JP2020020010A - Reduction method of high-phosphorus iron ore - Google Patents
Reduction method of high-phosphorus iron ore Download PDFInfo
- Publication number
- JP2020020010A JP2020020010A JP2018145689A JP2018145689A JP2020020010A JP 2020020010 A JP2020020010 A JP 2020020010A JP 2018145689 A JP2018145689 A JP 2018145689A JP 2018145689 A JP2018145689 A JP 2018145689A JP 2020020010 A JP2020020010 A JP 2020020010A
- Authority
- JP
- Japan
- Prior art keywords
- phosphorus
- gas
- ore
- iron
- reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
Abstract
Description
本発明は、燐を多く含有する高燐鉄鉱石の還元方法に関する。 The present invention relates to a method for reducing high-phosphorous ore containing a large amount of phosphorus.
従来、燐を0.06質量%程度以上含有する鉄鉱石(高燐鉄鉱石)は、製鉄原料として、殆ど使用されていなかったが、近年、低燐鉄鉱石の産出量の減少に伴い、製鉄原料として使用され始めている。しかし、高燐鉄鉱石は、燐を多量に含有するが故、通常の製銑・製鋼過程で、所要のレベルまで効率よく脱燐することは技術的に困難であり、高燐鉄鉱石の使用量には限界がある。 Conventionally, iron ore containing high phosphorus (0.06 mass% or more) (high iron phosphate ore) has hardly been used as a raw material for ironmaking. It is starting to be used as a raw material. However, since high-phosphorous ore contains a large amount of phosphorus, it is technically difficult to efficiently dephosphorize to a required level in a normal ironmaking and steelmaking process. The amount is limited.
このような現状を踏まえ、高燐鉄鉱石を、製鉄原料として有効に使用するための技術が、幾つか提案されている。 Under such circumstances, several techniques for effectively using high-phosphate iron ore as a raw material for ironmaking have been proposed.
特許文献1には、高炉内に鉄源の一部又は全部として燐濃度が0.06wt%以上の鉄鉱石を装入する工程と、高炉からの出銑ままで又は高炉出銑後の脱珪処理を経ることで珪素濃度が0.20wt%以下の溶銑を得る工程と、該工程を経た低珪素溶銑を脱燐処理する工程と、該脱燐処理工程を経た溶銑を脱炭処理する工程とを、少なくとも有することを特徴とする高燐鉱石を原料とする鉄鋼製造方法が提案されている。
しかし、特許文献1の鉄鋼製造方法は、燐濃度が0.06wt%以上の鉄鉱石を、製鉄原料の一部又は全部として使用するので、製鋼工程での脱燐コストが過大となり、実用には課題がある。
However, since the iron ore having a phosphorus concentration of 0.06% by weight or more is used as a part or all of the iron making raw material in the steel manufacturing method of
特許文献2には、P成分が0.1質量%を超える高燐鉱石であって、その高燐鉱石中の0.25mm以下の微粉部に含まれるAl2O3含有量の割合を2.2質量%以下としたことを特徴とする焼結原料用鉱石と、該焼結原料用鉱石を用いる焼結鉱の製造方法が提案されている。
特許文献2の製造方法は、高燐鉄鉱石を焼結原料用鉱石として多量に用いることができるが、脱燐処理を、従来どおり、製鋼工程で行うので、脱燐コストが過大となり実用的ではない。
In the production method of
鉄鉱石中の燐の存在形態は、(a)アパタイト等に代表される燐酸塩鉱物、(b)レアアース由来、(c)Fe2O3に固溶、及び、(d)FeOOHに吸着のいずれかに分類される。(c)と(d)では、FeとPが共存しているので、Pを物理的に分離(例えば、選鉱法で分離)することは不可能で、従来は、酸やアルカリで浸出して分離するか、又は、マグネタイト(Fe3O4)まで還元した後、弱磁選して分離している。 Phosphorus present in iron ore can be any of (a) phosphate minerals such as apatite, (b) derived from rare earths, (c) dissolved in Fe 2 O 3 , and (d) adsorbed on FeOOH. It is classified into crab. In (c) and (d), since Fe and P coexist, it is impossible to physically separate P (for example, by a beneficiation method). Conventionally, P is leached with acid or alkali. It is separated or reduced to magnetite (Fe 3 O 4 ) and then separated by weak magnetic selection.
非特許文献1には、高燐鉄鉱石を、水素−水蒸気雰囲気中で還元し、高燐鉄鉱石から、直接、燐を除去することが報告されている。しかし、非特許文献1の報告によれば、気化した燐が、還元で生成した金属鉄に吸収されて、溶銑中の燐の源泉となるFe2Pが生成し、金属化率30%程度のところで脱燐率は飽和して、10%程度と低い。それ故、非特許文献の脱燐処理は実用的でない。
Non-Patent
高燐鉄鉱石を製鉄原料として用いる場合、高燐鉄鉱石に還元処理を施しても、脱燐率が向上せず、製鋼工程での脱燐処理に多大のコストを要し、経済的に不利であることを踏まえ、本発明者は、高燐鉄鉱石の還元において、燐含有量の少ない金属鉄を得ることを課題とし、該課題を解決する高燐鉄鉱石の還元方法を提供することを目的とする。 When high-phosphate iron ore is used as a raw material for ironmaking, even if reduction treatment is performed on the high-phosphate iron ore, the dephosphorization rate does not improve, and a large cost is required for the dephosphorization treatment in the steelmaking process, which is economically disadvantageous. In view of the above, the present inventor aims to obtain metallic iron having a low phosphorus content in the reduction of high-phosphate iron ore, and to provide a method for reducing high-phosphate iron ore that solves the problem. Aim.
本発明者らは、非特許文献1の報告を踏まえ、上記課題を解決する手法について鋭意検討した。
The present inventors diligently studied a technique for solving the above-described problem based on the report of Non-Patent
その結果、高燐鉄鉱石を還元する際、還元を2段階に分け、第1段階では、金属鉄が生成しない還元条件で、鉱石中の燐化合物(主として燐酸化物[P2O5])を還元、気化して除去し、次いで、第2段階で、鉱石中の酸化鉄を金属鉄まで還元すれば、気化した燐と金属鉄が接触しないので、燐の金属鉄への再吸収が防止されて、溶銑中の燐の源泉となるFe2Pの生成が抑制され、脱燐率が向上することが判明した。 As a result, when reducing high-phosphate iron ore, the reduction is divided into two stages, and in the first stage, the phosphorus compound (mainly phosphoric acid [P 2 O 5 ]) in the ore is reduced under reducing conditions in which metallic iron is not generated. If the iron oxide in the ore is reduced to metallic iron in the second stage, the vaporized phosphorus and metallic iron do not come into contact with each other, so that re-absorption of phosphorus into metallic iron is prevented. Thus, it was found that the generation of Fe 2 P, which is a source of phosphorus in the hot metal, was suppressed, and the dephosphorization rate was improved.
また、高燐鉄鉱石を燐化合物の還元処理に供する前に、高燐鉄鉱石に、水洗処理、脱水処理、及び、選鉱処理の1又は2以上を施せば、脱燐率がより向上することが判明した。 In addition, if the high-phosphate iron ore is subjected to one or more of a washing treatment, a dehydration treatment, and a beneficiation treatment before subjecting the high-phosphate iron ore to the reduction treatment of the phosphorus compound, the dephosphorization rate is further improved. There was found.
本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。 The present invention has been made based on the above findings, and the gist is as follows.
(1)燐化合物を含有する高燐鉄鉱石の還元方法であって、
温度及び組成が、酸化鉄及び五酸化二燐のCOガス還元平衡図、酸化鉄及び五酸化二燐のH2ガス還元平衡図、及び/又は、酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図のP2ガス平衡領域とFeO平衡領域にあるガスで、高燐鉄鉱石中の燐化合物を還元、気化し、気化した燐を除去し、次いで、酸化鉄を還元する
ことを特徴とする高燐鉄鉱石の還元方法。
(1) A method for reducing high-phosphate iron ore containing a phosphorus compound,
Temperature and composition, CO gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide, H 2 gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide, and / or, of iron oxide and phosphorus pentoxide CO-H 2 Gases in the P 2 gas equilibrium region and the FeO equilibrium region of the mixed gas reduction equilibrium diagram are used to reduce and vaporize phosphorus compounds in high-phosphate iron ore, remove vaporized phosphorus, and then reduce iron oxide. Characteristic method for reducing high phosphate iron ore.
(2)前記燐化合物を含有する高燐鉄鉱石に、燐化合物を還元する還元処理を施す前に、脱水処理、水洗処理、及び、選鉱処理の1又は2以上を施すことを特徴とする前記(1)に記載の高燐鉄鉱石の還元方法。 (2) The high-phosphate iron ore containing the phosphorus compound is subjected to one or more of a dehydration treatment, a water washing treatment, and a beneficiation treatment before the reduction treatment for reducing the phosphorus compound is performed. The method for reducing high-phosphate iron ore according to (1).
(3)前記脱水処理は、高燐鉄鉱石を400℃以上800℃未満に加熱して行うことを特徴とする前記(2)に記載の高燐鉄鉱石の還元方法。 (3) The method for reducing high-phosphate iron ore according to (2), wherein the dehydration treatment is performed by heating the high-phosphate iron ore to 400 ° C or more and less than 800 ° C.
(4)前記選鉱処理で、燐化合物を含有する高燐鉄鉱石から、ゲーサイトを富化した鉱石を回収し、ゲーサイトを富化した鉱石を還元処理に供することを特徴とする前記(2)又は(3)に記載の高燐鉄鉱石の還元方法。 (4) In the beneficiation treatment, the ore enriched in goethite is recovered from the high phosphate iron ore containing a phosphorus compound, and the ore enriched in goethite is subjected to a reduction treatment. ) Or (3).
(5)前記高燐鉄鉱石中の酸化鉄を還元する工程で生成するガスを改質炉で改質し、高燐鉄鉱石中の燐化合物を還元するガスの一部又は全部として用いることを特徴とする前記(1)〜(4)のいずれかに記載の高燐鉄鉱石の還元方法。 (5) The gas generated in the step of reducing iron oxide in the high phosphate iron ore is reformed in a reforming furnace and used as part or all of the gas for reducing the phosphorus compound in the high phosphate iron ore. The method for reducing high phosphate iron ore according to any one of the above (1) to (4).
本発明によれば、高燐鉄鉱石に、鉱石の段階で脱燐処理を施す際、溶銑中の燐の源泉となるFe2Pの生成を抑制して、脱燐率を、従来以上に高めることができる。 According to the present invention, when performing a dephosphorization treatment at the ore stage on a high-phosphorous iron ore, the generation of Fe 2 P as a source of phosphorus in the hot metal is suppressed, and the dephosphorization rate is increased more than before. be able to.
本発明の高燐鉄鉱石の還元方法(以下「本発明還元方法」ということがある。)は、燐化合物を含有する高燐鉄鉱石の還元方法であって、
温度及び組成が、酸化鉄及び五酸化二燐のCOガス還元平衡図、酸化鉄及び五酸化二燐のH2ガス還元平衡図、及び/又は、酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図のP2ガス平衡領域とFeO平衡領域にあるガス(以下「脱燐ガス」ということがある。)で、高燐鉄鉱石中の燐化合物を還元、気化し(以下「脱燐工程」ということがある。)、気化した燐を除去し、次いで、酸化鉄を還元する(以下「鉄還元工程」ということがある。)
ことを特徴とする。
The method for reducing high phosphate iron ore of the present invention (hereinafter sometimes referred to as the “reduction method of the present invention”) is a method for reducing high phosphate iron ore containing a phosphorus compound,
Temperature and composition, CO gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide, H 2 gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide, and / or, of iron oxide and phosphorus pentoxide CO-H 2 Gases in the P 2 gas equilibrium region and the FeO equilibrium region of the mixed gas reduction equilibrium diagram (hereinafter sometimes referred to as “dephosphorized gas”) are used to reduce and vaporize phosphorus compounds in high phosphate iron ore (hereinafter referred to as “dephosphorized gas”). Phosphorous step "), removes vaporized phosphorus, and then reduces iron oxide (hereinafter sometimes referred to as" iron reducing step ").
It is characterized by the following.
本発明還元方法は、前記燐化合物を含有する高燐鉄鉱石に、燐化合物を還元する還元処理(以下「脱燐処理」ということがある。)を施す前に、脱水処理、水洗処理、及び、選鉱処理の1又は2以上を施すことを特徴とする。 In the reduction method of the present invention, a dehydration treatment, a water washing treatment, and a reduction treatment are performed on the high-phosphate iron ore containing the phosphorus compound before the reduction treatment for reducing the phosphorus compound (hereinafter, may be referred to as “dephosphorization treatment”). And one or more of the beneficiation processes.
本発明還元方法は、前記脱水処理は、高燐鉄鉱石を400℃以上800℃未満に加熱して行うことを特徴とする。 The reduction method of the present invention is characterized in that the dehydration treatment is performed by heating the high phosphate iron ore to 400 ° C. or more and less than 800 ° C.
本発明還元方法は、前記選鉱処理で、燐化合物を含有する高燐鉄鉱石から、ゲーサイトを富化した鉱石を回収し、ゲーサイトを富化した鉱石を還元処理に供することを特徴とする。 The reduction method of the present invention is characterized in that, in the beneficiation treatment, ore enriched in goethite is recovered from high phosphate iron ore containing a phosphorus compound, and the ore enriched in goethite is subjected to a reduction treatment. .
本発明還元方法は、前記高燐鉄鉱石中の酸化鉄を還元する工程で生成するガスを改質炉で改質し、高燐鉄鉱石中の燐化合物を還元するガス(脱燐ガス)の一部又は全部として用いることを特徴とする。 In the reduction method of the present invention, the gas generated in the step of reducing iron oxide in the high phosphate iron ore is reformed in a reforming furnace, and the gas (phosphorus removal gas) for reducing the phosphorus compound in the high phosphate iron ore is reduced. It is characterized in that it is used as part or all.
以下、本発明還元方法について図面に基づいて説明する。 Hereinafter, the reduction method of the present invention will be described with reference to the drawings.
図1に、脱燐・鉄還元工程の基本態様を示す。 FIG. 1 shows a basic mode of the phosphorus removal / iron reduction step.
図1に示すように、所要の粒径の高燐鉄鉱石を脱燐炉1に装入し、脱燐炉1に、脱燐ガスを送給して、高燐鉄鉱石中の燐化合物を還元し、気化する。気化した燐は、燐回収装置1aに送給されて、回収される。脱燐ガスは、温度及び組成が、酸化鉄及び五酸化二燐のCOガス還元平衡図、酸化鉄及び五酸化二燐のH2ガス還元平衡図、及び/又は、酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図のP2ガス平衡領域とFeO平衡領域にある還元性のガスである。脱燐ガスの温度と組成については後述する。
As shown in FIG. 1, high phosphate iron ore having a required particle size is charged into a
表1に、処理対象とする高燐鉄鉱石の一例として、豪州産の高燐ブロックマン鉱石の成分組成を示す。 Table 1 shows, as an example of the high-phosphorous ore to be treated, the component composition of the high-phosphorus Brockmann ore produced in Australia.
表1に示す高燐鉄鉱石は、0.12質量%の燐を含有している。本発明還元方法においては、表1に示すような高燐鉄鉱石を、最初(第1段階)、温度と組成が、上記P2ガス平衡領域とFeO平衡領域にある還元性のガス(脱燐ガス)で還元する。この還元で、鉄酸化物は還元されず、高燐鉄鉱石中の燐化合物(主として燐酸化物[P2O5])のみが還元される。 The high phosphate iron ore shown in Table 1 contains 0.12% by mass of phosphorus. In the reduction method of the present invention, a high-phosphorous ore as shown in Table 1 is first (first stage) reduced in temperature and composition in a reducing gas (dephosphorization) in the P 2 gas equilibrium region and the FeO equilibrium region. Gas). By this reduction, the iron oxide is not reduced, and only the phosphorus compound (mainly the phosphorous oxide [P 2 O 5 ]) in the high phosphate iron ore is reduced.
脱燐炉1で燐が除去された鉄鉱石は、還元炉2へ送給され、酸化鉄を金属鉄まで還元するポテンシャルを有するガス(以下「鉄還元ガス」ということがある。)で還元されて還元鉄(金属鉄)が生成する。
The iron ore from which phosphorus has been removed in the
このように、本発明還元方法では、高燐鉄鉱石の還元を、2段階に分け、第1段階では、高燐鉄鉱石中の燐化合物のみの還元を行って脱燐を行い(脱燐工程)、第2段階では、脱燐後の鉄鉱石中の酸化鉄を還元する(鉄還元工程)。この点が、本発明還元方法の基本思想である。第1段階の脱燐処理については後述する。 As described above, in the reduction method of the present invention, the reduction of high phosphate iron ore is divided into two stages, and in the first stage, only the phosphorus compound in the high phosphate iron ore is reduced to remove phosphorus (dephosphorization step). In the second stage, the iron oxide in the iron ore after the dephosphorization is reduced (iron reduction step). This is the basic concept of the reduction method of the present invention. The first stage dephosphorization treatment will be described later.
なお、還元炉2から排出されるガス(以下「オフガス」ということがある。)を、改質炉3で、例えば、天然ガスと反応させて改質し、脱燐炉1に送給する脱燐ガスの一部又は全部として利用してもよい。この点についても後述する。
The gas discharged from the reduction furnace 2 (hereinafter sometimes referred to as “off gas”) is reformed in the reforming
図2に、脱燐・鉄還元工程の別の態様を示す。図2に示す脱燐・鉄還元工程においては、脱燐工程の前工程として、高燐鉄鉱石の結晶水を除去する脱水工程が配置されている。図2に示す脱燐・鉄還元工程において、脱燐工程以降は、図1に示す脱燐・鉄還元工程と同じであり、図2中、図1に示すものと同じものは、図1中の符号と同じ符号で示した。 FIG. 2 shows another embodiment of the phosphorus removal / iron reduction step. In the dephosphorization / iron reduction step shown in FIG. 2, a dehydration step of removing water of crystallization of high-phosphate iron ore is arranged as a step before the dephosphorization step. The dephosphorization / iron reduction step shown in FIG. 2 is the same as the dephosphorization / iron reduction step shown in FIG. 1 after the dephosphorization step, and the same steps as those shown in FIG. Are indicated by the same reference numerals.
<脱水工程>
高燐鉄鉱石に脱燐処理を施す前に、高燐鉄鉱石を400℃以上800℃未満に加熱し、鉱石中の結晶水を除去する脱水処理(脱結晶水処理)を施す。高燐鉄鉱石から結晶水を除去すると、還元反応において、低融点化合物の生成が抑制されて、脱燐率が向上する。
<Dehydration step>
Before performing the dephosphorization treatment on the high-phosphate iron ore, the high-phosphate iron ore is heated to 400 ° C. or more and less than 800 ° C., and subjected to a dehydration treatment (decrystallization water treatment) for removing water of crystallization in the ore. When the water of crystallization is removed from the high-phosphate iron ore, the production of low-melting-point compounds is suppressed in the reduction reaction, and the dephosphorization rate is improved.
高燐鉄鉱石の主成分のゲーサイト中の燐は、ストレンジャイト:Fe(PO4)・2H2Oの形態で存在する。ストレンジャイトは、融点(共晶点)が968℃と低く、脱燐ガスとの反応温度が融点(共晶点)以上であると、還元ガスとの反応が気液反応となるので、反応速度が急激に低下し、脱燐率が低下する。 Phosphorus in the goethite in the main component of high phosphorus iron ore, Strange catcher site: Fe (PO 4) · 2H present at 2 O forms. Strengite has a low melting point (eutectic point) of 968 ° C., and if the reaction temperature with the dephosphorizing gas is higher than the melting point (eutectic point), the reaction with the reducing gas becomes a gas-liquid reaction. Rapidly decreases, and the dephosphorization rate decreases.
ストレンジャイトに、融点未満で、所定の時間、脱水処理を施すと、結晶水が除去されるとともに、周囲に存在するヘマタイトと反応し、Fe2O3リッチで、高融点の鉄燐酸:3Fe2O3・P2O5が生成する。
Fe2O3・P2O5+2Fe2O3 → 3Fe2O3・P2O5
When the strengite is subjected to a dehydration treatment at a temperature lower than its melting point for a predetermined time, water of crystallization is removed, and at the same time, it reacts with hematite existing in the surroundings, and is Fe 2 O 3 rich, high melting point iron phosphoric acid: 3Fe 2 O 3 · P 2 O 5 is produced.
Fe 2 O 3 · P 2 O 5 + 2Fe 2 O 3 → 3Fe 2 O 3 · P 2 O 5
また、Fe2O3・P2O5を還元して生成する2FeO・P2O5や3FeO・P2O5も低融点であり、同様に、脱燐反応を阻害するが、一度、高融点の3Fe2O3・P2O5を形成し、3Fe2O3・P2O5を還元すると、還元生成物の融点も上昇するので、脱燐反応が促進されて、脱燐率が向上する。 Further, 2FeO · P 2 O 5 and 3FeO · P 2 O 5 to produce by reducing Fe 2 O 3 · P 2 O 5 is also a low melting point, similarly, inhibits dephosphorization reaction, once, high forming a 3Fe 2 O 3 · P 2 O 5 of melting and reducing 3Fe 2 O 3 · P 2 O 5 , since also increases the melting point of the reduction product, and dephosphorization reaction is promoted, the dephosphorization rate improves.
図3に、脱燐・鉄還元工程の別の態様を示す。図3に示す脱燐・鉄還元工程においては、脱燐工程の前工程として、水洗工程、又は、水洗工程と脱水工程が配置されている。 FIG. 3 shows another embodiment of the phosphorus removal / iron reduction step. In the phosphorus removal / iron reduction step shown in FIG. 3, a water washing step or a water washing step and a dehydration step are arranged as a step before the phosphorus removal step.
<水洗工程>
脱燐工程に先立ち、又は、脱水工程に先立ち、高燐鉄鉱石を水洗し、鉱石表面に付着する−20〜45μmの粘土鉱物を洗い流す。鉱石表面に付着した粘土鉱物を除去すると、脱燐ガスが鉄鉱石の内部まで拡散し易くなり、燐化合物の還元が促進され、脱燐率が向上する。
<Washing process>
Prior to the dephosphorization step or prior to the dehydration step, the high-phosphate iron ore is washed with water to wash away the -20 to 45 μm clay mineral adhering to the ore surface. When the clay mineral adhering to the ore surface is removed, the dephosphorized gas easily diffuses into the iron ore, the reduction of the phosphorus compound is promoted, and the dephosphorization rate is improved.
水洗機4で水洗された高燐鉄鉱石は、脱燐炉1へ送給されるか、又は、脱水炉5へ送給され、その後、脱燐炉1へ送給される。脱燐炉1以降については、図1で説明したとおりである。水洗機4は、鉄鉱石を水洗できるものであればよく、特定の水洗機に限定されないが、例えば、ドラム式スクラバー、水洗篩などが好ましい。
The high-phosphorous ore washed in the washing machine 4 is sent to the
図4に、脱燐・鉄還元工程の別の態様を示す。図4に示す脱燐・鉄還元工程においては、水洗処理を施した高燐鉄鉱石を選鉱工程に供する。 FIG. 4 shows another embodiment of the phosphorus removal / iron reduction step. In the dephosphorization / iron reduction step shown in FIG. 4, high-phosphate iron ore subjected to a water-washing treatment is supplied to a beneficiation step.
<選鉱処理>
選鉱工程では、高燐鉄鉱石を、選鉱機6で選鉱し、ゲーサイトが富化された部分を回収する。
<Mineral processing>
In the beneficiation process, high-phosphorous ore is beneficiated by the
比重に従い2段階で分級すると、最初に、比重が最も大きい、ヘマタイトが富化された部分(以下「ヘマタイトリッチ鉱石」ということがある。)が回収され、次に、ゲーサイトが富化された部分(以下「ゲーサイトリッチ鉱石」ということがある。)が回収され、最後に、尾鉱として、脈石が富化された部分(以下「脈石リッチ鉱石」ということがある。)が回収される。 When classification was performed in two stages according to the specific gravity, the hematite-enriched portion having the highest specific gravity (hereinafter sometimes referred to as “hematite-rich ore”) was first recovered, and then the goethite was enriched. A portion (hereinafter sometimes referred to as “gecite rich ore”) is recovered, and finally, a portion enriched in gangue (hereinafter sometimes referred to as “gangue-rich ore”) as tailings is recovered. Is done.
そして、ゲーサイトリッチ鉱石を、脱燐工程に供する。脈石リッチ鉱石は廃棄し、ヘマタイトリッチ鉱石は、塊成機7で塊成化して、鉄還元工程に供する。
Then, the goethite-rich ore is subjected to a dephosphorization step. The gangue-rich ore is discarded, and the hematite-rich ore is agglomerated by the
例えば、豪州産の高燐鉄鉱石中のPは、鉱石中に35〜50質量程度含まれているゲーサイトに多く存在し、それ以外のヘマタイトや脈石には殆ど存在しない。 For example, P in Australian high-phosphate iron ore is abundant in goethite contained in the ore in an amount of about 35 to 50 mass, and hardly exists in other hematite or gangue.
表2に、高燐鉄鉱石中の燐の分布を示す。 Table 2 shows the distribution of phosphorus in the high phosphate iron ore.
表2に示すように、燐はゲーサイトに多く存在するので、高燐鉄鉱石を脱燐処理に供する前に、ゲーサイトリッチ鉱石、ヘマタイトリッチ鉱石、及び、脈石リッチ鉱石に分離し、ゲーサイトリッチ鉱石のみを脱燐処理に供する。高燐鉄鉱石に選鉱処理を施すことにより、脱燐工程での処理量が低減し、脱燐炉の簡素化を図ることができる。 As shown in Table 2, since phosphorus is abundant in goethite, high-phosphate iron ore is separated into goethite-rich ore, hematite-rich ore, and gangue-rich ore before being subjected to the dephosphorization treatment. Only the site rich ore is subjected to dephosphorization. By subjecting the high-phosphorous ore to a beneficiation process, the throughput in the dephosphorization step is reduced, and the dephosphorization furnace can be simplified.
高燐鉄鉱石を3mm程度で分級し、篩上の鉄鉱石の選鉱処理は、JIG選別(ジグ選別)、又は、重液選別で行い、篩下の鉄鉱石の選鉱処理は、スパイラル選別、UCC選別(Up-Current Classifier[上昇水流式比重選鉱])、WHIMS選別(Wet High Intensity Magnetic Separation[湿式強磁力選鉱])、又は、重液選別で行うのが好ましい。 High-phosphate iron ore is classified by about 3 mm, and the ore-sorting of iron ore on the sieve is performed by JIG sorting (jig sorting) or heavy liquid sorting, and the ore-sorting of iron ore under the sieve is spiral sorting, UCC It is preferable to carry out the separation (Up-Current Classifier [ascent water type specific gravity separation]), WHIMS selection (Wet High Intensity Magnetic Separation [wet type strong magnetic separation]), or heavy liquid separation.
なお、分級粒度を3mmとする理由は、JIGで効率的に選鉱できる粒度範囲が3.0mm以上であり、スパイラル等で効率的に分級できる粒度範囲が3.0mm以下であるためである。 The reason why the classification particle size is set to 3 mm is that the particle size range in which the ore can be efficiently sorted by JIG is 3.0 mm or more, and the particle size range in which the orifice can be efficiently classified is 3.0 mm or less.
図5に、脱燐・鉄還元工程の別の態様を示す。図5に示す脱燐・鉄還元工程においては、選鉱機6で分離したゲーサイトリッチ鉱石に、脱水炉5で脱水処理(脱結晶水処理)を施して、脱燐工程に供する。
FIG. 5 shows another embodiment of the phosphorus removal / iron reduction step. In the dephosphorization / iron reduction step shown in FIG. 5, the goethite-rich ore separated in the
ゲーサイトは、結晶水を除去すると、組織が多孔質になり、脱燐ガスとの反応性が向上する。脱水温度が低温であるほど、より多孔質になるので、脱水炉5での脱水温度は低温ほど好ましい。ゲーサイトリッチ鉱石に脱水処理を施すと、低融点鉱物相の生成が抑制されるとともに、鉄鉱石が多孔質化し、脱燐炉での脱燐反応、及び、還元炉での還元反応(金属鉄生成反応)が促進されて、脱燐率と金属化率が向上する。
When the crystallization water is removed from the goethite, the tissue becomes porous, and the reactivity with the dephosphorization gas is improved. The lower the dehydration temperature is, the more porous it is. Therefore, the lower the dehydration temperature in the
図4と図5に示す脱燐・鉄還元工程では、水洗工程の次に選鉱工程を配置したが、水洗工程を省略して、高燐鉄鉱石を、直に、選鉱工程に供してもよい。 In the dephosphorization / iron reduction step shown in FIGS. 4 and 5, a beneficiation step is arranged after the water-washing step. However, the water-washing step may be omitted, and the high-phosphorous iron ore may be directly supplied to the beneficiation step. .
次に、本発明還元方法の第1段階の脱燐処理について説明する。 Next, the first stage dephosphorization treatment of the reduction method of the present invention will be described.
<脱燐処理>
前述したように、本発明還元方法においては、温度及び組成が、酸化鉄及び五酸化二燐のCOガス還元平衡図、酸化鉄及び五酸化二燐のH2ガス還元平衡図、及び/又は、酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図のP2ガス平衡領域とFeO平衡領域にある還元性のガス(脱燐ガス)で、高燐鉄鉱石中の燐化合物を還元、気化し、気化した燐を除去する。
<Dephosphorization treatment>
As described above, in the present invention reduction method, temperature and composition, CO gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide, H 2 gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide, and / or, Reduction of phosphorus compounds in high iron ore with reducing gas (dephosphorization gas) in the P 2 gas equilibrium region and FeO equilibrium region of the CO-H 2 mixed gas reduction equilibrium diagram of iron oxide and diphosphorus pentoxide , Vaporized and the vaporized phosphorus is removed.
上記P2ガス平衡領域とFeO平衡領域にある還元性のガスで、高燐鉄鉱石中の燐化合物を還元するので、高燐鉄鉱石中の酸化物は還元されず、金属鉄は生成しない。 Since the reducing compound in the P 2 gas equilibrium region and the FeO equilibrium region reduces the phosphorus compound in the high phosphate iron ore, the oxide in the high phosphate iron ore is not reduced and no metallic iron is generated.
(温度と組成)
図6に、酸化鉄及び五酸化二燐のCOガス還元平衡図を示し、図7に、酸化鉄及び五酸化二燐のH2ガス還元平衡図を示す。なお、図6において、縦軸の還元ポテンシャル:ηCOは、CO2/(CO+CO2)であり、図7において、縦軸の還元ポテンシャル:ηH2は、H2O/(H2+H2O)である。図6及び図7において、実線が、酸化鉄の還元平衡曲線であり、点線が、P2O5(五酸化二燐)の還元平衡曲線である。
(Temperature and composition)
Figure 6 shows the CO gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide, in FIG. 7 shows the H 2 gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide. In FIG. 6, the reduction potential on the vertical axis: ηCO is CO 2 / (CO + CO 2 ), and in FIG. 7, the reduction potential on the vertical axis: ηH 2 is H 2 O / (H 2 + H 2 O). It is. 6 and 7, the solid line is a reduction equilibrium curve of iron oxide, and the dotted line is a reduction equilibrium curve of P 2 O 5 (diphosphorus pentoxide).
P2O5(五酸化二燐)の還元平衡曲線は、
1/5P2O5(s)+5CO(g)=1/5P2(g)+CO2
ΔGO/J=38168.64−20.7T
1/5P2O5(s)+5H2(g)=1/5P2(g)+H2O
ΔGO/J=11182.92−50.442T
を前提にして計算した曲線である(柏谷ら:鉄と鋼、100(2014)302、参照)。
The reduction equilibrium curve of P 2 O 5 (diphosphorus pentoxide)
1 / 5P 2 O 5 (s) + 5CO (g) = 1 / 5P 2 (g) + CO 2
ΔG O /J=38168.64-20.7T
1 / 5P 2 O 5 (s ) + 5H 2 (g) = 1 / 5P 2 (g) + H 2 O
ΔG O /J=11182.92-50.442T
(See Kashiwaya et al .: Iron and Steel, 100 (2014) 302).
脱燐ガスとしてCOガスを用いる場合は、温度と組成が、図6における斜線領域、即ち、P2ガス平衡領域とFeO平衡領域にある還元性のガスを用い、脱燐ガスとしてH2ガスを用いる場合は、図7における斜線領域、即ち、P2ガス平衡領域とFeO平衡領域にある還元性のガスを用いる。 When a CO gas is used as the dephosphorizing gas, a reducing gas having a temperature and a composition in a hatched region in FIG. 6, that is, a P 2 gas equilibrium region and a FeO equilibrium region is used, and H 2 gas is used as the dephosphorizing gas. When used, reducing gas in the shaded region in FIG. 7, that is, the P 2 gas equilibrium region and the FeO equilibrium region is used.
即ち、図6及び図7における斜線領域は、燐化合物を還元することにより、P2ガスが発生するが、燐と親和性があり、P2ガスを吸着する金属鉄(Fe)が生成しない領域である。上記斜線領域で、FeOが生成するが、FeOは、燐との親和性が低いので、P2ガスを吸着しない。 In other words, the shaded regions in FIGS. 6 and 7 are regions in which P 2 gas is generated by reducing the phosphorus compound, but which has an affinity for phosphorus and does not generate metallic iron (Fe) that adsorbs P 2 gas. It is. FeO is generated in the shaded region, but does not adsorb P 2 gas because FeO has a low affinity for phosphorus.
脱燐ガスとして、COとH2の混合ガスを用いる場合は、CO−CO2、及び、H2−H2Oのそれぞれが、図5の斜線領域、及び、図6の斜線領域を満たすように、脱燐ガスの温度と組成を調整する。 In the case of using a mixed gas of CO and H 2 as the dephosphorizing gas, CO—CO 2 and H 2 —H 2 O each satisfy the hatched area in FIG. 5 and the hatched area in FIG. Next, the temperature and composition of the dephosphorization gas are adjusted.
図8及び図9に、脱燐ガスとして、COとH2の混合ガスを用いる場合の酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図を示す。 FIG. 8 and FIG. 9 show equilibrium diagrams of CO-H 2 mixed gas reduction of iron oxide and diphosphorus pentoxide when a mixed gas of CO and H 2 is used as the dephosphorizing gas.
図8(a)に、脱燐ガスが20%CO−80%H2の場合の、酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図を示し、図8(b)に、脱燐ガスが40%CO−60%H2の場合の、酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図を示す。 FIG. 8A shows a CO-H 2 mixed gas reduction equilibrium diagram of iron oxide and diphosphorus pentoxide when the dephosphorizing gas is 20% CO-80% H 2 , and FIG. FIG. 3 shows a CO-H 2 mixed gas reduction equilibrium diagram of iron oxide and diphosphorus pentoxide when the dephosphorization gas is 40% CO-60% H 2 .
図9(a)に、脱燐が60%CO−40%H2の場合の、酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図を示し、図9(b)に、脱燐ガスが80%CO−20%H2の場合の、酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図を示す。 FIG. 9A shows a CO-H 2 mixed gas reduction equilibrium diagram of iron oxide and diphosphorus pentoxide when the dephosphorization is 60% CO-40% H 2 , and FIG. FIG. 3 shows a CO-H 2 mixed gas reduction equilibrium diagram of iron oxide and diphosphorus pentoxide when the phosphorus gas is 80% CO-20% H 2 .
図8(a)、図8(b)、図9(a)、及び、図9(b)に示す、酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図において、斜線領域が、P2ガス平衡領域で、かつ、FeO平衡領域である。 8 (a), 8 (b), 9 (a), and 9 (b), the hatched region in the CO-H 2 mixed gas reduction equilibrium diagram of iron oxide and diphosphorus pentoxide is shown. , P 2 gas equilibrium region and FeO equilibrium region.
<脱燐ガスの製造>
脱燐ガスは、温度及び組成を、酸化鉄及び五酸化二燐のCOガス還元平衡図、酸化鉄及び五酸化二燐のH2ガス還元平衡図、及び/又は、酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図のP2ガス平衡領域とFeO平衡領域にあるように調整したガスであるが、実際には、燃料ガス(天然ガス、石炭ガス化ガス、転炉ガス、高炉ガス、水素等)を部分燃焼又は部分改質したガス(H2O、CO2、又は、両者の混合ガス)と、鉄還元工程で排出されるオフガスを混合して製造する。
<Production of dephosphorized gas>
Dephosphorization gas, the temperature and composition, CO gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide, H 2 gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide, and / or iron oxide and diphosphorus pentoxide Is a gas adjusted so as to be in the P 2 gas equilibrium region and the FeO equilibrium region of the CO—H 2 mixed gas reduction equilibrium diagram of FIG. 2 , but in actuality, the fuel gas (natural gas, coal gasification gas, converter gas, Blast furnace gas, hydrogen, etc.) are produced by mixing a gas (H 2 O, CO 2 , or a mixed gas of both) obtained by partially burning or partially reforming and an off-gas discharged in the iron reduction step.
上記混合ガスは、鉄還元炉の排ガスを有効に利用して、全所要エネルギーを低減できる点で好ましい。 The above-mentioned mixed gas is preferable in that the exhaust gas from the iron reduction furnace can be effectively used to reduce the total required energy.
表3に、燃料ガスとして天然ガスを用いた場合の、脱燐ガスの製造例を示す。鉄還元炉から排出される、ηH2=0.42、ηCO=0.47のオフガス:70vol%と、天然ガス:30vol%を混合し、混合ガスと、混合ガスの25vol%の空気を混合して部分燃焼させて、脱燐ガス(部分燃焼ガス)を製造した。 Table 3 shows a production example of the dephosphorized gas when natural gas is used as the fuel gas. 70 vol% of offgas with ηH 2 = 0.42 and ηCO = 0.47 discharged from the iron reduction furnace and 30 vol% of natural gas are mixed, and the mixed gas is mixed with air of 25 vol% of the mixed gas. By partial combustion, dephosphorized gas (partial combustion gas) was produced.
(脱燐炉)
図1〜4に示すように、脱燐処理は、脱燐炉1で実施するが、脱燐炉1は、脱燐を実施できる炉であればよく、特定の炉に限定されないが、流動層炉が好ましい。
(Dephosphorization furnace)
As shown in FIGS. 1 to 4, the dephosphorization treatment is performed in a
高燐鉄鉱石中の燐は、主としてゲーサイト中に存在するため、造粒で塊成化することは困難であり、また、焼結で塊成化すると、燐とCaOが結合して、P2O5・CaOの安定相が生成し、燐を気化して除去することが困難になるので、高燐鉄鉱石は、粉状のままの状態で処理する必要がある。粉状の鉄鉱石を、高温の脱燐ガスと十分に接触させ反応させて、脱燐を効率よく行うには、流動層炉が好適である。 Since phosphorus in high-phosphate iron ore is mainly present in goethite, it is difficult to agglomerate by granulation, and when agglomeration by sintering, phosphorus and CaO combine to form P Since a stable phase of 2 O 5 .CaO is formed and it is difficult to vaporize and remove phosphorus, it is necessary to treat high-phosphate iron ore in a powdery state. A fluidized bed furnace is suitable for efficiently bringing the powdery iron ore into contact with a high-temperature dephosphorization gas to cause a reaction and to efficiently perform dephosphorization.
次に、脱燐炉で脱燐処理を施した鉄鉱石の鉄還元工程について説明する。 Next, the iron reduction process of the iron ore subjected to the dephosphorization treatment in the dephosphorization furnace will be described.
<鉄還元工程>
図1〜4に示すように、脱燐炉1で、金属鉄が生成しない還元性のガス(図5〜8、参照)で、燐化合物を還元して燐を除去した鉄鉱石を、還元炉2に送給して、酸化鉄を還元して金属鉄(還元鉄)を得る。金属鉄(還元鉄)は、還元炉に続く溶融還元炉(図示なし)に供給してもよい。
<Iron reduction process>
As shown in FIGS. 1 to 4, in a
還元炉2に吹き込む鉄還元ガスは、特定の還元性のガスに限定されないが、天然ガスをH2Oで改質(下記反応式、参照)したガスが、還元能を十分に有する点で好ましい。
CH4+H2O=3H2+CO
The iron reducing gas blown into the
CH 4 + H 2 O = 3H 2 + CO
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the example are one condition example adopted to confirm the operability and effects of the present invention, and the present invention is based on this one condition example. It is not limited. The present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
(実施例1)
表4に成分組成を示す高燐鉄鉱石に、図1に示す脱燐・鉄還元工程に従って脱燐処理と鉄還元処理を施した。脱燐処理は、温度:1200℃、ηCO:30%の脱燐ガス(図6の斜線領域、参照)を用いて、120分行った。
(Example 1)
The high-phosphorous ore whose component composition is shown in Table 4 was subjected to a dephosphorization treatment and an iron reduction treatment in accordance with the dephosphorization / iron reduction step shown in FIG. The dephosphorization treatment was performed for 120 minutes using a dephosphorization gas (see a hatched area in FIG. 6) at a temperature of 1200 ° C. and ηCO: 30%.
鉄還元処理は、温度:1000℃、ηCO:0%の還元性のガスを用いて、60分行った。脱燐処理後の鉄鉱石の成分組成、及び、還元処理後の還元鉄(金属鉄)の成分組成を表3に併せて示す。 The iron reduction treatment was performed for 60 minutes using a reducing gas having a temperature of 1000 ° C. and ηCO of 0%. Table 3 also shows the component composition of the iron ore after the dephosphorization treatment and the component composition of the reduced iron (metallic iron) after the reduction treatment.
表4から、鉄還元処理後の金属鉄における脱燐率が、脱燐処理で達成した脱燐率と略同じで、燐の金属鉄への吸着がないことを確認できる。即ち、還元処理に先立ち、脱燐処理を行うことの効果を確認することができる。 From Table 4, it can be confirmed that the dephosphorization rate of the metallic iron after the iron reduction treatment is substantially the same as the dephosphorization rate achieved by the dephosphorization treatment, and that there is no adsorption of phosphorus to the metallic iron. That is, the effect of performing the phosphorus removal treatment prior to the reduction treatment can be confirmed.
(実施例2)
所要の成分組成の高燐鉄鉱石を400〜500℃に加熱して脱水処理(脱結晶水処理)を施し、実施例1に示す条件で、脱水処理後の高燐鉄鉱石に脱燐処理を施し、脱燐率を、脱水処理を施さない場合の脱燐率と比較した。結果を表5に示す。
(Example 2)
The high-phosphate iron ore having the required component composition is heated to 400 to 500 ° C. to perform a dehydration treatment (decrystallization water treatment), and the dephosphorization treatment is performed on the high-phosphate iron ore after the dehydration treatment under the conditions shown in Example 1. The dephosphorization rate was compared with the dephosphorization rate without dehydration treatment. Table 5 shows the results.
表5から、高燐鉄鉱石に脱水処理(脱結晶水処理)を施すと、脱燐率が上昇することが解かる。 Table 5 shows that the dephosphorization rate increases when dehydration treatment (decrystallization water treatment) is performed on the high phosphate iron ore.
(実施例3)
表6に成分組成(水洗前)示す高燐鉄鉱石を、湿式篩分け選別機で水洗した。水洗後の高燐鉄鉱石の成分組成を、表6に併せて示す。表6から、水洗により、高燐鉄鉱石の表面に付着している、−20〜45μmの粘土鉱物の主成分をなすSiO2とAl2O3の量が減少していることが解かる。
(Example 3)
The high phosphate iron ore having the component composition shown in Table 6 (before washing) was washed with a wet sieving and sorting machine. Table 6 also shows the component composition of the high-phosphate iron ore after washing with water. From Table 6, it can be seen that the amount of SiO 2 and Al 2 O 3 , which are the main components of the clay mineral of −20 to 45 μm, adhering to the surface of the high phosphate ore is reduced by the water washing.
水洗前の高燐鉄鉱石と水洗後の高燐鉄鉱石に、実施例1の条件で、脱燐処理と還元処理を施した。水洗後の高燐鉄鉱石の脱燐率は、水洗前の高燐鉄鉱石の脱燐率45%より、16%上昇して61%であった。この脱燐率の上昇分は、−20〜45μmの粘土鉱物の主成分をなすSiO2とAl2O3の量が、水洗処理で減少したことによるものである。 Under the conditions of Example 1, the dephosphorization treatment and the reduction treatment were performed on the high-phosphate iron ore before and after the washing. The dephosphorization rate of the high phosphate iron ore after the water washing was 61%, which is 16% higher than the 45% dephosphorization rate of the high phosphate iron before the water washing. This increase in the dephosphorization rate is attributable to the fact that the amounts of SiO 2 and Al 2 O 3 , which are the main components of the clay mineral having a size of −20 to 45 μm, were reduced by the water washing treatment.
(実施例4)
高燐鉄鉱石に、UCC装置を用いて選鉱処理を施し、ゲーサイトリッチ鉱石、ヘマタイトリッチ鉱石、及び、脈石リッチ鉱石に分離した。表7に、選鉱後の核鉱石の質量比率、燐濃度、及び、燐分配比率を示す。表7から、ゲーサイトリッチ鉱石に燐が濃縮されていることが解かる。
(Example 4)
The high-phosphate iron ore was subjected to a beneficiation treatment using a UCC apparatus, and separated into goethite-rich ore, hematite-rich ore, and gangue-rich ore. Table 7 shows the mass ratio, phosphorus concentration, and phosphorus distribution ratio of the core ore after the beneficiation. From Table 7, it can be seen that phosphorus is concentrated in the goethite-rich ore.
燐が濃縮されたゲーサイトリッチ鉱石に、実施例1の条件で、脱燐処理を施した。脱燐率は、40〜60%であった。 The phosphorus-enriched goethite-rich ore was subjected to a dephosphorization treatment under the conditions of Example 1. The dephosphorization rate was 40 to 60%.
前述したように、本発明によれば、高燐鉄鉱石に、鉱石の段階で脱燐処理を施す際、溶銑中の燐の源泉となるFe2Pの生成を抑制して、脱燐率を、従来以上に高めることができる。よって、本発明は、鉄鋼産業において利用可能性が高いものである。 As described above, according to the present invention, when dephosphorizing a high-phosphorous ore at the ore stage, the production of Fe 2 P, which is a source of phosphorus in the hot metal, is suppressed, and the dephosphorization rate is reduced. Can be increased more than before. Therefore, the present invention has high applicability in the steel industry.
1 脱燐炉
1a 燐回収装置
2 還元炉
3 改質炉
4 水洗機
5 脱水炉
6 選鉱機
7 塊成機
DESCRIPTION OF
Claims (5)
温度及び組成が、酸化鉄及び五酸化二燐のCOガス還元平衡図、酸化鉄及び五酸化二燐のH2ガス還元平衡図、及び/又は、酸化鉄及び五酸化二燐のCO−H2混合ガス還元平衡図のP2ガス平衡領域とFeO平衡領域にあるガスで、高燐鉄鉱石中の燐化合物を還元、気化し、気化した燐を除去し、次いで、酸化鉄を還元する
ことを特徴とする高燐鉄鉱石の還元方法。 A method for reducing high-phosphate iron ore containing a phosphorus compound, comprising:
Temperature and composition, CO gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide, H 2 gas reduction equilibrium diagram of iron oxide and phosphorus pentoxide, and / or, of iron oxide and phosphorus pentoxide CO-H 2 Gases in the P 2 gas equilibrium region and the FeO equilibrium region of the mixed gas reduction equilibrium diagram are used to reduce and vaporize phosphorus compounds in high-phosphate iron ore, remove vaporized phosphorus, and then reduce iron oxide. Characteristic method for reducing high phosphate iron ore.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018145689A JP7099149B2 (en) | 2018-08-02 | 2018-08-02 | Reduction method of high-phosphorus iron ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018145689A JP7099149B2 (en) | 2018-08-02 | 2018-08-02 | Reduction method of high-phosphorus iron ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020020010A true JP2020020010A (en) | 2020-02-06 |
JP7099149B2 JP7099149B2 (en) | 2022-07-12 |
Family
ID=69587476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018145689A Active JP7099149B2 (en) | 2018-08-02 | 2018-08-02 | Reduction method of high-phosphorus iron ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7099149B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021004380A (en) * | 2019-06-25 | 2021-01-14 | Jfeスチール株式会社 | Production method of low phosphorus steel |
JP2021004381A (en) * | 2019-06-25 | 2021-01-14 | Jfeスチール株式会社 | Production method of low phosphorus steel |
JP2021004379A (en) * | 2019-06-25 | 2021-01-14 | Jfeスチール株式会社 | Production method of low phosphorus steel |
CN115627350A (en) * | 2022-12-22 | 2023-01-20 | 北京科技大学 | Method for combining high-phosphorus iron ore and stone coal |
WO2023054588A1 (en) * | 2021-09-29 | 2023-04-06 | 日本製鉄株式会社 | Ironmaking method |
WO2023100707A1 (en) | 2021-11-30 | 2023-06-08 | Jfeスチール株式会社 | Production method for metal iron |
WO2023097960A1 (en) * | 2021-12-01 | 2023-06-08 | 中钢设备有限公司 | Treatment method for high-phosphorus iron ore |
JP7476872B2 (en) | 2021-11-30 | 2024-05-01 | Jfeスチール株式会社 | Metal manufacturing methods |
CN118241038A (en) * | 2024-05-28 | 2024-06-25 | 江苏省沙钢钢铁研究院有限公司 | Sintering method of high-proportion high-phosphorus non-mainstream iron ore powder and sintered ore |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5483603A (en) * | 1977-12-16 | 1979-07-03 | Nippon Steel Corp | Removing method for phosphorus from ore |
JPS5767136A (en) * | 1980-10-09 | 1982-04-23 | Sumitomo Metal Ind Ltd | Dephosphorizing method for ore |
US4416688A (en) * | 1980-09-02 | 1983-11-22 | Raymond Kaiser Engineers, Inc. | Direct reduction of ores and concentration of metallic values |
JPH01219130A (en) * | 1988-02-29 | 1989-09-01 | Showa Denko Kk | Production of chromium ore pellet |
JPH06116658A (en) * | 1992-10-06 | 1994-04-26 | Nippon Steel Corp | Method for beneficiating goethite-containing iron ore for sintered ore |
JP2007204782A (en) * | 2006-01-31 | 2007-08-16 | Jfe Steel Kk | Method for reutilizing steel slag |
JP2009030104A (en) * | 2007-07-26 | 2009-02-12 | Nippon Steel Corp | Method for evaluating mineral structure of iron ore to be sintered by x-ray ct, and method for manufacturing sintered ore |
CN102978318A (en) * | 2012-12-12 | 2013-03-20 | 北京科技大学 | Method for realizing phosphorus removal of oolitic high-phosphorus iron ores by combining enhanced gas-based reduction and high-temperature smelting separation |
JP2014031528A (en) * | 2012-08-01 | 2014-02-20 | Jfe Steel Corp | Method for producing raw material for blast furnace |
WO2017051578A1 (en) * | 2015-09-25 | 2017-03-30 | 住友金属鉱山株式会社 | Gravity separation device |
-
2018
- 2018-08-02 JP JP2018145689A patent/JP7099149B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5483603A (en) * | 1977-12-16 | 1979-07-03 | Nippon Steel Corp | Removing method for phosphorus from ore |
US4416688A (en) * | 1980-09-02 | 1983-11-22 | Raymond Kaiser Engineers, Inc. | Direct reduction of ores and concentration of metallic values |
JPS5767136A (en) * | 1980-10-09 | 1982-04-23 | Sumitomo Metal Ind Ltd | Dephosphorizing method for ore |
JPH01219130A (en) * | 1988-02-29 | 1989-09-01 | Showa Denko Kk | Production of chromium ore pellet |
JPH06116658A (en) * | 1992-10-06 | 1994-04-26 | Nippon Steel Corp | Method for beneficiating goethite-containing iron ore for sintered ore |
JP2007204782A (en) * | 2006-01-31 | 2007-08-16 | Jfe Steel Kk | Method for reutilizing steel slag |
JP2009030104A (en) * | 2007-07-26 | 2009-02-12 | Nippon Steel Corp | Method for evaluating mineral structure of iron ore to be sintered by x-ray ct, and method for manufacturing sintered ore |
JP2014031528A (en) * | 2012-08-01 | 2014-02-20 | Jfe Steel Corp | Method for producing raw material for blast furnace |
CN102978318A (en) * | 2012-12-12 | 2013-03-20 | 北京科技大学 | Method for realizing phosphorus removal of oolitic high-phosphorus iron ores by combining enhanced gas-based reduction and high-temperature smelting separation |
WO2017051578A1 (en) * | 2015-09-25 | 2017-03-30 | 住友金属鉱山株式会社 | Gravity separation device |
Non-Patent Citations (1)
Title |
---|
雀部 実、飯田佳未、横尾友美: "高リン鉄鉱石からの直接脱リン", 鉄と鋼, vol. Vol.100,(2014),No.2, JPN6022008311, JP, pages 325 - 330, ISSN: 0004721163 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021004381A (en) * | 2019-06-25 | 2021-01-14 | Jfeスチール株式会社 | Production method of low phosphorus steel |
JP2021004379A (en) * | 2019-06-25 | 2021-01-14 | Jfeスチール株式会社 | Production method of low phosphorus steel |
JP7047815B2 (en) | 2019-06-25 | 2022-04-05 | Jfeスチール株式会社 | Manufacturing method of low phosphorus steel |
JP7047817B2 (en) | 2019-06-25 | 2022-04-05 | Jfeスチール株式会社 | Manufacturing method of low phosphorus steel |
JP7047816B2 (en) | 2019-06-25 | 2022-04-05 | Jfeスチール株式会社 | Manufacturing method of low phosphorus steel |
JP2021004380A (en) * | 2019-06-25 | 2021-01-14 | Jfeスチール株式会社 | Production method of low phosphorus steel |
WO2023054588A1 (en) * | 2021-09-29 | 2023-04-06 | 日本製鉄株式会社 | Ironmaking method |
TWI820935B (en) * | 2021-09-29 | 2023-11-01 | 日商日本製鐵股份有限公司 | Iron making method |
JP7476872B2 (en) | 2021-11-30 | 2024-05-01 | Jfeスチール株式会社 | Metal manufacturing methods |
KR20240090639A (en) | 2021-11-30 | 2024-06-21 | 제이에프이 스틸 가부시키가이샤 | Manufacturing method of metallic iron |
WO2023100707A1 (en) | 2021-11-30 | 2023-06-08 | Jfeスチール株式会社 | Production method for metal iron |
WO2023097960A1 (en) * | 2021-12-01 | 2023-06-08 | 中钢设备有限公司 | Treatment method for high-phosphorus iron ore |
CN115627350A (en) * | 2022-12-22 | 2023-01-20 | 北京科技大学 | Method for combining high-phosphorus iron ore and stone coal |
CN118241038A (en) * | 2024-05-28 | 2024-06-25 | 江苏省沙钢钢铁研究院有限公司 | Sintering method of high-proportion high-phosphorus non-mainstream iron ore powder and sintered ore |
Also Published As
Publication number | Publication date |
---|---|
JP7099149B2 (en) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7099149B2 (en) | Reduction method of high-phosphorus iron ore | |
CN109081321B (en) | Method for preparing iron phosphate from converter dephosphorized slag | |
Zhou et al. | Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment | |
CN102978318A (en) | Method for realizing phosphorus removal of oolitic high-phosphorus iron ores by combining enhanced gas-based reduction and high-temperature smelting separation | |
JP4936624B2 (en) | Production method of crude copper in flash-smelting furnace | |
RU2449031C2 (en) | Method for obtaining dephosphorised concentrate of oolitic iron ores | |
WO2022194285A1 (en) | Comprehensive utilization method for columbite | |
JP5720497B2 (en) | Method for recovering iron and phosphorus from steelmaking slag | |
CN102796839A (en) | Technique for producing direct reduced iron and synchronously performing desulfurization through reduction roasting of sulfate slag | |
CN107557567A (en) | A kind of method of high-phosphorus iron ore dephosphorization | |
Wu et al. | Effect of calcium compounds on direct reduction and phosphorus removal of high-phosphorus iron ore | |
KR101189182B1 (en) | Method for separating vanadium from vanadium-containing melt | |
US8673208B2 (en) | Process and equipment for the production of direct reduced iron and/or pig iron from iron ores having a high-phosphorus content | |
CN103740929B (en) | Additive and method for reinforcing separation of manganese and iron through magnetic roasting-magnetic separation of high-iron manganese oxide ore | |
CN116875759A (en) | Recycling recovery method for recovering iron from laterite-nickel ore high-pressure leaching residues | |
CN103589819A (en) | Method for directly reducing nonferrous smelting slag through oxygenation | |
Ji et al. | Migration behavior of iron and phosphorus during gas-based reduction for high-phosphorus iron ore | |
JP5712747B2 (en) | Method for recovering iron and phosphorus from steelmaking slag | |
JP6201736B2 (en) | Method for producing sintered ore using desulfurized slag | |
WU et al. | Effects of Combined Dephosphorization Agents on Reduction Roasting-Magnetic Separation of High Phosphorus Iron Ore | |
WO2024062922A1 (en) | Method for producing iron source | |
JP2018095894A (en) | Production method of high quality iron source | |
WO2023162728A1 (en) | Iron source production method | |
US1518626A (en) | Treatment of copper-lead matte | |
CN116814952A (en) | Method for cooperatively treating solid waste in electric furnace smelting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210407 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220613 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7099149 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |