron scrap into the preheating chamber so that the iron scrap is continuously present in the preheating chamber and the melting chamber. Scrap and blast furnace hot metal are heated with an arc to melt iron scrap to discharge molten metal. Next, at least a portion of this molten metal is mixed with blast furnace hot metal and desulfurized, and then refined in a converter to produce molten steel. A method for producing molten steel, comprising: obtaining a molten steel.
The method for producing molten steel according to the second invention is characterized in that, in the first invention, oxygen is blown into the melting chamber.
The method for producing molten steel according to the third invention is characterized in that, in the second invention, carbonaceous material is blown into the melting chamber as an auxiliary heat source.
The method for producing molten steel according to the fourth invention is characterized in that, when carrying out the third invention, the carbon concentration of the molten metal discharged from the arc furnace is set to 2 mass% or more.

上記の発明において、アーク炉からの溶湯の出湯は、鉄スクラップが予熱室と溶解室とに連続して存在する状態で行うことが好ましい。   In the above invention, it is preferable that the molten metal is discharged from the arc furnace in a state where iron scrap is continuously present in the preheating chamber and the melting chamber.

本発明においては、高炉溶銑をアーク炉の溶解室へ直接装入して使用する。そのため、溶銑の有する潜熱及び顕熱により鉄スクラップは昇温され、鉄スクラップを少ない電力使用量で迅速に溶解することが可能となる。又、高炉溶銑は炭素を約4mass%含有しているので、溶解室内に酸素を吹き込み、溶銑中炭素を酸素で燃焼させることで、炭素の燃焼熱が電力エネルギーの代替になると同時に、発生する高温のCOガスがシャフト内の鉄スクラップを予熱するので、電力原単位の低減と溶解の迅速性とが一層促進される。更に、溶解室内に炭材を吹き込み、炭材を酸素により燃焼させることで、炭材は溶銑中炭素と同一の作用効果を発揮して電力原単位の低減に寄与する。と同時に溶銑中のC量の減少を防止する。また、アーク炉から出湯される溶湯は、例えば50mass%分の高炉溶銑を投入して溶解した場合、およそ0.2mass%のCuの溶銑となるので、これをさらに高炉溶銑(Cu濃度:0.01〜0.02mass%)と1:4程度の割合で混合すると0.05mass%以下のCu濃度の溶銑が得られ、薄板用の鋼種にも適用できる。また、転炉で精錬する前に脱硫工程を経由するので、炭材を補助的に吹きこむ場合に炭材から混入するSも低減することができる。   In the present invention, the blast furnace hot metal is used by directly charging it into the melting chamber of the arc furnace. Therefore, the iron scrap is heated by the latent heat and sensible heat of the hot metal, and the iron scrap can be quickly melted with a small amount of power consumption. Also, since the blast furnace hot metal contains about 4 mass% of carbon, oxygen is blown into the melting chamber and the carbon in the hot metal is burned with oxygen, so that the combustion heat of carbon becomes a substitute for electric power energy and at the same time the generated high temperature Since the CO gas preheats the iron scrap in the shaft, the reduction of the power consumption and the speed of melting are further promoted. Further, the carbon material is blown into the melting chamber, and the carbon material is burned with oxygen, so that the carbon material exhibits the same effect as the carbon in the hot metal and contributes to the reduction of the electric power consumption. At the same time, the amount of C in the hot metal is prevented from decreasing. Further, when the molten metal discharged from the arc furnace is melted by introducing, for example, 50 mass% of blast furnace hot metal, it becomes approximately 0.2 mass% of Cu molten iron. 01 to 0.02 mass%) and a ratio of about 1: 4, a hot metal having a Cu concentration of 0.05 mass% or less can be obtained and can be applied to a steel type for a thin plate. In addition, since the desulfurization step is performed before refining in the converter, S mixed from the carbon material when the carbon material is blown in an auxiliary manner can be reduced.

尚、アーク炉から出湯される溶湯のCu濃度が最初から低くなるように、アーク炉内に装入する高炉溶銑の割合を高めることも考えられそうであるが(例えば、アーク炉内でスクラップ1:高炉溶銑9の割合で溶解)、そのような操業ではスクラップの処理効率が著しく低下する。   Although it seems possible to increase the proportion of the blast furnace hot metal charged in the arc furnace so that the Cu concentration of the molten metal discharged from the arc furnace is reduced from the beginning (for example, scrap 1 in the arc furnace). : Melting at the ratio of blast furnace hot metal 9), such an operation significantly reduces the scrap processing efficiency.

また、アーク炉から出湯する溶湯のC濃度を2mass%以上に保つことにより、高炉溶銑と混ぜる時の発塵の問題がなくなる。C濃度が2mass%未満であると(例えばC濃度1.0mass%以下)高炉溶銑鉄と混ぜる際に、高炉溶銑中のCとアーク炉からの溶湯中の酸素の反応によりC−O反応がおこり、これにより、発塵し、環境上の問題になる。それゆえ、アーク炉から出湯する溶湯のC濃度を2mass%以上とすることが好ましい。   Further, by maintaining the C concentration of the molten metal discharged from the arc furnace at 2 mass% or more, the problem of dust generation when mixed with the blast furnace molten iron is eliminated. When the C concentration is less than 2 mass% (for example, C concentration of 1.0 mass% or less), when mixed with blast furnace molten iron, C—O reaction occurs due to the reaction between C in the blast furnace molten iron and oxygen in the molten metal from the arc furnace. This will generate dust and cause environmental problems. Therefore, it is preferable that the C concentration of the molten metal discharged from the arc furnace is 2 mass% or more.

アーク炉から出湯する溶湯のC濃度を2mass%以上とするためには、アーク炉内に吹き込む炭材と酸素の量は酸素1Nm3に対し炭材(C分として)1kg以上が必要である。これにより、酸素を吹き込んでも、高炉溶銑中のCの低減が防止でき、スクラップと高炉溶銑を1:1の割合で混合した場合に最終的に得られる溶湯のC%はおよそ2mass%以上を得ることができる。 In order to set the C concentration of the molten metal discharged from the arc furnace to 2 mass% or more, the amount of the carbon material and oxygen blown into the arc furnace needs to be 1 kg or more of carbon material (as C content) with respect to 1 Nm 3 of oxygen. Thereby, even if oxygen is blown in, reduction of C in the blast furnace hot metal can be prevented, and when the scrap and the blast furnace hot metal are mixed at a ratio of 1: 1, C% of the molten metal finally obtained is about 2 mass% or more. be able to.

尚、本発明で用いる「1ヒート分の溶鋼」とは、連続鋳造等の鋳造作業に用いる取鍋等の溶鋼保持搬送容器の1つの容器に収容される溶鋼量であり、これは鋳造作業を実施する建物のクレーン等の吊り上げ荷重から決まる量である。又、本発明で使用する高炉溶銑は、高炉や溶融還元炉で製造されるものを言う。   In addition, "the molten steel for 1 heat" used by this invention is the amount of molten steel accommodated in one container of molten steel holding | maintenance conveyance containers, such as a ladle used for casting operations, such as continuous casting. The amount is determined from the lifting load of the crane of the building to be implemented. Moreover, the blast furnace hot metal used in the present invention refers to one manufactured in a blast furnace or a smelting reduction furnace.

本発明によれば、鉄スクラップと高炉溶銑とを併用して溶鋼を製造する際に、効率良く鉄スクラップを溶解して電力使用量を削減できると共に、溶鋼の不純物濃度を下げることができる。   ADVANTAGE OF THE INVENTION According to this invention, when manufacturing molten steel using iron scrap and blast furnace hot metal together, iron scrap can be melt | dissolved efficiently and the amount of electric power used can be reduced, and the impurity concentration of molten steel can be lowered | hung.

これにより、鉄スクラップを用いて高炉―転炉法で製造する高級鋼に匹敵する鋼が製造できる。   This makes it possible to produce steel that is equivalent to high-grade steel produced by blast furnace-converter using iron scrap.

本発明を図面に基づき説明する。図1及び図2は、本発明の実施に用いるアーク炉の一実施形態である。図1及び図2は、アーク炉設備の縦断面概略図であり、図1は溶解途中の状態を示す図であり、図2は溶解室への溶銑装入時を示す図である。図3は、図1、2に示すアーク炉を用いた本発明の一実施形態の説明図である。   The present invention will be described with reference to the drawings. 1 and 2 show an embodiment of an arc furnace used for carrying out the present invention. 1 and 2 are schematic longitudinal sectional views of an arc furnace facility, FIG. 1 is a view showing a state in the middle of melting, and FIG. 2 is a view showing a state in which hot metal is charged into a melting chamber. FIG. 3 is an explanatory view of an embodiment of the present invention using the arc furnace shown in FIGS.

図1及び図2において、アーク炉1は溶解室2と予熱室3とを具備し、内部を耐火物で構築され、底部に炉底電極6を備えた溶解室2の上部には、シャフト型の予熱室3と水冷構造の炉壁4とが配置され、この予熱室3で覆われない炉壁4の上部開口部は、開閉自在な水冷構造の炉蓋5で覆われている。この炉蓋5を貫通して、溶解室2内へ上下移動可能な黒鉛製の上部電極7が設けられ、直流式のアーク炉1の基部が構成されている。炉底電極6と上部電極7とは直流電源(図示せず)に連結し、炉底電極6と上部電極7との間でアーク19を発生させる。   1 and 2, an arc furnace 1 includes a melting chamber 2 and a preheating chamber 3, the inside of which is constructed of a refractory, and a shaft type is provided at the top of the melting chamber 2 having a furnace bottom electrode 6 at the bottom. The preheating chamber 3 and the water-cooled furnace wall 4 are disposed, and the upper opening of the furnace wall 4 not covered with the pre-heating chamber 3 is covered with a water-cooling furnace lid 5 that can be freely opened and closed. An upper electrode 7 made of graphite that can move up and down into the melting chamber 2 through the furnace lid 5 is provided, and the base of the DC arc furnace 1 is configured. The furnace bottom electrode 6 and the upper electrode 7 are connected to a DC power source (not shown), and an arc 19 is generated between the furnace bottom electrode 6 and the upper electrode 7.

予熱室3の上方には、走行台車24に吊り下げられた底開き型の供給用バケット13が設けられ、この供給用バケット13から、予熱室3の上部に設けた開閉自在な供給口20を介して鉄スクラップ15が予熱室3内に装入される。そして、予熱室3の上端に設けられたダクト21は集塵機(図示せず)に連結し、溶解室2で発生する高温の排ガスは、予熱室3及びダクト21を順に通って吸引され、予熱室3内の鉄スクラップ15は予熱される。そして、予熱された鉄スクラップ15は、溶解室2内で溶解される鉄スクラップ15の量に見合って、溶解室2内に自由落下し、溶解室2へ装入される。   Above the preheating chamber 3, a bottom-opening type supply bucket 13 suspended from the traveling carriage 24 is provided, and an openable / closable supply port 20 provided at the upper portion of the preheating chamber 3 is provided from the supply bucket 13. Then, the iron scrap 15 is charged into the preheating chamber 3. The duct 21 provided at the upper end of the preheating chamber 3 is connected to a dust collector (not shown), and the high-temperature exhaust gas generated in the melting chamber 2 is sucked through the preheating chamber 3 and the duct 21 in this order, and the preheating chamber. The iron scrap 15 in 3 is preheated. Then, the preheated iron scrap 15 freely falls into the melting chamber 2 in accordance with the amount of the iron scrap 15 to be melted in the melting chamber 2 and is charged into the melting chamber 2.

炉蓋5を貫通して、溶解室2内を上下移動可能な酸素吹き込みランス8と炭材吹き込みランス9とが設けられ、酸素吹き込みランス8からは酸素が溶解室2内に吹き込まれ、炭材吹き込みランス9からは空気や窒素等を搬送用ガスとしてコークス、チャー、石炭、木炭、黒鉛等の炭材が溶解室2内に吹き込まれる。又、溶解室2の予熱室3を設置した部位の反対側には、その炉底に、扉22で出口側を押さえ付けられて内部に詰め砂又はマッド剤が充填された出鋼口11と、その側壁に、扉23で出口側を押さえ付けられて内部に詰め砂又はマッド剤が充填された出滓口12とが設けられている。この出鋼口11の鉛直上方に対応する部位の炉蓋5には、バーナー10が取り付けられている。バーナー10は、重油、灯油、微粉炭、プロパンガス、天然ガス等の化石燃料を、空気又は酸素若しくは酸素富化空気により溶解室2内で燃焼させる。バーナー10は必要に応じて取り付けることができる。   An oxygen blowing lance 8 and a carbonaceous material blowing lance 9 that pass through the furnace lid 5 and can move up and down in the melting chamber 2 are provided, and oxygen is blown into the melting chamber 2 from the oxygen blowing lance 8, and the carbonaceous material. From the blowing lance 9, carbon materials such as coke, char, coal, charcoal, and graphite are blown into the melting chamber 2 using air, nitrogen, or the like as a carrier gas. Also, on the opposite side of the melting chamber 2 from the part where the preheating chamber 3 is installed, there is a steel outlet 11 in which the outlet side is pressed against the furnace bottom by a door 22 and filled with packed sand or mud agent. The side wall is provided with an outlet 12 that is pressed on the outlet side by a door 23 and filled with stuffed sand or mud agent. A burner 10 is attached to the furnace cover 5 at a position corresponding to the upper part of the steel outlet 11. The burner 10 burns fossil fuels such as heavy oil, kerosene, pulverized coal, propane gas, and natural gas in the melting chamber 2 by air or oxygen or oxygen-enriched air. The burner 10 can be attached as needed.

溶解室2の上方にはクレーン(図示せず)が設置されており、上部電極7、酸素吹き込みランス8、炭材吹き込みランス9、及びバーナー10が予め取り外された炉蓋5を開放して、クレーンにて搬送された供給用取鍋14aから溶銑16を溶解室2内に装入する構造になっている。   A crane (not shown) is installed above the melting chamber 2, and the upper electrode 7, the oxygen blowing lance 8, the carbonaceous material blowing lance 9, and the furnace lid 5 from which the burner 10 has been removed in advance are opened, The molten iron 16 is charged into the melting chamber 2 from the supply ladle 14a conveyed by the crane.

この直流式のアーク炉1における操業は、先ず、供給用バケット13より予熱室3内に鉄スクラップ15を装入する。予熱室3内に装入された鉄スクラップ15は、溶解室2内にも装入され、やがて予熱室3内を充填する。次いで、図2に示すように、炉蓋5を開放して高炉溶銑16を収容する供給用取鍋14aをクレーンにて溶解室2の直上に搬送し、供給用取鍋14aから溶解室2内に溶銑16を装入する。装入完了後、炉蓋5を閉め、上部電極7を溶解室2内に下降させる。又、生石灰、蛍石等のフラックスを炉壁4に設けた供給口(図示せず)から溶解室2内に装入する。尚、溶解室2内へ鉄スクラップ15を均一に装入するため、炉蓋5を開けた状態で、予熱室3と反対側の溶解室2内に鉄スクラップ15を装入することもできる。   In operation in the DC arc furnace 1, first, iron scrap 15 is charged into the preheating chamber 3 from the supply bucket 13. The iron scrap 15 charged into the preheating chamber 3 is also charged into the melting chamber 2 and eventually fills the preheating chamber 3. Next, as shown in FIG. 2, the supply ladle 14 a that opens the furnace lid 5 and accommodates the blast furnace molten iron 16 is conveyed directly above the melting chamber 2 by a crane, and is supplied from the supply ladle 14 a to the melting chamber 2. The hot metal 16 is charged into After the completion of charging, the furnace lid 5 is closed and the upper electrode 7 is lowered into the melting chamber 2. Further, flux such as quicklime and fluorite is charged into the melting chamber 2 from a supply port (not shown) provided in the furnace wall 4. In order to uniformly charge the iron scrap 15 into the melting chamber 2, the iron scrap 15 can be charged into the melting chamber 2 on the side opposite to the preheating chamber 3 with the furnace lid 5 opened.

次いで、炉底電極6と上部電極7との間に直流電流を給電しつつ上部電極7を昇降させ、高炉溶銑16と上部電極7との間、又は、装入された鉄スクラップ15と上部電極7との間でアーク19を発生させ、アーク熱により鉄スクラップ15を溶解する。同時に、フラックスを溶解して溶融スラグ18を生成させる。溶融スラグ18は、生成される溶湯17を保温する。溶融スラグ18の量が多すぎる場合には、操業中でも出滓口12から、排滓することができる。   Next, while feeding a direct current between the furnace bottom electrode 6 and the upper electrode 7, the upper electrode 7 is moved up and down, or between the blast furnace hot metal 16 and the upper electrode 7, or the charged iron scrap 15 and the upper electrode. 7 is generated, and the iron scrap 15 is melted by arc heat. At the same time, the flux is melted to produce molten slag 18. The molten slag 18 keeps the generated molten metal 17 warm. If the amount of the molten slag 18 is too large, it can be discharged from the spout 12 during operation.

通電後、酸素吹き込みランス8及び炭材吹き込みランス9の溶解室2内への挿入が可能となったら、図1に示すように、酸素吹き込みランス8及び炭材吹き込みランス9から、酸素及び炭材を溶解室2内の溶銑16又は溶融スラグ18中に吹き込むことが好ましい。   When the oxygen blowing lance 8 and the carbonaceous material blowing lance 9 can be inserted into the melting chamber 2 after energization, the oxygen and carbonaceous material are supplied from the oxygen blowing lance 8 and the carbonaceous material blowing lance 9 as shown in FIG. Is preferably blown into the molten iron 16 or molten slag 18 in the melting chamber 2.

溶銑16中の炭素は酸素と反応して脱炭され、反応生成物のCOガスが溶融スラグ18をフォーミングさせ、アーク19が溶融スラグ18に包まれるので、アーク19の着熱効率が上昇する。又、大量に発生する高温のCOガスと、このCOガスが燃焼して生成するCO2ガスとが、予熱室3内の鉄スクラップ15を効率良く予熱する。酸素吹き込み量は、溶解開始から出湯までの間に溶解室2内で滞留する溶湯17のトン当たり15Nm3(以下、「Nm3/t」と記載する。)以上とすることが好ましい。 The carbon in the hot metal 16 reacts with oxygen to be decarburized, and the reaction product CO gas forms the molten slag 18 and the arc 19 is wrapped in the molten slag 18, so that the heat receiving efficiency of the arc 19 is increased. Further, the high-temperature CO gas generated in large quantities and the CO 2 gas generated by combustion of this CO gas efficiently preheats the iron scrap 15 in the preheating chamber 3. Oxygen blowing amount per tonne 15 Nm 3 of the molten metal 17 to be retained in the melting chamber 2 between the dissolution start to tapping (hereinafter referred to as "Nm 3 / t".) Is preferably not less than.

溶解室2内に吹き込まれ、溶湯17中に溶解した炭材又は溶融スラグ18中に懸濁した炭材は、酸素と反応して燃焼熱を発生し、補助熱源として作用して電力使用量を節約すると同時に、溶銑16中にもともと存在していた炭素と同様、アーク19の着熱効率を上昇させると共に、鉄スクラップ15の予熱効率を向上させる。この炭材の吹き込み量は、酸素吹き込み量に対応して決められる。即ち、吹き込まれる炭材の炭素量が、吹き込まれる酸素の化学等量に等しいまたはそれ以上の炭材を吹き込むこととすることが好ましい。吹き込まれる炭材が少なくて酸素吹き込み量に比べて少ないと、例えば高炉溶銑とスクラップの比率が1:1の場合、溶湯17の最終C濃度が2mass%以下になることとなり、好ましくない。   The carbonaceous material blown into the melting chamber 2 and dissolved in the molten metal 17 or suspended in the molten slag 18 reacts with oxygen to generate combustion heat and acts as an auxiliary heat source to reduce the amount of power used. At the same time, as with the carbon originally present in the hot metal 16, the heat deposition efficiency of the arc 19 is increased and the preheating efficiency of the iron scrap 15 is improved. The amount of carbon material blown is determined according to the amount of oxygen blown. That is, it is preferable to blow in a carbon material in which the carbon amount of the carbon material to be blown is equal to or more than the chemical equivalent of the blown oxygen. If the amount of carbon material to be blown is small and the amount of blown oxygen is small, for example, when the ratio of the blast furnace hot metal and scrap is 1: 1, the final C concentration of the molten metal 17 becomes 2 mass% or less, which is not preferable.

又、溶解室2内の鉄スクラップ15の溶解に伴い、予熱室3内の鉄スクラップ15は溶解室2内で溶解された量に見合って溶解室2内に自由落下して減少するので、この減少分を補うために供給用バケット13から予熱室3へ鉄スクラップ15を装入する。この鉄スクラップ15の予熱室3内への装入は、鉄スクラップ15が予熱室3と溶解室2とに連続して存在する状態を保つように、連続的又は断続的に行う。その際に、予熱室3と溶解室2とに連続して存在する鉄スクラップ15の量を、1回の出湯量の鉄スクラップ15の50mass%以上とすることが好ましい。   Further, as the iron scrap 15 in the melting chamber 2 is melted, the iron scrap 15 in the preheating chamber 3 falls free in the melting chamber 2 in accordance with the amount melted in the melting chamber 2 and decreases. In order to compensate for the decrease, iron scrap 15 is charged into the preheating chamber 3 from the supply bucket 13. The charging of the iron scrap 15 into the preheating chamber 3 is performed continuously or intermittently so that the iron scrap 15 is continuously present in the preheating chamber 3 and the melting chamber 2. At that time, it is preferable that the amount of the iron scrap 15 continuously present in the preheating chamber 3 and the melting chamber 2 is 50 mass% or more of the iron scrap 15 of a single hot water discharge amount.

このようにして鉄スクラップ15及び溶銑16を加熱して鉄スクラップ15を溶解し、溶解室2内に溶湯17を溜めると共に、溶湯17の炭素濃度を測定し、必要により炭材吹き込みランス9からの炭材吹き込み量とを調整して溶湯17の炭素濃度を2%以上に調整する。次いで、傾動装置(図示せず)により溶解室2を傾動して出湯口11から溶湯保持搬送容器30(図3)に溶湯17を出湯する。この場合、溶湯17中に鉄スクラップ15が埋没して共存しているので、溶湯温度は1400℃程度になり、大きな溶湯過熱度を得ることができない。そのため、出湯口11の閉塞等の溶湯温度の低下に伴うトラブルを防止するため、出湯時にバーナー10で溶湯17を加熱することが好ましい。   In this way, the iron scrap 15 and the molten iron 16 are heated to melt the iron scrap 15, and the molten metal 17 is stored in the melting chamber 2, and the carbon concentration of the molten metal 17 is measured. The carbon concentration of the molten metal 17 is adjusted to 2% or more by adjusting the carbon material blowing amount. Next, the melting chamber 2 is tilted by a tilting device (not shown), and the molten metal 17 is discharged from the hot water outlet 11 to the molten metal holding conveyance container 30 (FIG. 3). In this case, since the iron scrap 15 is buried and coexists in the molten metal 17, the molten metal temperature is about 1400 ° C., and a high degree of molten metal superheat cannot be obtained. Therefore, it is preferable to heat the molten metal 17 with the burner 10 at the time of hot water discharge in order to prevent troubles associated with a decrease in the molten metal temperature such as blockage of the hot water outlet 11.

出湯後、図3に示すように、高炉溶銑の入っている鍋31で、高炉溶銑と1:4程度(アーク炉の溶湯1:高炉溶銑4)となるようアーク炉からの溶湯を混ぜ、その後、鍋31において溶湯の脱硫を行う脱硫工程を経て、転炉32で脱炭処理を行い、溶鋼を得る。   After the hot water, as shown in FIG. 3, in the pan 31 containing the blast furnace molten iron, the molten metal from the arc furnace is mixed with the blast furnace molten iron so as to be about 1: 4 (arc furnace molten metal 1: blast furnace molten iron 4). After the desulfurization step of desulfurizing the molten metal in the pan 31, the decarburization process is performed in the converter 32 to obtain molten steel.

一方アーク炉1は、溶湯17を出湯し、更に溶融スラグ18を排滓した後、溶解室2を傾動装置にて水平に戻し、出湯口11及び出滓口12内に詰め砂又はマッド材を充填し、次いで、高炉溶銑16を溶解室2へ再度装入して操業を継続する。次回の加熱(ヒート)は予熱された鉄スクラップ15で溶解を開始することができる。   On the other hand, the arc furnace 1 discharges the molten metal 17 and discharges the molten slag 18. Then, the melting chamber 2 is returned to the horizontal position by a tilting device, and stuffed sand or mud material is placed in the outlet 11 and the outlet 12. Then, the blast furnace hot metal 16 is charged again into the melting chamber 2 and the operation is continued. The next heating (heat) can start melting with the preheated iron scrap 15.

このようにして、鉄スクラップ15と高炉溶銑16とを加熱・溶解することで、溶銑16の有する潜熱及び顕熱により鉄スクラップ15が昇温されることに加えて、操業の最初のヒートで溶解する鉄スクラップ15は予熱されないが、その後のヒートで溶解される鉄スクラップ15は全て予熱されて予熱効率の極めて高い状態で操業可能となることにより、生産性の向上と電力原単位の低減とが可能になる。また、アーク炉出湯後の溶湯は、さらに高炉溶銑と混合するので、スクラップ中のCu濃度が高くても、高炉溶銑による希釈効果により、Cu濃度0.05mass%以下の高級鋼の製造にも用いることができる。また、この際に、アーク炉から出湯される溶湯のC濃度を2mass%以上に保つことで、アーク炉から出湯される溶湯と高炉溶銑とを混ぜる場合の発塵の問題も避けることができる。   In this way, by heating and melting the iron scrap 15 and the blast furnace hot metal 16, the iron scrap 15 is heated by the latent heat and sensible heat of the hot metal 16, and melted in the first heat of operation. The iron scrap 15 is not preheated, but all the iron scrap 15 melted by the subsequent heat is preheated and can be operated with extremely high preheating efficiency, thereby improving productivity and reducing power consumption. It becomes possible. Moreover, since the molten metal after the discharge from the arc furnace is further mixed with the blast furnace hot metal, even if the Cu concentration in the scrap is high, it is also used for producing high-grade steel having a Cu concentration of 0.05 mass% or less due to the dilution effect of the blast furnace hot metal. be able to. At this time, by maintaining the C concentration of the molten metal discharged from the arc furnace at 2 mass% or more, the problem of dust generation when mixing the molten metal discharged from the arc furnace and the blast furnace molten iron can be avoided.

尚、上記説明では、高炉溶銑16を溶解開始前に溶解室2内に装入しているが、高炉溶銑16の溶解室2への装入時期は上記に限るものではなく、溶解途中であっても良い。又、溶銑16の装入方法も上記に限るものではなく、炉壁4を貫通する樋を設けて樋から装入しても良い。樋にて装入すれば炉蓋5を開閉する必要がなく、生産性の向上及び電力原単位の低減が更に達成される。又、上記説明では、アーク炉1が直流式の場合について説明したが、交流式アーク炉を用いる場合であっても全く支障なく本発明を適用することができる。   In the above description, the blast furnace hot metal 16 is charged into the melting chamber 2 before the start of melting. However, the charging time of the blast furnace hot metal 16 into the melting chamber 2 is not limited to the above, and it is in the middle of melting. May be. Further, the method for charging the molten iron 16 is not limited to the above, and a rod that penetrates the furnace wall 4 may be provided and charged from the rod. If it is charged with firewood, it is not necessary to open and close the furnace lid 5, and further improvement in productivity and reduction in power consumption are achieved. In the above description, the case where the arc furnace 1 is a direct current type has been described. However, the present invention can be applied without any problem even when an alternating current type arc furnace is used.

図1に示す直流式アーク炉を用いた場合の本発明の実施例を以下に説明する。アーク炉は、溶解室が炉径7.2m、高さ4m、予熱室が幅3m、長さ5m、高さ7m、炉容量が180トンである。先ず、予熱室に約70トンの常温の鉄スクラップを装入し、次いで、溶解室に約70トンの溶銑(炭素濃度;4.5mass%)と、30トンの常温の鉄スクラップとを装入して直径30インチの黒鉛製上部電極を用い、最大750V、130KAの電源容量により溶解を開始した。又、通電直後、生石灰と蛍石とを添加すると共に、酸素吹き込みランスから酸素を1800Nm3/hr、炭材吹き込みランスからコークスを36kg/minとして溶解室内に吹き込んだ。生石灰及び蛍石は加熱されて溶融スラグとなり、そして、酸素とコークスの吹き込みにより、溶融スラグはフォーミングして上部電極の先端は溶融スラグ中に埋没した。この時の電圧を550Vに設定した。なお、スクラップの溶解に対しては酸素吹き込み量は15Nm3/t、及びコークス吹き込み量は18kg/tの条件で、電力の使用量は130kWh/tであった。 An embodiment of the present invention using the DC arc furnace shown in FIG. 1 will be described below. In the arc furnace, the melting chamber has a furnace diameter of 7.2 m, a height of 4 m, the preheating chamber has a width of 3 m, a length of 5 m, a height of 7 m, and a furnace capacity of 180 tons. First, about 70 tons of normal-temperature iron scrap is charged into the preheating chamber, and then about 70 tons of hot metal (carbon concentration: 4.5 mass%) and 30 tons of normal-temperature iron scrap are charged into the melting chamber. Then, using a graphite upper electrode having a diameter of 30 inches, melting was started with a maximum power supply capacity of 750 V and 130 KA. Immediately after energization, quick lime and fluorite were added, and oxygen was blown into the melting chamber at 1800 Nm 3 / hr from an oxygen blowing lance and coke at 36 kg / min from a charcoal blowing lance. Quicklime and fluorite were heated to form molten slag, and by blowing oxygen and coke, the molten slag formed and the tip of the upper electrode was buried in the molten slag. The voltage at this time was set to 550V. For scrap melting, the oxygen blowing rate was 15 Nm 3 / t, the coke blowing rate was 18 kg / t, and the power consumption was 130 kWh / t.

その後、予熱室内の鉄スクラップが溶解につれて下降したら、供給用バケットにて鉄スクラップを予熱室に装入し、予熱室内の鉄スクラップ高さを一定の高さに保持しながら溶解を続け、そして、溶解室内に140トン以上の溶湯が生成した時点で、140トンの溶湯を取鍋に出湯した。出湯時、重油バーナーにより溶湯を加熱した。出湯時の溶湯の炭素濃度は2.3mass%で、溶湯温度は1420℃であった。また、Cu濃度は0.18mass%であった。出湯後、70トンの高炉溶銑を溶解室に再度装入し、次いで、酸素とコークスの吹き込みを再開し、再び溶湯量が140トン以上になったら140トン出湯することを繰り返し実施した。   Then, when the iron scrap in the preheating chamber descends as it melts, the iron scrap is charged into the preheating chamber with the supply bucket, and continues to melt while maintaining the iron scrap height in the preheating chamber at a constant height, and When 140 tons or more of molten metal was generated in the melting chamber, 140 tons of molten metal was discharged into a ladle. The molten metal was heated with a heavy oil burner when the hot water was discharged. The carbon concentration of the molten metal at the time of tapping was 2.3 mass%, and the molten metal temperature was 1420 ° C. The Cu concentration was 0.18 mass%. After pouring, 70 tons of blast furnace hot metal was charged again into the melting chamber, and then oxygen and coke blowing was resumed. When the amount of molten metal reached 140 tons or more, 140 tons of hot water was repeatedly discharged.

一方出湯後の溶湯(炭素濃度は2.3mass%で、Cu濃度は0.18mass%)の半分約70トンを230トンの高炉溶銑に混ぜ、トータル300トンにしにて脱硫し、その後転炉で脱炭し、1620℃に昇温した後、溶鋼を出鋼して連続鋳造機により鋳造した。この時の鋼はCu濃度が0.5mass%であった。アーク炉から取鍋に出湯した溶湯の、残りの半分約70トンも同様に処理して鋳造した。   On the other hand, about 70 tons of half of the molten metal (carbon concentration is 2.3 mass%, Cu concentration is 0.18 mass%) is mixed with 230 tons of blast furnace hot metal and desulfurized to a total of 300 tons. After decarburizing and raising the temperature to 1620 ° C., the molten steel was removed and cast by a continuous casting machine. The steel at this time had a Cu concentration of 0.5 mass%. About 70 tons of the other half of the molten metal discharged from the arc furnace to the ladle was similarly processed and cast.

本発明の実施に用いるアーク炉の一実施形態であり、アーク炉設備の縦断面概略図である。It is one Embodiment of the arc furnace used for implementation of this invention, and is a longitudinal cross-sectional schematic diagram of an arc furnace equipment. 本発明の実施に用いるアーク炉の一実施形態であり、アーク炉設備の縦断面概略図である。It is one Embodiment of the arc furnace used for implementation of this invention, and is a longitudinal cross-sectional schematic diagram of an arc furnace equipment. 本発明の一実施形態の説明図。Explanatory drawing of one Embodiment of this invention.

符号の説明Explanation of symbols

1 アーク炉
2 溶解室
3 予熱室
4 炉壁
5 炉蓋
6 炉底電極
7 上部電極
8 酸素吹き込みランス
9 炭材吹き込みランス
10 バーナー
11 出鋼口
12 出滓口
13 供給用バケット
14a、b 供給用取鍋
15 鉄スクラップ
16 溶銑
17 溶湯
18 溶融スラグ
19 アーク
20 供給口
21 ダクト
22 扉
23 扉
24 走行台車
30 溶湯保持搬送容器
31 鍋
32 転炉
DESCRIPTION OF SYMBOLS 1 Arc furnace 2 Melting chamber 3 Preheating chamber 4 Furnace wall 5 Furnace lid 6 Furnace bottom electrode 7 Upper electrode 8 Oxygen blowing lance 9 Carbon material blowing lance 10 Burner 11 Steel outlet 12 Steel outlet 13 Supply bucket 14a, b Supply Ladle 15 Iron scrap 16 Hot metal 17 Molten metal 18 Molten slag 19 Arc 20 Supply port 21 Duct 22 Door 23 Door 24 Traveling carriage 30 Molten metal holding and conveying container 31 Pot 32 Converter

Claims (4)

溶解室と、溶解室に直結し、溶解室で発生する排ガスが導入されるシャフト型の予熱室と、を具備したアーク炉を用い、高炉溶銑を溶解室に直接装入すると共に、鉄スクラップが予熱室と溶解室とに連続して存在する状態を保つように、鉄スクラップを連続的又は断続的に予熱室へ装入しながら、溶解室の鉄スクラップ及び高炉溶銑をアークにて加熱して鉄スクラップを溶解して溶湯を出湯し、次に、この溶湯の少なくとも一部を高炉溶銑と混合して脱硫した後、転炉で精錬して溶鋼を得ることを特徴とする溶鋼の製造方法。   Using an arc furnace equipped with a melting chamber and a shaft type preheating chamber that is directly connected to the melting chamber and into which exhaust gas generated in the melting chamber is introduced, the blast furnace hot metal is directly charged into the melting chamber, Heat the iron scrap and blast furnace hot metal in the melting chamber with an arc while continuously or intermittently charging the steel scrap into the preheating chamber so that the preheating chamber and the melting chamber are continuously present. A method for producing molten steel, comprising melting iron scrap and discharging molten metal, then mixing and desulfurizing at least part of the molten metal with blast furnace hot metal, and then refining in a converter to obtain molten steel. 溶解室内に酸素を吹き込むことを特徴とする請求項1に記載の溶鋼の製造方法。   The method for producing molten steel according to claim 1, wherein oxygen is blown into the melting chamber. 溶解室内に補助熱源として炭材を吹き込むことを特徴とする請求項2に記載の溶鋼の製造方法。   The method for producing molten steel according to claim 2, wherein carbonaceous material is blown into the melting chamber as an auxiliary heat source. アーク炉から出湯する溶湯の炭素濃度を2mass%以上とすることを特徴とする請求項3に記載の溶鋼の製造方法。   The method for producing molten steel according to claim 3, wherein the carbon concentration of the molten metal discharged from the arc furnace is 2 mass% or more.
JP2007276052A 2007-10-24 2007-10-24 Manufacturing method of molten steel Active JP5236926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007276052A JP5236926B2 (en) 2007-10-24 2007-10-24 Manufacturing method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007276052A JP5236926B2 (en) 2007-10-24 2007-10-24 Manufacturing method of molten steel

Publications (2)

Publication Number Publication Date
JP2009102697A true JP2009102697A (en) 2009-05-14
JP5236926B2 JP5236926B2 (en) 2013-07-17

Family

ID=40704677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007276052A Active JP5236926B2 (en) 2007-10-24 2007-10-24 Manufacturing method of molten steel

Country Status (1)

Country Link
JP (1) JP5236926B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265485A (en) * 2009-05-12 2010-11-25 Jfe Steel Corp Method for operating arc-furnace
JP2011080143A (en) * 2009-09-10 2011-04-21 Jfe Steel Corp Method for producing molten pig iron
JP2011084811A (en) * 2009-09-15 2011-04-28 Jfe Steel Corp Method for producing molten pig iron
JP2011111625A (en) * 2009-11-24 2011-06-09 Jfe Steel Corp Steel-making method using iron scrap
JP2012092435A (en) * 2010-09-29 2012-05-17 Jfe Steel Corp Steelmaking method using iron scrap
CN104190883A (en) * 2014-07-11 2014-12-10 宁夏共享装备有限公司 Automatic stream inoculation device of iron discharged from electric furnace and automatic stream inoculation method thereof
CN114174541A (en) * 2019-09-10 2022-03-11 杰富意钢铁株式会社 Method for manufacturing molten iron based on electric furnace
WO2024085385A1 (en) * 2022-10-17 2024-04-25 현대제철 주식회사 Steelmaking method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059600A (en) * 1991-01-31 1993-01-19 Sumitomo Metal Ind Ltd Production of pig iron
JPH06212227A (en) * 1993-01-19 1994-08-02 Nippon Steel Corp Method for melting iron scrap
JP2000017319A (en) * 1998-06-26 2000-01-18 Nkk Corp Operation of arc furnace
JP2000345229A (en) * 1999-06-02 2000-12-12 Nkk Corp Method for arc-melting cold iron source
JP2002173716A (en) * 2000-09-28 2002-06-21 Nkk Corp Method of recycling treatment for used automobile or used household electrical appliance
JP2002285225A (en) * 2001-03-23 2002-10-03 Nkk Corp Recycle treatment method for spent car or spent electric home appliances

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059600A (en) * 1991-01-31 1993-01-19 Sumitomo Metal Ind Ltd Production of pig iron
JPH06212227A (en) * 1993-01-19 1994-08-02 Nippon Steel Corp Method for melting iron scrap
JP2000017319A (en) * 1998-06-26 2000-01-18 Nkk Corp Operation of arc furnace
JP2000345229A (en) * 1999-06-02 2000-12-12 Nkk Corp Method for arc-melting cold iron source
JP2002173716A (en) * 2000-09-28 2002-06-21 Nkk Corp Method of recycling treatment for used automobile or used household electrical appliance
JP2002285225A (en) * 2001-03-23 2002-10-03 Nkk Corp Recycle treatment method for spent car or spent electric home appliances

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265485A (en) * 2009-05-12 2010-11-25 Jfe Steel Corp Method for operating arc-furnace
JP2011080143A (en) * 2009-09-10 2011-04-21 Jfe Steel Corp Method for producing molten pig iron
JP2011084811A (en) * 2009-09-15 2011-04-28 Jfe Steel Corp Method for producing molten pig iron
JP2011111625A (en) * 2009-11-24 2011-06-09 Jfe Steel Corp Steel-making method using iron scrap
JP2012092435A (en) * 2010-09-29 2012-05-17 Jfe Steel Corp Steelmaking method using iron scrap
CN104190883A (en) * 2014-07-11 2014-12-10 宁夏共享装备有限公司 Automatic stream inoculation device of iron discharged from electric furnace and automatic stream inoculation method thereof
WO2016004834A1 (en) * 2014-07-11 2016-01-14 宁夏共享装备有限公司 Automated in-stream inoculation apparatus for iron discharged from electric furnace and automated in-stream inoculation method
CN114174541A (en) * 2019-09-10 2022-03-11 杰富意钢铁株式会社 Method for manufacturing molten iron based on electric furnace
WO2024085385A1 (en) * 2022-10-17 2024-04-25 현대제철 주식회사 Steelmaking method

Also Published As

Publication number Publication date
JP5236926B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
SU1496637A3 (en) Method and apparatus for continuous refining of steel in electric furnace
JP5552754B2 (en) Arc furnace operation method
JP5236926B2 (en) Manufacturing method of molten steel
JPH0442452B2 (en)
KR101188518B1 (en) Process for producing molten iron
JP7364899B2 (en) Melting method of cold iron source with slag reduction
JPS6294792A (en) Method and device for continuously preheating charging material for steel-making furnace
JP5909957B2 (en) Steel making method using steel scrap
WO2018110171A1 (en) Electric furnace
JP5589688B2 (en) Hot metal production method
EA029843B1 (en) Method for making steel in an electric arc furnace and electric arc furnace
JP5625654B2 (en) Hot metal production method
JP5549198B2 (en) Steel making method using steel scrap
JP3721154B2 (en) Method for refining molten metal containing chromium
JP5581760B2 (en) Method for removing copper in steel scrap and method for producing molten steel using steel scrap as an iron source
JP4077533B2 (en) Metal melting method
JPH11344287A (en) Operation of arc furnace
JPH0136903Y2 (en)
JP2000017319A (en) Operation of arc furnace
WO2024185210A1 (en) Method for producing molten iron
US4023962A (en) Process for regenerating or producing steel from steel scrap or reduced iron
JP7388563B2 (en) Electric furnace and steel manufacturing method
JP2022500556A (en) Refining method of low nitrogen steel using an electric furnace
JP2000008115A (en) Melting of cold iron source
WO2023054345A1 (en) Molten iron production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

R150 Certificate of patent or registration of utility model

Ref document number: 5236926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250