JP5942425B2 - Method for producing high-carbon molten iron using iron scrap - Google Patents

Method for producing high-carbon molten iron using iron scrap Download PDF

Info

Publication number
JP5942425B2
JP5942425B2 JP2011287095A JP2011287095A JP5942425B2 JP 5942425 B2 JP5942425 B2 JP 5942425B2 JP 2011287095 A JP2011287095 A JP 2011287095A JP 2011287095 A JP2011287095 A JP 2011287095A JP 5942425 B2 JP5942425 B2 JP 5942425B2
Authority
JP
Japan
Prior art keywords
iron
carbon
scrap
molten iron
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011287095A
Other languages
Japanese (ja)
Other versions
JP2013136799A (en
Inventor
純仁 小澤
純仁 小澤
松野 英寿
英寿 松野
鶴田 秀和
秀和 鶴田
陽三 岩城
陽三 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011287095A priority Critical patent/JP5942425B2/en
Publication of JP2013136799A publication Critical patent/JP2013136799A/en
Application granted granted Critical
Publication of JP5942425B2 publication Critical patent/JP5942425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、主原料として鉄スクラップ及び溶銑を使用し、上底吹き転炉型の精錬炉やアーク炉などを用いて高炭素溶鉄を製造する方法に関し、詳しくは、鉄スクラップの加熱及び加炭のために使用する炭材からの温室効果ガスの発生量を削減することのできる高炭素溶鉄の製造方法に関する。   The present invention relates to a method for producing high carbon molten iron using an upper bottom blown converter type refining furnace or arc furnace using iron scrap and hot metal as main raw materials, and more specifically, heating and carburizing of iron scrap. The present invention relates to a method for producing high-carbon molten iron capable of reducing the amount of greenhouse gas generated from carbonaceous materials used for the purpose.

近年、地球環境の保護及び地球温暖化防止の目的から、CO2ガス排出量の削減が重要な課題となっている。特に、製鉄所においては、CO2ガスの排出量削減は、企業の存続にも関わる最重要の課題となっている。一方、省資源及び環境問題の観点から、近年になって発生量の多い鉄スクラップを製鉄所でリサイクル使用して、鋼製品を製造することが技術課題となっている。これは、高炉での溶銑の製造では、鉄鉱石を還元し且つ溶融するために多大なエネルギーを要するのに対し、鉄スクラップは溶解熱のみを必要としており、鉄スクラップを利用することで、鉄鉱石の還元熱分のエネルギー使用量を少なくすることができ、省エネルギー及びCO2ガス削減を実現できるという利点があるからである。 In recent years, reduction of CO 2 gas emissions has become an important issue for the purpose of protecting the global environment and preventing global warming. In particular, in steelworks, reducing CO 2 gas emissions is the most important issue related to the survival of companies. On the other hand, from the viewpoints of resource saving and environmental problems, in recent years, it has become a technical problem to manufacture steel products by recycling and recycling iron scraps that are generated in large quantities at steelworks. This is because hot metal production in a blast furnace requires a great deal of energy to reduce and melt iron ore, whereas iron scrap requires only heat of melting. This is because the amount of energy used for reducing heat of the stone can be reduced, and there is an advantage that energy saving and CO 2 gas reduction can be realized.

ところで、鉄スクラップを用いて溶融鉄を製造する精錬装置として、従来、一般的にアーク炉が使用されていた。しかし、従来のアーク炉の場合は、鉄スクラップの溶解に多くの電力を消費することから、我が国のように電力価格が高い場合には、製造コストが高くなる。そこで、アーク炉を使用することなく鉄スクラップを経済的に溶解する方法として、酸素ガス供給能力の高い転炉型精錬炉を用い、安価な炭材を酸素ガスで燃焼させ、炭材の燃焼熱を熱源として鉄スクラップを溶解し、溶融鉄を製造する方法が提案されている。   By the way, conventionally, an arc furnace has been generally used as a refining apparatus for producing molten iron using iron scrap. However, in the case of a conventional arc furnace, a large amount of electric power is consumed for melting iron scrap. Therefore, when the electric power price is high as in Japan, the manufacturing cost becomes high. Therefore, as a method for economically melting iron scrap without using an arc furnace, a converter-type smelting furnace with a high oxygen gas supply capacity is used, an inexpensive carbon material is burned with oxygen gas, and the combustion heat of the carbon material is There has been proposed a method for producing molten iron by melting iron scrap using as a heat source.

例えば、特許文献1には、酸素上吹き装置及び炉底に設置された炭材導入ノズルを備える酸素上底吹き転炉内で、前記炭材導入ノズルから吹き込む炭材を燃焼させて鉄スクラップなどの固体鉄原料を溶解して溶鋼を製造する方法において、転炉内で所望の出鋼量よりも10〜30%多量の溶鋼(「付加的溶鋼」という)を製造し、所望の出鋼量を出鋼した後、次のチャージで、前記付加的溶鋼を固体鉄原料と一緒に使用し、溶鋼を製造する方法が提案されている。   For example, in Patent Document 1, in an oxygen top bottom blowing converter equipped with an oxygen top blowing device and a carbon material introduction nozzle installed at the furnace bottom, the carbon material blown from the carbon material introduction nozzle is burned to produce iron scrap, etc. In the method of producing molten steel by melting the solid iron raw material, 10-30% more molten steel (referred to as “additional molten steel”) is produced in the converter than the desired amount of produced steel, and the desired amount of produced steel After the steel is produced, a method for producing the molten steel by using the additional molten steel together with the solid iron raw material at the next charge is proposed.

しかしながら、特許文献1で燃料として使用するコークスや黒鉛などの化石燃料由来の炭材は、燃焼すると大気中のCO2ガス量を増加させる。地球温暖化防止の観点から、化石燃料由来の炭材は、その使用量を極力低減すべきである。 However, carbon materials derived from fossil fuels such as coke and graphite used as fuel in Patent Document 1 increase the amount of CO 2 gas in the atmosphere when burned. From the viewpoint of preventing global warming, the amount of fossil fuel-derived carbon should be reduced as much as possible.

また、特許文献2には、種湯と溶融スラグの存在する溶解専用転炉に、含鉄冷材、炭材、酸素、造滓材を供給して含鉄冷材を加炭・溶解して高炭素溶鉄を得る際に、前記溶解専用転炉からの出湯時に、高炭素溶鉄の一部を炉内に残し、次回の含鉄冷材の加炭・溶解操業の種湯として使用するとともに、溶解専用転炉内の溶融スラグの全部或いは一部を炉内に残し、次回の含鉄冷材の加炭・溶解操業時の鉄ダストの飛散を防止するカバースラグとして使用する技術が提案されている。   In Patent Document 2, iron-containing cold material, carbonaceous material, oxygen, and ironmaking material are supplied to a melting-only converter in which seed hot water and molten slag exist, and the iron-containing cold material is carburized and melted to obtain high carbon. When obtaining molten iron, at the time of discharging from the melting converter, a part of the high-carbon molten iron is left in the furnace and used as seed water for the next carburizing and melting operation of iron-containing cold material. A technique has been proposed in which all or part of the molten slag in the furnace is left in the furnace and used as a cover slag to prevent the scattering of iron dust during the next carburizing / melting operation of iron-containing cold material.

しかしながら、特許文献2の溶解専用転炉で加炭材及び燃料として使用するコークス、石炭などの炭材は硫黄の含有量が多く、製造される高炭素溶鉄の硫黄濃度が高くなり、出湯された後の高炭素溶鉄に対して脱硫処理が必要となる。また、特許文献1と同様に、特許文献2で燃料として使用するコークスや黒鉛などの化石燃料由来の炭材は、燃焼すると大気中のCO2ガス量を増加させるので、地球温暖化防止の観点からその使用量は極力低減すべきである。 However, carbon materials such as coke and coal used as a carburized material and fuel in the converter exclusively for melting in Patent Document 2 have a high sulfur content, and the sulfur concentration of the high-carbon molten iron produced is high and discharged. Desulfurization treatment is required for the later high carbon molten iron. Similarly to Patent Document 1, carbon materials derived from fossil fuels such as coke and graphite used as fuel in Patent Document 2 increase the amount of CO 2 gas in the atmosphere when burned. Therefore, the amount used should be reduced as much as possible.

一方、特許文献3には、従来のアーク炉における電力原単位を改善するべく、鉄スクラップと溶銑とを鉄源としてアーク炉に装入し、且つ、該アーク炉に炭材及び酸素ガスを供給し、炭材の酸素ガスによる燃焼熱を利用して炭素濃度が4.0質量%以上の溶銑を製造する方法が提案されている。   On the other hand, in Patent Document 3, in order to improve the electric power consumption in a conventional arc furnace, iron scrap and hot metal are used as an iron source and charged into the arc furnace, and carbon materials and oxygen gas are supplied to the arc furnace. In addition, there has been proposed a method for producing hot metal having a carbon concentration of 4.0% by mass or more using the heat of combustion of carbonaceous material by oxygen gas.

しかしながら、特許文献3で燃料として使用するコークス、石炭、黒鉛などの化石燃料由来の炭材は、特許文献1、2と同様に、燃焼すると大気中のCO2ガス量を増加させることから、地球温暖化防止の観点から、化石燃料由来の炭材は、その使用量を極力低減すべきである。 However, since carbon materials derived from fossil fuels such as coke, coal, and graphite used as fuel in Patent Document 3 increase the amount of CO 2 gas in the atmosphere when burned, as in Patent Documents 1 and 2 , From the viewpoint of preventing global warming, the amount of fossil fuel-derived carbon should be reduced as much as possible.

特開昭56−58916号公報JP-A-56-58916 特開平1−8214号公報Japanese Patent Laid-Open No. 1-8214 特開2011−111625号公報JP 2011-111625 A

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鉄スクラップを用いて高炭素溶鉄を製造するにあたり、カーボンニュートラルであるバイオマス由来の炭材を、コークスや石炭などの化石燃料由来の炭材に替わる熱源及び加炭材として有効利用し、これによって温室効果ガス発生量を削減することのできる、鉄スクラップを用いた高炭素溶鉄の製造方法を提供することである。   The present invention has been made in view of the above circumstances, and the purpose of the present invention is to produce carbon-derived carbonaceous material, which is carbon neutral, using fossil such as coke and coal. It is intended to provide a method for producing high-carbon molten iron using iron scrap that can be effectively used as a heat source and a carburizing material that replaces a fuel-derived carbon material, and thereby reduce the amount of greenhouse gas generation.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]鉄スクラップ及び溶銑を鉄源として精錬炉内に装入し、次いで、該精錬炉内に酸素ガスを供給し、前記精錬炉内の前記鉄スクラップを精錬炉内に供給した炭材の前記酸素ガスによる燃焼熱及び前記溶銑の顕熱によって溶解するとともに、前記鉄スクラップを前記炭材及び前記溶銑によって加炭し、炭素濃度が3.0質量%以上の高炭素溶鉄を前記精錬炉内で製造する方法であって、前記炭材の一部または全部としてバイオマス由来の炭材を使用することを特徴とする、鉄スクラップを用いた高炭素溶鉄の製造方法。
[2]前記精錬炉が、前記酸素ガスを上吹き供給する上底吹き転炉型の精錬炉であることを特徴とする、上記[1]に記載の鉄スクラップを用いた高炭素溶鉄の製造方法。
[3]前記精錬炉が、アーク炉であって、前記炭材の燃焼熱及び前記溶銑の顕熱に加えて発生するアークの熱で、前記鉄スクラップを溶解することを特徴とする、上記[1]に記載の鉄スクラップを用いた高炭素溶鉄の製造方法。
[4]前記バイオマス由来の炭材の硫黄濃度が0.10質量%以下であることを特徴とする、上記[1]ないし上記[3]の何れか1項に記載の鉄スクラップを用いた高炭素溶鉄の製造方法。
[5]前記バイオマス由来の炭材の総添加量をX(kg-炭材/t-溶鉄)、該炭材の硫黄濃度をa(質量%)、精錬前の溶銑及び鉄スクラップの硫黄濃度の加重平均値をb(質量%)、精錬終了時の高炭素溶鉄の許容最大硫黄濃度をc(質量%)としたとき、前記炭材の総添加量Xを下記の(1)式で求められる値とし、この炭材の総添加量Xに基づいて前記鉄スクラップの装入量を決定することを特徴とする、上記[1]ないし上記[4]の何れか1項に記載の鉄スクラップを用いた高炭素溶鉄の製造方法。
X=[(c−b)/a]×1000 …(1)
[6]前記バイオマス由来の炭材が、パームヤシ殻由来のバイオマス炭、パームヤシ空果房由来のバイオマス炭、パームヤシ幹由来のバイオマス炭のうちの何れか1種または2種以上であることを特徴とする、上記[1]ないし上記[5]の何れか1項に記載の鉄スクラップを用いた高炭素溶鉄の製造方法。
[7]前記精錬炉内への酸素ガスの供給中に、鉄鉱石、鉄鉱石の焼結鉱、ミルスケール、製鉄ダスト、磁選屑、鋼の切削屑からなる鉄源のうちの何れか1種または2種以上の鉄源を前記精錬炉内に投入することを特徴とする、上記[1]ないし上記[6]の何れか1項に記載の鉄スクラップを用いた高炭素溶鉄の製造方法。
The gist of the present invention for solving the above problems is as follows.
[1] Charcoal material in which iron scrap and hot metal are charged into a smelting furnace as an iron source, oxygen gas is supplied into the smelting furnace, and the iron scrap in the smelting furnace is supplied into the smelting furnace. While melting by the combustion heat by the oxygen gas and the sensible heat of the hot metal, the iron scrap is carburized by the carbon material and the hot metal, and high carbon molten iron having a carbon concentration of 3.0% by mass or more is contained in the smelting furnace. A method for producing high-carbon molten iron using iron scrap, characterized in that a biomass-derived carbon material is used as part or all of the carbon material.
[2] Production of high carbon molten iron using iron scrap according to [1], wherein the smelting furnace is an upper bottom blowing converter type smelting furnace for supplying the oxygen gas by blowing up Method.
[3] The smelting furnace is an arc furnace, and the iron scrap is melted by the heat of the arc generated in addition to the combustion heat of the carbonaceous material and the sensible heat of the hot metal. 1] The manufacturing method of the high carbon molten iron using the iron scrap as described in 1].
[4] The high concentration using the iron scrap according to any one of [1] to [3] above, wherein a sulfur concentration of the biomass-derived carbon material is 0.10% by mass or less. A method for producing molten carbon.
[5] X (kg-carbon material / t-molten iron) is the total amount of the biomass-derived carbon material, the sulfur concentration of the carbon material is a (mass%), the hot metal before refining, and the sulfur concentration of iron scrap. When the weighted average value is b (mass%) and the allowable maximum sulfur concentration of the high-carbon molten iron at the end of refining is c (mass%), the total amount X of the carbonaceous material can be obtained by the following equation (1). The iron scrap according to any one of [1] to [4] above, wherein the iron scrap is determined based on a total amount X of the carbon material and the amount of the iron scrap is determined. The manufacturing method of the high carbon molten iron used.
X = [(c−b) / a] × 1000 (1)
[6] The charcoal material derived from biomass is any one or more of biomass charcoal derived from palm coconut shell, biomass charcoal derived from palm palm empty fruit bunch, and biomass charcoal derived from palm palm trunk, A method for producing high-carbon molten iron using the iron scrap according to any one of [1] to [5] above.
[7] During supply of oxygen gas into the smelting furnace, any one of iron sources comprising iron ore, iron ore sintered ore, mill scale, iron making dust, magnetic separation scrap, and steel cutting scrap Alternatively, the method for producing high-carbon molten iron using iron scrap according to any one of [1] to [6] above, wherein two or more types of iron sources are put into the smelting furnace.

本発明によれば、主原料として鉄スクラップ及び溶銑を使用して高炭素溶鉄を製造する際に、熱源並びに加炭材としてカーボンニュートラルであるバイオマス由来の炭材を使用するので、バイオマス由来の炭材の使用比率に応じて、熱源の燃焼による温室効果ガスの発生量を削減することが実現される。また、硫黄濃度が0.10質量%以下のバイオマス由来の炭材を使用した場合には、炭材から高炭素溶鉄への硫黄の混入が抑制され、製造した高炭素溶鉄は、脱硫処理を施さなくても次工程で運用することができるとともに、硫黄混入に起因する熱源不足を解消させて大量のバイオマス由来の炭材の使用が可能となり、鉄スクラップの配合比率を高めることができ、高炭素溶鉄の生産量を増加させることが可能となる。   According to the present invention, when producing high-carbon molten iron using iron scrap and hot metal as the main raw material, the carbon-derived carbonaceous material that is carbon neutral is used as the heat source and the carburizing material. According to the usage ratio of the material, it is possible to reduce the amount of greenhouse gas generated by the combustion of the heat source. Moreover, when a biomass-derived carbon material having a sulfur concentration of 0.10% by mass or less is used, mixing of sulfur from the carbon material into the high carbon molten iron is suppressed, and the produced high carbon molten iron is subjected to desulfurization treatment. Without being able to operate in the next process, it becomes possible to use a large amount of biomass-derived charcoal by eliminating the shortage of heat source due to sulfur contamination, increasing the proportion of iron scrap, and high carbon It becomes possible to increase the production amount of molten iron.

本発明を適用した上底吹き転炉型精錬炉設備の縦断面の概要図である。It is a schematic diagram of the longitudinal section of the top bottom blowing converter type refining furnace equipment to which the present invention is applied. 本発明を適用したアーク炉の縦断面の概要図である。It is a schematic diagram of the longitudinal section of the arc furnace to which the present invention is applied.

以下、添付図面を参照して本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

先ず、本発明を上底吹き転炉型精錬炉設備に適用した第1の形態例を説明する。図1は、本発明を適用した上底吹き転炉型精錬炉設備の縦断面の概要図である。   First, a first embodiment in which the present invention is applied to an upper bottom blowing converter type refining furnace facility will be described. FIG. 1 is a schematic view of a vertical section of an upper bottom blown converter type refining furnace equipment to which the present invention is applied.

転炉型精錬炉設備1は、その内部に鉄スクラップ14及び溶銑12が装入され、装入された鉄スクラップ14及び溶銑12から高炭素溶鉄を製造する精錬炉本体2と、精錬炉本体2の上部の炉口3を通って精錬炉本体2の内部空間への上下移動が可能な上吹き酸素ランス4と、炉口3を覆うダクト8を介して精錬炉本体2から発生する排ガス(主にCOガス)を回収するガス回収装置(図示せず)と、ホッパー9、9a、切り出し装置10、10a及びシュート11がその一部分を構成する原料装入装置と、から構成されている。精錬炉本体2には、その炉底を貫通する底吹き羽口5と、その側壁を貫通する出湯口7とが設置されている。底吹き羽口5はガス導入管6と連通しており、底吹き羽口5からは、ガス導入管6を介して供給される、Arガスや窒素ガスなどの攪拌用ガス或いは精錬用酸素ガスが、底吹きガスとして吹き込まれるように構成され、また、シュート11はダクト8を貫通して炉口3の直上に至り、シュート11を介して炉口3から原料が炉内に装入されるように構成されている。   The converter-type refining furnace equipment 1 has iron scrap 14 and hot metal 12 charged therein, a refining furnace main body 2 for producing high carbon molten iron from the charged iron scrap 14 and hot metal 12, and a refining furnace main body 2. The exhaust gas generated from the refining furnace main body 2 through the upper blown oxygen lance 4 that can move up and down to the internal space of the refining furnace main body 2 through the upper furnace port 3 and the duct 8 that covers the furnace port 3 (main In addition, a gas recovery device (not shown) for recovering CO gas), a hopper 9, 9a, a cutting device 10, 10a, and a chute 11 constituting a part of the raw material charging device. The refining furnace main body 2 is provided with a bottom blowing tuyere 5 penetrating the furnace bottom and a hot water outlet 7 penetrating the side wall. The bottom blowing tuyere 5 communicates with a gas introduction pipe 6, and stirring gas such as Ar gas or nitrogen gas or refining oxygen gas supplied from the bottom blowing tuyere 5 through the gas introduction pipe 6. However, the chute 11 passes through the duct 8 and reaches directly above the furnace port 3, and the raw material is charged into the furnace from the furnace port 3 through the chute 11. It is configured as follows.

このように構成される上底吹き転炉型精錬炉設備1を用い、以下のようにして本発明を実施する。   Using the top bottom blown converter type refining furnace equipment 1 configured as described above, the present invention is carried out as follows.

先ず、精錬炉本体2に主原料として、鉄スクラップ14と溶銑12とを装入する。本発明において、鉄スクラップ14は、基本的に、精錬炉本体2に供給する炭材15と、上吹きランス4から精錬炉本体2に供給する酸素ガスとの反応熱、つまり、炭材15の燃焼熱によって溶解するので、鉄スクラップ14の配合比率(鉄スクラップの配合比率=鉄スクラップ装入量×100/(溶銑装入量+鉄スクラップ装入量))は、炭材15からの硫黄の混入を考慮しない場合には特に規定する必要はなく、炭材15の使用量に応じて設定すればよい。換言すれば、鉄スクラップ14の任意の配合比率に応じて炭材15の使用量を設定すればよい。但し、鉄スクラップ14の配合比率を高くし過ぎると、溶解時間が長くなるので、鉄スクラップ14の配合比率は最大値で50質量%程度とすればよい。使用する溶銑12には、必要に応じて脱硫、脱珪、脱燐の予備処理を予め実施する。   First, iron scrap 14 and molten iron 12 are charged into the refining furnace body 2 as main raw materials. In the present invention, the iron scrap 14 is basically the reaction heat between the carbon material 15 supplied to the refining furnace body 2 and the oxygen gas supplied from the top blowing lance 4 to the refining furnace body 2, that is, the carbon material 15. Since it is melted by the combustion heat, the mixing ratio of iron scrap 14 (the mixing ratio of iron scrap = iron scrap charging amount x 100 / (molten metal charging amount + iron scrap charging amount)) is the amount of sulfur from the carbonaceous material 15 When mixing is not taken into consideration, it is not necessary to specify in particular, and it may be set according to the amount of carbon material 15 used. In other words, what is necessary is just to set the usage-amount of the carbonaceous material 15 according to the arbitrary mixture ratios of the iron scrap 14. FIG. However, if the mixing ratio of the iron scrap 14 is increased too much, the melting time becomes longer. Therefore, the mixing ratio of the iron scrap 14 may be about 50% by mass at the maximum value. The hot metal 12 to be used is preliminarily subjected to desulfurization, desiliconization, and dephosphorization pretreatment as necessary.

熱源である炭材15の使用量に基づいて設定した配合比率に沿って鉄スクラップ14を炉内に装入し、次いで、前記配合比率に沿って溶銑12を炉内に装入する。その後、ホッパー9に収納されたバイオマス由来の炭材15を切り出し装置10により所定量切り出し、シュート11を介して炉口3から炉内に熱源として装入する。この場合、炭材15の一部を、鉄スクラップ14とともに予め炉内に装入しても構わない。更に、炉内に精錬用の溶融スラグ13を形成させるべく、生石灰、蛍石、ドロマイトなどの造滓材を、原料装入装置(図示せず)を介して精錬炉本体2の内部に装入する。また更に、炭材15の添加量から算出される発熱量と、造滓剤の添加量及び出湯時の高炭素溶鉄の温度目標値などとを対比した熱計算において、熱余裕が有る場合には、この熱余裕に応じた量の鉄源16をホッパー9aから切り出し装置10aによって切り出し、シュート11を介して炉内に装入する。ホッパー9aから供給される鉄源16は、冷却材として機能する。   The iron scrap 14 is charged into the furnace along the blending ratio set based on the amount of the carbonaceous material 15 that is the heat source, and then the hot metal 12 is loaded into the furnace along the blending ratio. After that, a predetermined amount of the biomass-derived carbon material 15 stored in the hopper 9 is cut out by the cutting device 10 and charged into the furnace from the furnace port 3 through the chute 11 as a heat source. In this case, a part of the carbon material 15 may be charged in the furnace together with the iron scrap 14 in advance. Furthermore, in order to form molten slag 13 for refining in the furnace, a fossil material such as quick lime, fluorite, and dolomite is charged into the refining furnace main body 2 through a raw material charging device (not shown). To do. Furthermore, in the heat calculation comparing the calorific value calculated from the addition amount of the carbonaceous material 15 with the addition amount of the slagging agent and the target temperature value of the high carbon molten iron at the time of tapping, there is a thermal margin. The iron source 16 in an amount corresponding to this heat margin is cut out from the hopper 9a by the cutting device 10a and charged into the furnace via the chute 11. The iron source 16 supplied from the hopper 9a functions as a coolant.

この鉄源16としては、鉄鉱石、鉄鉱石の焼結鉱、ミルスケール、製鉄ダスト、磁選屑、及び機械工場で発生する鋼の切削屑のうちの何れか1種または2種以上を適宜選択して使用する。尚、鉄源16にFeOやFe23が含まれる場合も、これらは炉内で溶銑12及び炭材15に含有される炭素によって還元され鉄となるので、資源の有効活用がなされる。また、磁選屑とは、転炉スラグなどに混入する地金分を、破砕したスラグから磁力選別によって回収したものである。 As the iron source 16, any one or more of iron ore, iron ore sintered ore, mill scale, iron making dust, magnetic separation scrap, and steel cutting scrap generated in a machine factory is appropriately selected. And use it. Even when the iron source 16 contains FeO or Fe 2 O 3 , these are reduced to iron by the carbon contained in the hot metal 12 and the carbon material 15 in the furnace, so that the resources are effectively used. Moreover, magnetic separation waste collect | recovers the metal components mixed in converter slag etc. from the crushed slag by magnetic separation.

その後、底吹き羽口5から底吹きガスを吹き込みながら、上吹き酸素ランス4から酸素ガスを炉内に供給して精錬を開始する。この場合、上吹き酸素ランス4から供給する酸素ガスが溶銑12に直接衝突すると、溶銑12の脱炭反応(2C+O2=2CO)が起こり、製造される高炭素溶鉄の炭素濃度が低下するので、供給する酸素ガスが、溶銑12の脱炭反応に極力費やされず、炭材15の燃焼に主に費やされるように、上吹き酸素ランス4からの酸素ガスの吹き込み流量及び吹き込み圧力を設定する。 Then, while blowing bottom blowing gas from the bottom blowing tuyere 5, oxygen gas is supplied from the top blowing oxygen lance 4 into the furnace to start refining. In this case, when the oxygen gas supplied from the top blown oxygen lance 4 directly collides with the molten iron 12, a decarburization reaction of the molten iron 12 (2C + O 2 = 2CO) occurs, and the carbon concentration of the produced high carbon molten iron decreases. The flow rate and pressure of the oxygen gas blown from the top blown oxygen lance 4 are set so that the oxygen gas to be supplied is not consumed as much as possible in the decarburization reaction of the hot metal 12 but is mainly consumed in the combustion of the carbonaceous material 15.

炭材15は酸素ガスにより、「2C+O2=2CO」なる反応式に沿って燃焼し、その燃焼熱が溶融スラグ13を介して溶銑12に伝達され、溶銑12に埋没した鉄スクラップ14が溶解する。但し、溶銑12の脱炭反応による発熱も鉄スクラップ14の溶解に寄与するので、溶銑12の脱炭反応を完全に防止する必要はない。炭材15の一部は溶銑12に溶解し、鉄スクラップ14の溶解に伴って希釈される溶銑12の炭素濃度を上昇させる。つまり、炭材15は、鉄スクラップ14の溶解によって生成する溶融鉄及び溶銑12を加炭する機能を有している。溶銑12の脱炭反応を極力抑制すると同時に炭材15が加炭材として機能することで、製造される高炭素溶鉄の炭素濃度は3.0質量%以上に確保される。そして、この精錬中においても、炭材15と、この炭材15の添加量に応じた量の鉄源16とを、シュート11を介して炉口3より適宜炉内に装入する。 The carbonaceous material 15 is combusted by oxygen gas along the reaction formula “2C + O 2 = 2CO”, and the combustion heat is transmitted to the hot metal 12 through the molten slag 13, and the iron scrap 14 buried in the hot metal 12 is melted. . However, since the heat generated by the decarburization reaction of the hot metal 12 also contributes to the dissolution of the iron scrap 14, it is not necessary to completely prevent the decarburization reaction of the hot metal 12. A part of the carbon material 15 is dissolved in the hot metal 12, and the carbon concentration of the hot metal 12 diluted with the dissolution of the iron scrap 14 is increased. That is, the carbon material 15 has a function of carburizing the molten iron and the molten iron 12 generated by melting the iron scrap 14. By suppressing the decarburization reaction of the hot metal 12 as much as possible, the carbon material 15 functions as a carburizing material, so that the carbon concentration of the manufactured high carbon molten iron is ensured to be 3.0% by mass or more. During the refining, the carbon material 15 and the iron source 16 in an amount corresponding to the added amount of the carbon material 15 are appropriately charged into the furnace through the chute 11 from the furnace port 3.

所定量の炭材15及び酸素ガスが供給され、鉄スクラップ14が溶解して所定の温度及び炭素濃度が3.0質量%以上である高炭素溶鉄が生成されたなら、必要に応じて図示せぬ原料装入装置からFe−Mn合金やSi−Mn合金などを高炭素溶鉄に投入し、その後、図示せぬ傾動装置にて精錬炉本体2を傾動させ、出湯口7から取鍋(図示せずに)に高炭素溶鉄を排出して、鉄スクラップ14を用いた高炭素溶鉄の製造を終了する。製造された高炭素溶鉄は、必要に応じて脱硫処理が施された後に転炉での脱炭精錬に供される。   If a predetermined amount of the carbonaceous material 15 and oxygen gas are supplied, and the iron scrap 14 is melted to produce a high carbon molten iron having a predetermined temperature and a carbon concentration of 3.0% by mass or more, it can be illustrated as necessary. Fe-Mn alloy, Si-Mn alloy, etc. are poured into high carbon molten iron from a raw material charging device, and then the smelting furnace body 2 is tilted by a tilting device (not shown), and a ladle (not shown) is drawn from the tap 7. 1), the high carbon molten iron is discharged, and the production of the high carbon molten iron using the iron scrap 14 is completed. The manufactured high carbon molten iron is subjected to desulfurization treatment as necessary, and then subjected to decarburization refining in a converter.

ところで、バイオマス由来の炭材15も、化石燃料由来の炭材と同様に、不純物として硫黄を含有している。上記の説明では、バイオマス由来の炭材15の添加量を規定しておらず、バイオマス由来の炭材15の添加量が多くなれば、製造される高炭素溶鉄の硫黄濃度が目標値を超える虞がある。製造される高炭素溶鉄へのバイオマス由来の炭材15による硫黄の汚染を未然に防止するためには、以下の方法を採用することが好ましい。   By the way, the biomass-derived carbon material 15 also contains sulfur as an impurity, like the fossil fuel-derived carbon material. In the above description, the addition amount of the biomass-derived carbon material 15 is not prescribed, and if the addition amount of the biomass-derived carbon material 15 increases, the sulfur concentration of the manufactured high carbon molten iron may exceed the target value. There is. In order to prevent the contamination of sulfur by the biomass-derived carbon material 15 to the high carbon molten iron to be produced, it is preferable to employ the following method.

即ち、バイオマス由来の炭材15の1チャージあたりの総添加量をX(kg-炭材/t-溶鉄)、この炭材15の硫黄濃度をa(質量%)、精錬前の溶銑12及び鉄スクラップ14の硫黄濃度の加重平均値をb(質量%)、精錬終了時の高炭素溶鉄の許容最大硫黄濃度をc(質量%)とすると、炭材15の総添加量Xの最大値は、下記の(1)式により算出される。
X=[(c−b)/a]×1000 …(1)
熱源及び加炭材としてバイオマス由来の炭材15のみを添加する条件で、バイオマス由来の炭材15の添加量が、(1)式で算出される総添加量X以下の添加量であるならば、炭材15の添加による硫黄濃度の上昇を、高炭素溶鉄の許容最大硫黄濃度c以下に抑えることができる。コークスなどの従来の化石燃料由来の炭材を併用する場合には、化石燃料由来の炭材に含有される硫黄による硫黄濃度の上昇分を考慮してバイオマス由来の炭材15の最大添加量を決める必要がある。つまり、化石燃料由来の炭材によって持ち込まれる硫黄分と、バイオマス由来の炭材15によって持ち込まれる硫黄分との合計量が、高炭素溶鉄の許容最大硫黄濃度cを超えないようにする必要がある。
That is, the total amount added per one charge of biomass-derived carbon material 15 is X (kg-carbon material / t-molten iron), the sulfur concentration of this carbon material 15 is a (mass%), hot metal 12 and iron before refining. When the weighted average value of the sulfur concentration of the scrap 14 is b (mass%) and the allowable maximum sulfur concentration of the high carbon molten iron at the end of refining is c (mass%), the maximum value of the total addition amount X of the carbonaceous material 15 is It is calculated by the following equation (1).
X = [(c−b) / a] × 1000 (1)
If only the biomass-derived carbon material 15 is added as a heat source and a carburized material, the amount of biomass-derived carbon material 15 added is equal to or less than the total addition amount X calculated by equation (1) The increase in the sulfur concentration due to the addition of the carbon material 15 can be suppressed to the allowable maximum sulfur concentration c or less of the high carbon molten iron. When a conventional fossil fuel-derived carbon material such as coke is used in combination, the maximum addition amount of the biomass-derived carbon material 15 is set in consideration of an increase in sulfur concentration due to sulfur contained in the fossil fuel-derived carbon material. It is necessary to decide. That is, it is necessary that the total amount of the sulfur content introduced by the fossil fuel-derived carbon material and the sulfur content introduced by the biomass-derived carbon material 15 does not exceed the allowable maximum sulfur concentration c of the high carbon molten iron. .

また、熱源及び加炭材としてバイオマス由来の炭材15のみを添加するとし、バイオマス由来の炭材15の添加量を(1)式で算出される総添加量Xとした条件で鉄スクラップ14の配合比率を求めれば、求められる鉄スクラップ14の配合比率は、製造される高炭素溶鉄に脱硫処理を施さずに済む範囲内の最大値となる。   Moreover, when only the biomass-derived carbon material 15 is added as a heat source and a carburized material, the amount of the biomass-derived carbon material 15 is set to the total addition amount X calculated by the equation (1). If the blending ratio is obtained, the obtained blending ratio of the iron scrap 14 is the maximum value within a range in which the manufactured high carbon molten iron does not need to be desulfurized.

但し、バイオマス由来の炭材15の添加量を最大値とし、且つ、鉄スクラップ14の配合比率も最大値とした場合は、精錬終了時の高炭素溶鉄の硫黄濃度が許容上限値となる。従って、それ以上の炭材の添加は、バイオマス由来の炭材15であっても、高炭素溶鉄の硫黄濃度が許容最大硫黄濃度c以上になることを意味しており、従って、この場合には、精錬の途中で炭材を投入することは好ましくなく、また、精錬終了時の高炭素溶鉄の測温結果が目標値よりも低い場合も、炭材を投入することは好ましくない。硫黄濃度の上昇を伴わない熱源としてはFe−Si合金や金属Alなどを用いることができる。   However, when the addition amount of the carbonaceous material 15 derived from biomass is set to the maximum value and the blending ratio of the iron scrap 14 is also set to the maximum value, the sulfur concentration of the high carbon molten iron at the end of the refining becomes the allowable upper limit value. Therefore, the addition of more carbon material means that the sulfur concentration of the high carbon molten iron is equal to or higher than the allowable maximum sulfur concentration c even in the case of the biomass-derived carbon material 15. In addition, it is not preferable to input the carbonaceous material during the refining, and it is not preferable to input the carbonaceous material even when the temperature measurement result of the high carbon molten iron at the end of the refining is lower than the target value. As a heat source not accompanied by an increase in the sulfur concentration, an Fe—Si alloy, metal Al, or the like can be used.

使用する炭材15としては、バイオマス由来であればカーボンニュートラルであり、温室効果ガスは発生しないので、温室効果ガス発生の観点からは特に特定する必要はない。但し、バイオマス由来の炭材15も上記のように硫黄を含有しており、大量の添加は高炭素溶鉄の硫黄濃度が上昇するという問題が生じる。種々検討した結果、炭材15の硫黄濃度が0.10質量%以下であれば、炭材添加による高炭素溶鉄中の硫黄濃度の上昇は少なく、大量の炭材15を熱源として使用できることが分った。つまり、使用するバイオマス由来の炭材15としては、硫黄濃度が0.10質量%以下の炭材であることが好ましい。   The carbon material 15 to be used is carbon neutral as long as it is derived from biomass, and no greenhouse gas is generated. Therefore, it is not particularly necessary to specify from the viewpoint of generating a greenhouse gas. However, the biomass-derived carbon material 15 also contains sulfur as described above, and the addition of a large amount causes a problem that the sulfur concentration of the high carbon molten iron increases. As a result of various studies, if the sulfur concentration of the carbon material 15 is 0.10% by mass or less, the increase in the sulfur concentration in the high carbon molten iron due to the addition of the carbon material is small, and it is understood that a large amount of the carbon material 15 can be used as a heat source. It was. That is, it is preferable that the biomass-derived carbon material 15 to be used is a carbon material having a sulfur concentration of 0.10% by mass or less.

この観点から、バイオマス由来の炭材15としては、パームヤシ殻由来のバイオマス炭(硫黄濃度≒0.05質量%)、パームヤシ空果房由来のバイオマス炭(硫黄濃度≒0.07質量%)、パームヤシ幹由来のバイオマス炭(硫黄濃度≒0.10質量%)のうちの何れか1種または2種以上を使用することが好ましい。   From this viewpoint, the biomass-derived carbon material 15 includes biomass coal derived from palm coconut shell (sulfur concentration ≈ 0.05 mass%), biomass coal derived from palm palm empty fruit bunches (sulfur concentration ≈ 0.07 mass%), palm palm It is preferable to use any one or more of trunk-derived biomass charcoal (sulfur concentration≈0.10 mass%).

例えば、精錬前の溶銑12及び鉄スクラップ14の硫黄濃度の加重平均値bと、精錬終了時の高炭素溶鉄の許容最大硫黄濃度cとの差、つまり、精錬中に炭材から混入する硫黄の濃度上昇の許容される上限値が0.001質量%である場合に、炭材として硫黄濃度が0.5質量%の一般的なコークスを利用した場合には、硫黄濃度の規制から炭材原単位として最大2kg-炭材/t-溶鉄のコークスを添加するだけであるが、硫黄濃度が0.10質量%のバイオマス炭を利用した場合は、硫黄濃度がコークスと比較して5分の1であることから、5倍の添加量である10kg-炭材/t-溶鉄のバイオマス炭を添加することができ、添加する熱源の増加に伴って多くの鉄スクラップ14や鉄源16を配合することが可能となる。尚、高炭素溶鉄の許容最大硫黄濃度cは、この高炭素溶鉄を転炉にて脱炭精錬して製造される鋼種の硫黄濃度規格によって決定される。   For example, the difference between the weighted average value b of the sulfur concentration of the hot metal 12 and iron scrap 14 before refining and the allowable maximum sulfur concentration c of high carbon molten iron at the end of refining, that is, the amount of sulfur mixed from the carbonaceous material during refining When the upper limit of the allowable increase in concentration is 0.001% by mass, when using general coke with a sulfur concentration of 0.5% by mass as the carbon material, the carbon material Only 2kg-carbon / t-molten coke is added as a unit, but when using biomass charcoal with a sulfur concentration of 0.10 mass%, the sulfur concentration is 1/5 compared to coke. Therefore, it is possible to add 10 kg-charcoal material / t-molten biomass charcoal, which is 5 times the amount of addition, and mix many iron scraps 14 and iron sources 16 as the heat source to be added increases. It becomes possible. The allowable maximum sulfur concentration c of high carbon molten iron is determined by the sulfur concentration standard of a steel type produced by decarburizing and refining this high carbon molten iron in a converter.

次いで、本発明をアーク炉に適用した第2の形態例を説明する。図2は、本発明を適用したアーク炉の縦断面の概要図である。   Next, a second embodiment in which the present invention is applied to an arc furnace will be described. FIG. 2 is a schematic diagram of a longitudinal section of an arc furnace to which the present invention is applied.

図2において、符号21は直流式アーク炉、22は溶解室、23は炉蓋、24は上部電極、25は炉底電極、26は溶銑装入樋、27は溶銑を収容する装入鍋、28はクレーン、29は出湯口、30は酸素ガス供給ランス、31は炭材供給ランス、32は原料投入シュート、33はアークである。尚、符号12は溶銑、14は鉄スクラップ、15は炭材、16は鉄源であり、これらは第1の形態例の図1と同一である。   In FIG. 2, reference numeral 21 is a DC arc furnace, 22 is a melting chamber, 23 is a furnace lid, 24 is an upper electrode, 25 is a furnace bottom electrode, 26 is a hot metal charging rod, 27 is a charging pan for containing hot metal, 28 is a crane, 29 is a tap, 30 is an oxygen gas supply lance, 31 is a carbonaceous material supply lance, 32 is a raw material charging chute, and 33 is an arc. In addition, the code | symbol 12 is hot metal, 14 is an iron scrap, 15 is a carbonaceous material, 16 is an iron source, These are the same as FIG. 1 of the 1st form example.

炉蓋23を外して溶解室22の内部に鉄スクラップ14を装入し、鉄スクラップ14の装入後、直流式アーク炉21の側壁を貫通して設置される溶銑装入樋26を介して、クレーン28で吊り上げられた装入鍋27から溶銑12を溶解室22に装入する。この場合、鉄スクラップ14は、アーク33の熱、溶銑12の顕熱及び炭材15の燃焼熱によって溶解されるので、鉄スクラップ14の配合比率は、第1の形態例の転炉型精錬炉設備1を使用した場合と異なり、炭材15の供給量に拘わらず、任意の値を設定することができる。   The furnace lid 23 is removed, and the iron scrap 14 is charged into the melting chamber 22. After the iron scrap 14 is charged, the iron scrap 14 is inserted through a hot metal charging rod 26 that penetrates the side wall of the DC arc furnace 21. The molten iron 12 is charged into the melting chamber 22 from the charging pot 27 lifted by the crane 28. In this case, since the iron scrap 14 is melted by the heat of the arc 33, the sensible heat of the hot metal 12, and the combustion heat of the carbonaceous material 15, the mixing ratio of the iron scrap 14 is the converter type refining furnace of the first embodiment. Unlike the case where the facility 1 is used, an arbitrary value can be set regardless of the supply amount of the carbonaceous material 15.

所定量の溶銑12が装入されたなら、装入鍋27からの溶銑12の供給を終え、上部電極24と炉底電極25との間に直流電流を給電し、上部電極24と炉底電極25との間、または、装入された鉄スクラップ14と上部電極24との間でアーク33を発生させる。そして、発生するアーク熱及び溶銑12の顕熱により鉄スクラップ14を溶解して溶融鉄(図示せず)を生成させる。生成する溶融鉄は溶銑12と混合し、溶銑12の炭素濃度は希釈される。   When a predetermined amount of hot metal 12 is charged, the supply of hot metal 12 from the charging pan 27 is finished, a direct current is supplied between the upper electrode 24 and the furnace bottom electrode 25, and the upper electrode 24 and the furnace bottom electrode are supplied. An arc 33 is generated between the iron scrap 14 and the upper electrode 24. Then, the iron scrap 14 is melted by the generated arc heat and the sensible heat of the hot metal 12 to generate molten iron (not shown). The molten iron produced is mixed with the hot metal 12 and the carbon concentration of the hot metal 12 is diluted.

通電後、酸素ガス供給ランス30及び炭材供給ランス31の溶解室22への挿入が可能となったなら、酸素ガス供給ランス30から酸素ガスを、また、炭材供給ランス31から、バイオマス由来の炭材15を、溶解室内の溶銑12または溶融スラグに向けて吹き付ける。吹き付けられた炭材15は、吹き付けられた酸素ガスと反応して燃焼熱を発生し、鉄スクラップ14を溶解するための補助熱源として機能し、電力使用量を軽減する。また、炭材15の一部は、生成する溶融鉄及び炉内の溶銑12に溶け込み、鉄スクラップ14の溶解に伴って希釈される溶銑12の炭素濃度を上昇させ、炭素濃度が3.0質量%以上の高炭素溶鉄が生成される。この場合に、炭材15の一部を、鉄スクラップ14の炉内への装入と同時に、予め溶解室22に装入しても構わない。尚、炭材15は、生成する溶融鉄によって炭素濃度が希釈される溶銑12の炭素濃度を高めるための加炭材としての役割を担うので、供給される酸素ガスの化学当量よりも多い量の炭材15を供給する。   When the oxygen gas supply lance 30 and the carbonaceous material supply lance 31 can be inserted into the melting chamber 22 after energization, oxygen gas is supplied from the oxygen gas supply lance 30, and from the carbonaceous material supply lance 31, it is derived from biomass. The carbon material 15 is sprayed toward the hot metal 12 or molten slag in the melting chamber. The sprayed carbon material 15 reacts with the sprayed oxygen gas to generate combustion heat, functions as an auxiliary heat source for melting the iron scrap 14, and reduces power consumption. Further, a part of the carbonaceous material 15 is melted into the molten iron to be produced and the molten iron 12 in the furnace, and the carbon concentration of the molten iron 12 diluted with the melting of the iron scrap 14 is increased, and the carbon concentration is 3.0 mass. % Of high-carbon molten iron is produced. In this case, a part of the carbonaceous material 15 may be charged into the melting chamber 22 in advance simultaneously with the charging of the iron scrap 14 into the furnace. In addition, since the carbonaceous material 15 plays the role as a carbonized material for raising the carbon concentration of the hot metal 12 whose carbon concentration is diluted by the molten iron to be generated, the amount of the carbonaceous material 15 is larger than the chemical equivalent of the supplied oxygen gas. Carbon material 15 is supplied.

また、鉄スクラップ14が溶解し始めたなら、生産性を向上させるために、原料投入シュート32を介して鉄源16を溶解室22に装入することが好ましい。また、鉄スクラップ14が溶解し始めたなら、生石灰などのフラックスを溶解室22に装入して溶融スラグを溶銑12の上に形成させ、溶銑12の酸化を防止するとともに保温を図ることが好ましい。   In addition, when the iron scrap 14 starts to melt, it is preferable to charge the iron source 16 into the melting chamber 22 through the raw material charging chute 32 in order to improve productivity. Further, when the iron scrap 14 starts to melt, it is preferable that a flux such as quick lime is charged into the melting chamber 22 to form molten slag on the hot metal 12 to prevent the hot metal 12 from being oxidized and to keep warm. .

溶解室内に所定量、所定温度で且つ炭素濃度が3.0質量%以上である高炭素溶鉄が生成されたなら、傾動装置(図示せず)によって溶解室22を出湯口29の側へ傾動させ、出湯口29から、炭素濃度が3.0質量%以上の高炭素溶鉄を取鍋などの保持容器(図示せず)へ出湯する。出湯後、新たに鉄スクラップ14及び溶銑12を溶解室22に装入し、次回ヒートの溶解を開始する。製造された高炭素溶鉄は、必要に応じて脱硫処理が施された後に転炉での脱炭精錬に供される。   If high carbon molten iron having a predetermined amount, a predetermined temperature, and a carbon concentration of 3.0% by mass or more is produced in the melting chamber, the melting chamber 22 is tilted toward the outlet 29 by a tilting device (not shown). From the tap 29, the high carbon molten iron having a carbon concentration of 3.0% by mass or more is poured into a holding container (not shown) such as a ladle. After pouring hot water, iron scrap 14 and hot metal 12 are newly charged into the melting chamber 22, and melting of the next heat is started. The manufactured high carbon molten iron is subjected to desulfurization treatment as necessary, and then subjected to decarburization refining in a converter.

上記の操業において、使用する炭材15及び鉄源16は、第1の形態例に準じる。また、炭材15による高炭素溶鉄の硫黄濃度の上昇を抑制して、精錬終了時の高炭素溶鉄の硫黄濃度を許容最大硫黄濃度c以下に制御する場合には、第1の形態例で説明したように、(1)式を用いてバイオマス由来の炭材15の総添加量Xを設定する。   In the above operation, the carbon material 15 and the iron source 16 to be used conform to the first embodiment. Moreover, when suppressing the raise of the sulfur concentration of the high carbon molten iron by the carbon | charcoal material 15 and controlling the sulfur concentration of the high carbon molten iron at the time of completion | finish of refining to below the permissible maximum sulfur concentration c, it demonstrates by the 1st form example. As described above, the total addition amount X of the biomass-derived carbon material 15 is set using the equation (1).

尚、図2に示すアーク炉は、直流式アーク炉であるが、交流式アーク炉を用いても全く支障なく本発明を適用することができる。また、加炭の方法は、ランスからの上吹き投射で実施しているが、上方からの浴中へのインジェクションでも構わず、また、炉底に専用のノズルを埋設して、底吹きインジェクションでも構わない。   The arc furnace shown in FIG. 2 is a DC arc furnace, but the present invention can be applied without any problem even if an AC arc furnace is used. The carburizing method is carried out by top blowing projection from the lance, but it may be injection from above into the bath, or a dedicated nozzle is buried in the bottom of the furnace, and bottom blowing injection is also possible. I do not care.

以上説明したように、本発明によれば、主原料として鉄スクラップ14及び溶銑12を使用し、上底吹き転炉型の精錬炉或いはアーク炉を用いて高炭素溶鉄を製造する際に、熱源並びに加炭材としてカーボンニュートラルであるバイオマス由来の炭材を使用するので、バイオマス由来の炭材の使用比率に応じて、熱源の燃焼による温室効果ガスの発生量を削減することが実現される。また、硫黄濃度が0.10質量%以下のバイオマス由来の炭材を使用した場合には、炭材から高炭素溶鉄への硫黄の混入を抑制することができ、製造した高炭素溶鉄への脱硫処理を省略することができるとともに、大量のバイオマス由来の炭材の使用が可能となり、硫黄混入に起因する熱源不足が解消され、鉄スクラップ14の配合比率を高めることができ、高炭素溶鉄の生産量を増加させることが可能となる。   As described above, according to the present invention, when iron scrap 14 and hot metal 12 are used as main raw materials and a high carbon molten iron is produced using an upper bottom blown converter type refining furnace or an arc furnace, Moreover, since the carbon-derived carbonaceous material that is carbon neutral is used as the carburized material, it is possible to reduce the amount of greenhouse gas generated by combustion of the heat source according to the use ratio of the biomass-derived carbonaceous material. Moreover, when a biomass-derived carbon material having a sulfur concentration of 0.10% by mass or less is used, mixing of sulfur from the carbon material into the high-carbon molten iron can be suppressed, and desulfurization to the produced high-carbon molten iron is achieved. The treatment can be omitted and a large amount of biomass-derived charcoal can be used, the shortage of heat source due to sulfur contamination can be eliminated, the blending ratio of iron scrap 14 can be increased, and high carbon molten iron can be produced. The amount can be increased.

図1に示す転炉型精錬炉設備における本発明の実施例を以下に説明する。   An embodiment of the present invention in the converter type refining furnace facility shown in FIG. 1 will be described below.

使用した上底吹き転炉型の精錬炉は、炉容量が1チャージ(以下、「ch」と記す)約250トンで、底吹きガスは攪拌用としてArガスを用いた。本実施例における操業条件及び代表的な溶銑成分の例を表1に示す。溶銑は機械攪拌式脱硫装置を用い、脱硫処理を施してある。鉄スクラップとしては、製鉄所で発生する鉄スクラップ(鋳片や鋼板のクロップ屑など)を使用した。   The top bottom blowing converter type refining furnace used had a furnace capacity of about 250 tons (hereinafter referred to as “ch”), and Ar gas was used as the bottom blowing gas for stirring. Table 1 shows examples of operating conditions and typical hot metal components in this example. The hot metal was desulfurized using a mechanical stirring desulfurization apparatus. As the iron scrap, iron scrap (slabs, steel plate crop scraps, etc.) generated at steelworks was used.

Figure 0005942425
Figure 0005942425

尚、本発明の効果を理解し易くするために、表1に示すように、操業条件のうちの溶銑使用量を170トン、装入する溶銑の温度を1330℃、出湯時の高炭素溶鉄の温度を1400℃の一定の条件とし、更に、造滓材装入量も一定の条件とした。   In addition, in order to make it easy to understand the effect of the present invention, as shown in Table 1, the amount of hot metal used in the operating conditions is 170 tons, the temperature of the hot metal to be charged is 1330 ° C., and the high carbon molten iron at the time of tapping is used. The temperature was set to a constant condition of 1400 ° C., and the slagging material charging amount was also set to a constant condition.

使用したバイオマス炭は、硫黄含有量が0.05質量%であるパームヤシ殻由来のバイオマス炭(以下、「バイオマス炭A」と記す)、硫黄含有量が0.07質量%であるパームヤシ空果房由来のバイオマス炭(以下、「バイオマス炭B」と記す)、硫黄含有量が0.10質量%であるパームヤシ幹由来のバイオマス炭(以下、「バイオマス炭C」と記す)の3種類を用いた。また、一部の本発明例ではコークス(硫黄含有量=0.50質量%)も併用した。   The used biomass charcoal is palm palm shell derived biomass charcoal having a sulfur content of 0.05% by mass (hereinafter referred to as “biomass charcoal A”), and palm palm empty fruit bunch having a sulfur content of 0.07% by mass. Three types of biomass charcoal derived from biomass (hereinafter referred to as “biomass charcoal B”) and biomass charcoal derived from palm palm having a sulfur content of 0.10% by mass (hereinafter referred to as “biomass charcoal C”) were used. . In some examples of the present invention, coke (sulfur content = 0.50 mass%) was also used.

溶銑及び鉄スクラップの硫黄濃度の加重平均値bと、精錬終了時の高炭素溶鉄の許容最大硫黄濃度cとの差、即ち、精錬中に炭材投入により上昇しても許容できる硫黄量の最大値に基づいて炭材の添加量を決定した。そして、この炭材添加量に応じて鉄スクラップの配合量を決定した。つまり、鉄スクラップの配合量を炭材添加量から定まる最大値に設定した。これは、比較例1も同様である。   Difference between weighted average value b of sulfur concentration of hot metal and iron scrap and allowable maximum sulfur concentration c of high carbon molten iron at the end of refining, that is, the maximum amount of sulfur that can be tolerated even if it rises by charging carbon during refining The amount of carbon material added was determined based on the value. And the compounding quantity of the iron scrap was determined according to this carbon material addition amount. That is, the amount of iron scrap was set to the maximum value determined from the amount of carbonaceous material added. The same applies to Comparative Example 1.

但し、本発明例1では、硫黄濃度から求められる炭材添加の上限値とは関係なく、炭材の添加量を比較例1の使用量に一致させた。因みに、比較例1は、炭材としてコークス(硫黄濃度=0.50質量%)を使用し、コークスによる硫黄濃度の上昇量が許容最大硫黄濃度cとなる500kg/chのコークスを添加し、この500kg/chのコークスの添加によって、20トンの鉄スクラップを配合した操業である(鉄スクラップ配合比率=10.5質量%)。表2に、本発明例1〜10及び比較例1の操業条件及び操業結果を示す。   However, in Invention Example 1, the amount of carbon material added was matched to the amount used in Comparative Example 1 regardless of the upper limit value of the carbon material addition obtained from the sulfur concentration. Incidentally, in Comparative Example 1, coke (sulfur concentration = 0.50% by mass) is used as a carbonaceous material, and 500 kg / ch coke in which the amount of increase in sulfur concentration due to coke becomes an allowable maximum sulfur concentration c is added. This is an operation in which 20 tons of iron scrap is blended by adding 500 kg / ch coke (iron scrap blending ratio = 10.5% by mass). Table 2 shows the operation conditions and operation results of Examples 1 to 10 of the present invention and Comparative Example 1.

Figure 0005942425
Figure 0005942425

炭材の燃焼によるCO2ガスの発生量は、下記の(2)式の化学反応式を用いて算出した。
C+O2=CO2 …(2)
(2)式によれば、コークス(炭素分=86質量%)1kgあたり3.15kgのCO2ガスが発生し、比較例1では約1577kg/chのCO2ガスが発生した。
The amount of CO 2 gas generated by the combustion of the carbonaceous material was calculated using the following chemical reaction formula (2).
C + O 2 = CO 2 (2)
According to the formula (2), 3.15 kg of CO 2 gas was generated per 1 kg of coke (carbon content = 86 mass%), and about 1577 kg / ch of CO 2 gas was generated in Comparative Example 1.

本発明例1は、コークスをバイオマス炭Aに全量置き換えて試験を実施した。本発明例1では、コークスをバイオマス炭Aに全量置き換えることで、炭材燃焼による化石燃料由来のCO2ガス排出量はゼロとなり、温室効果ガスの発生量を削減することができた。本発明例1は、比較例1と炭材の添加量が同一であり、鉄スクラップの使用量は同一であった。また、炭材からの硫黄の混入は全く問題にならなかった。 Inventive Example 1 was tested by replacing all the coke with biomass coal A. In Example 1 of the present invention, by replacing the entire amount of coke with biomass coal A, the amount of CO 2 gas derived from fossil fuel by combustion of carbonaceous materials became zero, and the amount of greenhouse gas generated could be reduced. Invention Example 1 had the same amount of carbonaceous material as Comparative Example 1 and the same amount of iron scrap used. Moreover, the mixing of sulfur from the charcoal did not cause any problems.

本発明例2〜7では、使用したバイオマス炭の硫黄含有量がコークスよりも低くなった分、許容硫黄濃度の上限までバイオマス炭の添加量を増加させ、それに伴って鉄スクラップの使用量も上限まで増加させた。尚、炭材の添加量が増加した本発明例2〜10では、増加した炭材の添加量1kgあたり約0.8Nm3の酸素ガスを増加させて試験した。 In Examples 2-7 of the present invention, the sulfur content of the used biomass coal is lower than that of coke, so the amount of biomass coal added is increased to the upper limit of the allowable sulfur concentration, and the amount of iron scrap used is also the upper limit accordingly. Increased to. In Examples 2 to 10 of the present invention in which the amount of carbon material added was increased, oxygen gas of about 0.8 Nm 3 was increased per kg of the increased amount of carbon material.

0.001質量%の許容硫黄濃度上昇の上限に対して、本発明例2では、バイオマス炭Aを5000kg/ch添加し、比較例1と比較して鉄スクラップ使用量を12.5t/ch増加させることができ、本発明例3では、バイオマス炭Bを3571kg/ch添加し、比較例1と比較して鉄スクラップ使用量を8.9t/ch増加させることができ、本発明例4では、バイオマス炭Cを2500kg/ch添加し、比較例1と比較して鉄スクラップ使用量を6.3t/ch増加させることができた。   In the example 2 of the present invention, the biomass coal A is added at 5000 kg / ch to the upper limit of the allowable sulfur concentration increase of 0.001% by mass, and the amount of iron scrap used is increased by 12.5 t / ch compared with the comparative example 1. In Invention Example 3, 3571 kg / ch of biomass charcoal B is added, and the amount of iron scrap used can be increased by 8.9 t / ch compared to Comparative Example 1. In Invention Example 4, By adding 2500 kg / ch of biomass charcoal C, the amount of iron scrap used could be increased by 6.3 t / ch compared to Comparative Example 1.

また、0.002質量%の許容硫黄濃度上昇の上限に対して、本発明例5では、バイオマス炭Aを10000kg/ch添加し、比較例1と比較して鉄スクラップ使用量を25.0t/ch増加させることができ、本発明例6では、バイオマス炭Bを7143kg/ch添加し、比較例1と比較して鉄スクラップ使用量を17.9t/ch増加させることができ、本発明例7では、バイオマス炭Cを5000kg/ch添加し、比較例1と比較して鉄スクラップ使用量を12.5t/ch増加させることができた。   Moreover, in the example 5 of this invention with respect to the upper limit of the allowable sulfur concentration increase of 0.002 mass%, biomass coal A is added 10000 kg / ch, and compared with the comparative example 1, the amount of iron scrap used is 25.0 t / In Example 6 of the present invention, 7143 kg / ch of biomass coal B was added, and the amount of iron scrap used could be increased by 17.9 t / ch compared to Comparative Example 1, and Example 7 of the present invention Then, biomass coal C was added at 5000 kg / ch, and the amount of iron scrap used could be increased by 12.5 t / ch compared with Comparative Example 1.

本発明例2〜7では、コークスをバイオマス炭に全量置き換えることで、炭材燃焼による化石燃料由来のCO2ガス排出量はゼロとなり、温暖化防止の効果が発揮されるとともに、鉄スクラップ使用量の増加により生産量を増加させることができた。 In the present invention examples 2 to 7, by replacing the entire amount of coke with biomass charcoal, the amount of CO 2 gas derived from fossil fuel by combustion of carbonaceous materials becomes zero, and the effect of preventing global warming is exhibited, and the amount of iron scrap used It was possible to increase production by increasing

本発明例8〜10では、コークスの一部をバイオマス炭に置き換えて試験を実施した。コークスとバイオマス炭の使用比率は、高炭素溶鉄の硫黄濃度規制、在庫、環境対策などにより変動させることができる。   In Examples 8 to 10 of the present invention, a test was performed by replacing part of coke with biomass charcoal. The use ratio of coke and biomass charcoal can be varied according to sulfur concentration regulations, inventory, environmental measures, etc. of high carbon molten iron.

本発明例8では、コークス250kg/ch、バイオマス炭Aを2500kg/ch添加し、比較例1と比較して炭材による化石燃料由来のCO2ガス排出量を半分にすることができ、更に、鉄スクラップ使用量を6.9t/ch増加させることができた。本発明例9では、コークス250kg/ch、バイオマス炭Bを1786kg/ch添加し、比較例1と比較して炭材による化石燃料由来のCO2ガス排出量を半分にすることができ、更に、鉄スクラップ使用量を5.0t/ch増加させることができた。本発明例10では、コークス250kg/ch、バイオマス炭Cを1250kg/ch添加し、比較例1と比較して炭材による化石燃料由来のCO2ガス排出量を半分にすることができ、更に、鉄スクラップ使用量を3.8t/ch増加させることができた。 In the present invention example 8, coke 250 kg / ch, biomass coal A 2500 kg / ch addition, CO 2 gas emission amount derived from fossil fuel by carbon material can be halved compared with Comparative Example 1, The amount of iron scrap used was increased by 6.9 t / ch. In Example 9 of the present invention, coke 250 kg / ch and biomass coal B 1786 kg / ch were added, and the amount of CO 2 gas derived from fossil fuel derived from charcoal can be halved compared to Comparative Example 1, The amount of iron scrap used could be increased by 5.0 t / ch. In the present invention example 10, coke 250 kg / ch, biomass coal C 1250 kg / ch addition, CO 2 gas emission amount derived from fossil fuel by carbon material can be halved compared with Comparative Example 1, The amount of iron scrap used could be increased by 3.8 t / ch.

実施例1における本発明例2の条件において、バイオマス炭Aの添加量を5000kg/chとしたまま、鉄スクラップの使用増加量を12.5t/chから10.5t/chに変更し、余剰の熱源に対して炉上から鉄源を投入し、本発明例11〜15を行った。鉄源としては、製鉄ダストの1種である転炉集塵ダスト(「OGダスト」ともいう)、鉄鉱石、鉄鉱石の焼結鉱紛、ミルスケール及び機械工場で発生する鋼の切削屑を使用した。   In the condition of Example 1 of the present invention in Example 1, the amount of increase in the amount of iron scrap used was changed from 12.5 t / ch to 10.5 t / ch while the addition amount of biomass coal A was 5000 kg / ch, and the surplus The iron source was thrown in from the furnace with respect to the heat source, and this invention example 11-15 was performed. Iron sources include converter dust collection dust (also called “OG dust”), iron ore, sintered ore of iron ore, mill scale, and steel cutting waste generated at machine shops. used.

表3に、本発明例11〜15の操業条件及び操業結果を示す。尚、表3に示す鉄歩留向上とは、鉄源を添加しない場合に比較して、炉上から添加した冷却材が還元され、鉄となった量を示したものである。   Table 3 shows the operation conditions and operation results of Examples 11 to 15 of the present invention. In addition, the iron yield improvement shown in Table 3 shows the amount of the coolant added from the furnace reduced to iron, compared to the case where no iron source is added.

Figure 0005942425
Figure 0005942425

鋼の切削屑を添加した本発明例15では、切削屑は還元する必要がなく、高い鉄歩留りの向上が得られたが、鉄酸化物が主体である鉄源を使用した本発明例11〜14においても鉄歩留りの向上が得られた。つまり、鉄酸化物が主体である鉄源であっても、鉄歩留り向上の効果があり、生産量を増加させることが確認できた。つまり、熱源の増加分を鉄スクラップだけではなく、炉上からの鉄源に置き換えても問題はなく、歩留向上の効果があり、生産量を増加させることができた。   In Invention Example 15 to which steel cutting waste was added, the cutting waste did not need to be reduced, and high iron yield was improved, but Invention Examples 11 to 11 using an iron source mainly composed of iron oxide were obtained. 14 also improved the iron yield. In other words, it was confirmed that even an iron source mainly composed of iron oxide has an effect of improving the iron yield and increases the production amount. In other words, there was no problem even if the increase in the heat source was replaced not only with iron scrap but also with the iron source from the furnace, yielding was improved, and the production volume could be increased.

本発明においては、カーボンニュートラルであるバイオマス炭を化石燃料からなる従来の炭材の一部または全部と置き換え使用することで、温室効果ガスの発生量を削減することができ、更に、従来の炭材よりも硫黄含有量が低いバイオマス炭を使用することで、高炭素溶鉄の硫黄濃度規制に起因する熱源不足を解消し、従来よりも多くの鉄スクラップや炉上からの鉄源を使用することができ、生産量を増加させることができた。尚、従来技術である比較例1では、炭材としてコークスを用いているが、無煙炭、黒鉛などの炭材を使用しても構わず、これらの無煙炭、黒鉛などの炭材をバイオマス炭に置き換えても何ら問題はない。   In the present invention, the carbon-neutral biomass charcoal is replaced with a part or all of the conventional charcoal made of fossil fuel, so that the amount of greenhouse gas generated can be reduced. By using biomass charcoal with a sulfur content lower than that of the lumber, the shortage of heat source due to the sulfur concentration regulation of high-carbon molten iron is eliminated, and more iron scrap and iron sources from the furnace than before are used. Was able to increase production. In Comparative Example 1, which is the prior art, coke is used as the charcoal, but charcoal such as anthracite and graphite may be used, and the carbon such as anthracite and graphite is replaced with biomass charcoal. There is no problem.

1 転炉型精錬炉設備
2 精錬炉本体
3 炉口
4 上吹き酸素ランス
5 底吹き羽口
6 ガス導入管
7 出湯口
8 ダクト
9 ホッパー
10 切り出し装置
11 シュート
12 溶銑
13 溶融スラグ
14 鉄スクラップ
15 炭材
16 鉄源
21 直流式アーク炉
22 溶解室
23 炉蓋
24 上部電極
25 炉底電極
26 溶銑装入樋
27 装入鍋
28 クレーン
29 出湯口
30 酸素ガス供給ランス
31 炭材供給ランス
32 原料投入シュート
33 アーク
DESCRIPTION OF SYMBOLS 1 Converter type refining furnace equipment 2 Refining furnace main body 3 Furnace opening 4 Top blowing oxygen lance 5 Bottom blowing tuyere 6 Gas introduction pipe 7 Outlet 8 Duct 9 Hopper 10 Cutting device 11 Chute 12 Hot metal 13 Molten slag 14 Iron scrap 15 Charcoal Material 16 Iron source 21 DC arc furnace 22 Melting chamber 23 Furnace lid 24 Upper electrode 25 Furnace bottom electrode 26 Hot metal charging rod 27 Charging pan 28 Crane 29 Hot water outlet 30 Oxygen gas supply lance 31 Carbon material supply lance 32 Raw material charging chute 33 arc

Claims (6)

鉄スクラップ及び溶銑を鉄源として精錬炉内に装入し、次いで、該精錬炉内に酸素ガスを供給し、前記精錬炉内の前記鉄スクラップを精錬炉内に供給した炭材の前記酸素ガスによる燃焼熱及び前記溶銑の顕熱によって溶解するとともに、前記鉄スクラップの溶解によって生成する溶融鉄を前記炭材中の炭素及び前記溶銑中の炭素によって加炭し、炭素濃度が3.0質量%以上の高炭素溶鉄を前記精錬炉内で製造する方法であって、
前記炭材の全部としてバイオマス由来の炭材を使用するとともに、
前記バイオマス由来の炭材の総添加量をX(kg-炭材/t-溶鉄)、該炭材の硫黄濃度をa(質量%)、精錬前の溶銑及び鉄スクラップの硫黄濃度の加重平均値をb(質量%)、精錬終了時の高炭素溶鉄の許容最大硫黄濃度をc(質量%)としたとき、前記炭材の総添加量Xを下記の(1)式で算出される値と同一またはそれ未満とし、且つ、この炭材の総添加量Xに基づいて前記鉄スクラップの装入量を決定し、製造される高炭素溶鉄の硫黄濃度を許容最大硫黄濃度c以下に制御することを特徴とする、鉄スクラップを用いた高炭素溶鉄の製造方法。
X=[(c−b)/a]×1000 …(1)
Charging iron scrap and hot metal into the smelting furnace as an iron source, then supplying oxygen gas into the smelting furnace, and the oxygen gas of the carbonaceous material that supplied the iron scrap in the smelting furnace into the smelting furnace with dissolved by the combustion heat and sensible heat of the hot metal by the molten iron produced by dissolving iron scrap and carburization by the carbon of the carbon and in the hot metal of the carbonaceous material in the carbon concentration is 3.0 mass% A method for producing the above high carbon molten iron in the refining furnace,
With using the carbonaceous material of biomass as a total part of the carbonaceous material,
X (kg-charcoal material / t-molten iron) is the total amount of carbonaceous material derived from biomass, the sulfur concentration of the carbonaceous material is a (mass%), the weighted average value of the hot metal before refining and the sulfur concentration of iron scrap And b (mass%), and the allowable maximum sulfur concentration of the high carbon molten iron at the end of refining is c (mass%), the total addition amount X of the carbonaceous material is a value calculated by the following equation (1): It is the same or less, and the amount of iron scrap charged is determined based on the total amount X of the carbon material, and the sulfur concentration of the high carbon molten iron to be produced is controlled to the allowable maximum sulfur concentration c or less. A method for producing high-carbon molten iron using iron scrap.
X = [(c−b) / a] × 1000 (1)
前記精錬炉が、前記酸素ガスを上吹き供給する上底吹き転炉型の精錬炉であることを特徴とする、請求項1に記載の鉄スクラップを用いた高炭素溶鉄の製造方法。   2. The method for producing high-carbon molten iron using iron scrap according to claim 1, wherein the refining furnace is a top-bottom-blown converter type refining furnace that blows up the oxygen gas. 3. 前記精錬炉が、アーク炉であって、前記炭材の燃焼熱及び前記溶銑の顕熱に加えて発生するアークの熱で、前記鉄スクラップを溶解することを特徴とする、請求項1に記載の鉄スクラップを用いた高炭素溶鉄の製造方法。   The said smelting furnace is an arc furnace, The said iron scrap is melt | dissolved with the heat of the arc generated in addition to the combustion heat of the said carbonaceous material, and the sensible heat of the said hot metal, The said scraps are characterized by the above-mentioned. Of high-carbon molten iron using steel scrap. 前記バイオマス由来の炭材の硫黄濃度が0.10質量%以下であることを特徴とする、請求項1ないし請求項3の何れか1項に記載の鉄スクラップを用いた高炭素溶鉄の製造方法。   The method for producing high-carbon molten iron using iron scrap according to any one of claims 1 to 3, wherein the biomass-derived carbonaceous material has a sulfur concentration of 0.10 mass% or less. . 前記バイオマス由来の炭材が、パームヤシ殻由来のバイオマス炭、パームヤシ空果房由来のバイオマス炭、パームヤシ幹由来のバイオマス炭のうちの何れか1種または2種以上であることを特徴とする、請求項1ないし請求項の何れか1項に記載の鉄スクラップを用いた高炭素溶鉄の製造方法。 The biomass-derived charcoal material is any one or more of biomass charcoal derived from palm coconut shell, biomass charcoal derived from palm palm empty fruit bunches, and biomass charcoal derived from palm palm trunk, The manufacturing method of the high carbon molten iron using the iron scrap of any one of Claims 1 thru | or 4 . 前記精錬炉内への酸素ガスの供給中に、鉄鉱石、鉄鉱石の焼結鉱、ミルスケール、製鉄ダスト、磁選屑、鋼の切削屑からなる鉄源のうちの何れか1種または2種以上の鉄源を前記精錬炉内に投入することを特徴とする、請求項1ないし請求項の何れか1項に記載の鉄スクラップを用いた高炭素溶鉄の製造方法。 During the supply of oxygen gas into the smelting furnace, any one or two of iron sources comprising iron ore, iron ore sintered ore, mill scale, iron making dust, magnetic separation scrap, and steel cutting scrap The method for producing high-carbon molten iron using iron scrap according to any one of claims 1 to 5 , wherein the iron source is put into the smelting furnace.
JP2011287095A 2011-12-28 2011-12-28 Method for producing high-carbon molten iron using iron scrap Expired - Fee Related JP5942425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011287095A JP5942425B2 (en) 2011-12-28 2011-12-28 Method for producing high-carbon molten iron using iron scrap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287095A JP5942425B2 (en) 2011-12-28 2011-12-28 Method for producing high-carbon molten iron using iron scrap

Publications (2)

Publication Number Publication Date
JP2013136799A JP2013136799A (en) 2013-07-11
JP5942425B2 true JP5942425B2 (en) 2016-06-29

Family

ID=48912740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287095A Expired - Fee Related JP5942425B2 (en) 2011-12-28 2011-12-28 Method for producing high-carbon molten iron using iron scrap

Country Status (1)

Country Link
JP (1) JP5942425B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6258647B2 (en) * 2013-09-20 2018-01-10 太平洋セメント株式会社 Manufacturing method of carburized material and method of using used activated carbon
CN113430332B (en) * 2021-06-29 2022-06-10 广东韶钢松山股份有限公司 Method for recarburizing molten iron of blast furnace

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159519A (en) * 1984-12-29 1986-07-19 Nippon Steel Corp Converter operating method
JP2803528B2 (en) * 1993-08-24 1998-09-24 日本鋼管株式会社 Converter steelmaking method
JP3752051B2 (en) * 1997-03-26 2006-03-08 新日本製鐵株式会社 Scrap melting method and scrap melting lance
JPH11131121A (en) * 1997-10-29 1999-05-18 Nippon Steel Corp Heat supply method for melting cold charge containing iron
JP4060986B2 (en) * 1998-05-22 2008-03-12 新日本製鐵株式会社 How to use dust in converter steelmaking.
JP2003321708A (en) * 2003-05-22 2003-11-14 Jfe Steel Kk Converter steel refining method
CN101558170B (en) * 2008-03-28 2012-12-26 钢铁普蓝特克股份有限公司 Arc furnace steelmaking process using palm shell charcoal
JP5552754B2 (en) * 2009-05-12 2014-07-16 Jfeスチール株式会社 Arc furnace operation method
JP5413043B2 (en) * 2009-08-10 2014-02-12 Jfeスチール株式会社 Converter steelmaking method using a large amount of iron scrap
JP5549198B2 (en) * 2009-11-24 2014-07-16 Jfeスチール株式会社 Steel making method using steel scrap

Also Published As

Publication number Publication date
JP2013136799A (en) 2013-07-11

Similar Documents

Publication Publication Date Title
KR101699272B1 (en) Steelmaking method in converter
JP5408369B2 (en) Hot metal pretreatment method
JP5440733B2 (en) Hot metal refining method
JP6413710B2 (en) Production method of high purity steel by DC arc electric furnace
JP5413043B2 (en) Converter steelmaking method using a large amount of iron scrap
JP5552754B2 (en) Arc furnace operation method
JP5236926B2 (en) Manufacturing method of molten steel
CN101558170B (en) Arc furnace steelmaking process using palm shell charcoal
JP5909957B2 (en) Steel making method using steel scrap
KR20100043287A (en) Process for producing molten iron
JP5942425B2 (en) Method for producing high-carbon molten iron using iron scrap
JP5998763B2 (en) Converter steelmaking method
JP2020180322A (en) Production method of molten steel using converter
JP2004137572A (en) Method for refining molten metal containing chromium
JP4639943B2 (en) Hot metal desulfurization method
JP2010077522A (en) Method for refining molten iron
RU2828265C2 (en) Electric furnace and method of steel production
WO2024023571A1 (en) A method for manufacturing pig iron in an electrical smelting furnace and associated electrical smelting furnace
WO2024023562A1 (en) A method for manufacturing pig iron in an electrical smelting furnace and associated smelting furnace
WO2024023570A1 (en) A method for manufacturing pig iron in an electrical smelting furnace and associated electrical smelting furnace
WO2024023560A1 (en) A method for manufacturing pig iron in an electrical smelting furnace and associated electrical smelting furnace
WO2024023565A1 (en) A method for manufacturing pig iron in an electrical smelting furnace and associated electrical smelting furnace
WO2024023558A1 (en) A method for manufacturing pig iron in an electrical smelting furnace and associated furnace
WO2024023564A1 (en) A method for manufacturing pig iron in an electrical smelting furnace and associated electrical smelting furnace
WO2024023557A1 (en) Method for manufacturing pig iron into an electrical smelting furnace and associated smelting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5942425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees