KR100376540B1 - A method for manufacturing reduced ore by solid phase direct reduction process - Google Patents

A method for manufacturing reduced ore by solid phase direct reduction process Download PDF

Info

Publication number
KR100376540B1
KR100376540B1 KR10-1999-0061519A KR19990061519A KR100376540B1 KR 100376540 B1 KR100376540 B1 KR 100376540B1 KR 19990061519 A KR19990061519 A KR 19990061519A KR 100376540 B1 KR100376540 B1 KR 100376540B1
Authority
KR
South Korea
Prior art keywords
reduced iron
producing
solid phase
heat treatment
less
Prior art date
Application number
KR10-1999-0061519A
Other languages
Korean (ko)
Other versions
KR20010058058A (en
Inventor
박양덕
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR10-1999-0061519A priority Critical patent/KR100376540B1/en
Publication of KR20010058058A publication Critical patent/KR20010058058A/en
Application granted granted Critical
Publication of KR100376540B1 publication Critical patent/KR100376540B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates

Abstract

본 발명은 환원철의 제조방법에 관한 것으로, 입경 8mm 이하의 분광석과 탄소질 점결제를 혼합한 후 열처리함으로써, 85% 이상의 금속 Fe를 포함한 괴상 환원철을 제조할 수 있는 괴상 환원철의 제조방법을 제공하고자 하는데, 그 목적이 있다.The present invention relates to a method for producing reduced iron, and provides a method for producing reduced reduced iron capable of producing a reduced reduced iron containing 85% or more of metal Fe by heat treatment after mixing spectroscopy with a particle diameter of 8 mm or less and a carbonaceous binder. I would like to, but its purpose is.

본 발명은 환원철의 제조방법에 있어서,The present invention provides a method for producing reduced iron,

입경 8mm 이하의 분광석과 고정탄소함량이 50~70wt%인 탄소질 점결제를 중량비로 50:50~80:20로 혼합하고, 그 혼합물을 혼련하여 용융혼합물로 한 다음, 불활성분위기하의 800~1200℃의 온도범위에서 열처리하는 것을 특징으로 하는 고상 환원법에 의한 괴상 환원철의 제조방법을 그 기술적 요지로 한다.Spectroscopy having a particle size of 8 mm or less and a carbonaceous binder having a fixed carbon content of 50 to 70 wt% are mixed at a weight ratio of 50:50 to 80:20, and the mixture is kneaded to a melt mixture, and then 800 to 800 in an inert atmosphere. The technical summary of the method for producing the reduced iron by the solid phase reduction method, characterized in that the heat treatment at a temperature range of 1200 ℃.

Description

고상 환원법에 의한 괴상 환원철의 제조방법{A METHOD FOR MANUFACTURING REDUCED ORE BY SOLID PHASE DIRECT REDUCTION PROCESS}A manufacturing method of mass reduced iron by the solid state reduction method {A METHOD FOR MANUFACTURING REDUCED ORE BY SOLID PHASE DIRECT REDUCTION PROCESS}

본 발명은 제철소에서 사용이 어려운 미분광을 괴상의 환원철로 제조하는 방법에 관한 것으로서, 보다 상세하게는 환원철의 제조방법에 있어서 미분광석과 탄소질 점결제를 혼합하고 열처리함으로써, 괴상 환원철을 고수율로 제공할 수 있는 괴상 환원철의 제조방법에 관한 것이다.The present invention relates to a method for producing unrefined fine iron, which is difficult to use in an ironworks, and more particularly, in a method for producing reduced iron, by mixing and heat treating fine unrefined ore carbonaceous binders, thereby producing a high yield of bulk reduced iron. It relates to a method for producing a bulk reduced iron that can be provided.

현재 제철기술은 200여년간 고로방식을 사용하여 왔으나, 이 방식은 대단위 장치산업으로서 초기 투입자의 부담과 설비확층의 어려움은 물론, 지구규모에서의 환경규제에 따른 환경오염부담이 가중되는 등의 문제점을 가지고 있다.Currently, steelmaking technology has been using the blast furnace method for more than 200 years, but this method is a large-scale equipment industry, which is not only burdened by the initial entrants, difficulties in facility expansion, but also the environmental pollution burden due to environmental regulations on the global scale. Have.

한편, 고로방식의 제철법에서는 고로내에서의 통기성 및 고온강도확보를 위해 미분상태의 철광석을 그대로 사용할 수 없으므로, 고로내에 투입하기 위한 전처리로 괴상화를 위한 소결공정을 거치게 된다. 상기 소결공정에서는 분말상태의 철광석과 석회 및 석탄을 혼합하여 가열함으로써, 부분환원 및 괴상화를 유도하게 되는데, 이들은 코크스와 함께 고로내에 장입되어 용선으로 제조된다.On the other hand, in the steelmaking method of the blast furnace method can not use the fine iron ore as it is in order to ensure the air permeability and high temperature strength in the blast furnace, it is subjected to a sintering process for agglomeration as a pre-treatment for input into the blast furnace. In the sintering process, by mixing and heating the powdered iron ore, lime and coal, partial reduction and block formation are induced, which are charged into the blast furnace together with the coke and manufactured as molten iron.

최근에는 이러한 고로방식의 문제점을 해결하기 위하여, 8mm 이상의 입경을 갖는 철광석과 석탄을 이용해 용선을 제조할 수 있는 용융환원제철법인 COREX법의 개발이 활발히 이루어지고 있으나, 이러한 용융환원제철법의 경우도 앞에서 언급한 바와같이, 사용할 수 있는 철광석 및 원료탄의 입경이 8mm 이상의 괴재원료에만 한정되기 때문에, 미분상태의 철광석 및 원료탄을 사용하지 못하는 문제점이 있다.Recently, in order to solve the problem of the blast furnace method, the development of the COREX method, which is a molten iron reduction iron method that can produce molten iron using iron ore and coal having a particle diameter of 8mm or more has been actively developed, but also in the case of such molten iron reduction method As mentioned above, since the particle diameters of the iron ore and raw coal which can be used are limited only to the raw material of the aggregate of 8 mm or more, there is a problem in that the fine iron ore and the raw coal cannot be used.

이러한 문제점을 해결하기 위해, 분광석을 그대로 사용할 수 있는 FINEX공정의 개발을 서두르고 있는 실정이다. 그러나, 미분광을 직접 투입하는 FINEX법의 경우, 투입된 미분광의 30% 이상이 다시 반응계외로 배출되기 때문에, 이들을 재순환시키기 위한 집진 및 순환설비 등이 요구되고 이로인한 막대한 투자가 소요될 뿐만 아니라 제조원가의 상승요인으로 작용하고 있는 실정이다.In order to solve this problem, the situation is rushing the development of FINEX process that can use the spectroscopy as it is. However, in the case of the FINEX method of directly injecting unspectral spectroscopy, since 30% or more of the unspecified spectroscopy is discharged out of the reaction system again, dust collection and circulation facilities for recycling them are required, and thus, enormous investment is required and the manufacturing cost is increased. It is acting as a factor.

또한, Midrex법 및 SN/RL법과 같은 직접 환원철(DRI) 제조기술의 경우도, 원료 철광석의 30~70% 이상을 괴재원료로 사용해야할 뿐 아니라, 환원제로 천연가스 또는 석탄을 기체상태로 전환시켜 사용해야 하는 문제점이 있다.In addition, in the case of direct reduction iron (DRI) manufacturing techniques such as the Midrex method and the SN / RL method, more than 30 to 70% of the raw iron ore must be used as a raw material, and the natural gas or coal is converted into a gaseous state as a reducing agent. There is a problem that must be used.

한편, 유동층 환원로를 이용한 탄화철(FeC4: Iron carbide)제조의 경우에는, 미분말의 철광석을 사용하지만, 철광석을 유동시키기 위한 유동기체로서의 용도와 더불어 환원제로서의 역할을 수행할 수 있도록 천연가스를 사용하여야 하기 때문에, 이러한 원료를 보유하고 있는 지역이나 국가에서 제조하지 않을 경우에는 경제성을 확보하기 어려운 문제점이 있다.Meanwhile, in the case of manufacturing iron carbide (FeC 4 : Iron carbide) using a fluidized-bed reduction furnace, fine powdered iron ore is used, but natural gas is used to serve as a reducing agent as well as a fluid gas for flowing iron ore. Because it must be, if not manufactured in the region or country that holds these raw materials, it is difficult to secure economic feasibility.

이에, 본 발명자는 상기한 종래 기술들의 제반 문제점을 해결하기 위하여, 연구 및 실험을 행하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로서, 본 발명은, 입경 8mm 이하의 미분광석과 탄소질 점결제를 혼합한 후 열처리함으로써, 85% 이상의 금속 Fe를 포함한 괴상 환원철을 제조할 수 있는 괴상 환원철의 제조방법을 제공하고자 하는데, 그 목적이 있다.In order to solve the above problems of the prior arts, the present inventors have conducted research and experiments and proposed the present invention on the basis of the results, and the present invention provides a fine ore and carbonaceous binder having a particle diameter of 8 mm or less. By mixing and heat treatment, to provide a method for producing a reduced iron, which can produce a reduced iron containing 85% or more metal Fe, there is an object.

도1은 본 발명에 따라 제조된 환원철의 X-선 회절분석 결과도1 is a result of X-ray diffraction analysis of reduced iron prepared according to the present invention

본 발명은, 환원철의 제조방법에 있어서,The present invention provides a method for producing reduced iron,

입경 8mm 이하의 분광석과 고정탄소함량이 50~70wt%인 탄소질 점결제를 중량비로 50:50~80:20로 혼합하고, 그 혼합물을 혼련하여 용융혼합물로 한 다음, 불활성분위기하의 800~1200℃의 온도범위에서 열처리하는 것을 특징으로 하는 고상 환원법에 의한 괴상 환원철의 제조방법에 관한 것이다.Spectroscopy having a particle size of 8 mm or less and a carbonaceous binder having a fixed carbon content of 50 to 70 wt% are mixed at a weight ratio of 50:50 to 80:20, and the mixture is kneaded to a melt mixture, and then 800 to 800 in an inert atmosphere. It relates to a method for producing the reduced iron by the solid phase reduction method characterized in that the heat treatment at a temperature range of 1200 ℃.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 입경 8mm 이하, 특히 0.1mm 이하의 미분광석이 40% 이상 함유된 미분광석을 괴상 환원철로 제조하는데 유용하다. 또한, 1mm 이하의 미분광석에도 적용이 가능하다.The present invention is useful for producing finely divided ore containing no more than 40% of finely divided ore having a particle diameter of 8 mm or less, in particular, 0.1 mm or less. In addition, the present invention can be applied to fine ore of 1 mm or less.

상기와 같은 미분광석을 탄소질 점결제와 혼합하여 열처리함으로써 괴상 환원철을 제조하는데, 상기 탄소질 점결제는 고정탄소함량이 50~70wt%인 것이 바람직하다. 그 이유는 상기 고정탄소함량이 50wt% 미만인 경우에는 유기물의 량이 증가하여 제조원가의 상승이 초래되고, 반면에 70wt%를 초과하는 경우에는 점결력을 갖지 못하기 때문이다.The above-mentioned fine ore is mixed with a carbonaceous caking agent and heat-treated to produce mass reduced iron. The carbonaceous caking agent preferably has a fixed carbon content of 50 to 70 wt%. The reason is that if the fixed carbon content is less than 50wt%, the amount of organic matter is increased to increase the manufacturing cost, whereas if the fixed carbon content is more than 70wt%, it does not have caking force.

또한, 상기 분광석과 탄소질 점결제는 중량비로 80:20~50:50으로 혼합하는 것이 바람직한데, 그 이유는 상기 혼합물의 구성비가 상기 범위를 벗어나면 환원반응이 충분히 진행되지 못하여 환원율이 저조하기 때문이다.In addition, it is preferable to mix the spectroscopy and carbonaceous caking agent at a weight ratio of 80:20 to 50:50, because the reduction reaction is not sufficiently progressed if the composition ratio of the mixture is out of the range so that the reduction rate is low. Because.

한편, 상기 열처리는 800~1200℃의 온도범위에서 실시하는 것이 바람직한데, 그 온도가 800℃ 미만인 경우에는 환원반응이 원활히 이루어지지 못하여 장시간이 요구되고, 반면에 1200℃보다 높은 온도에서 실시할 경우에는 에너지 소요량이 증가하여 제조원가가 상승하기 때문이다. 따라서, 열처리는 800~1200℃에서 1~2시간 실시하는 것이 바람직하다.On the other hand, the heat treatment is preferably carried out in a temperature range of 800 ~ 1200 ℃, when the temperature is less than 800 ℃ is not required to perform a reduction reaction smoothly, while on the other hand if the temperature is higher than 1200 ℃ This is because manufacturing cost rises due to an increase in energy requirements. Therefore, it is preferable to perform heat processing for 1 to 2 hours at 800-1200 degreeC.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

35메쉬의 체를 이용하여 철광석에서 입도가 8mm 이하인 미분광(0.1mm 이하인 것을 30% 이상 포함)만을 분리한 후, 고정탄소함량이 60wt%인 핏치를 점결제로 하여 미분광석과 점결제의 혼합비가 중량비로 50:50~90:10이 되도록 건식혼합하였다.그 다음, 혼련기를 이용해 가열혼련을 실시하여 혼합물을 얻었다. 제조된 혼합물을 불활성분위기에서 3~5℃/min의 승온속도로 500℃까지 승온시킨 후, 1~3℃/min로 600~1200℃까지 승온시킨 다음, 1~5시간 동안 열처리하여 괴상의 환원철을 제조하였다.Using a 35 mesh sieve, only fine powder having a particle size of 8 mm or less (including 30% or more of 0.1 mm or less) is separated from the iron ore, and a pitch of 60 wt% of fixed carbon is used as a caking agent. Dry mixing was carried out at a weight ratio of 50:50 to 90:10. Then, the mixture was heated and kneaded using a kneader to obtain a mixture. The prepared mixture was heated up to 500 ° C. at an elevated rate of 3 to 5 ° C./min in an inert atmosphere, and then heated up to 600 ° C. to 1200 ° C. at 1 to 3 ° C./min, and then heat-treated for 1 to 5 hours to form massive reduced iron. Was prepared.

그 후, 제조된 환원철의 특성을 측정하고, 그 결과를 하기 표1에 나타내었다.Thereafter, the properties of the reduced iron produced were measured, and the results are shown in Table 1 below.

항목구분Item Classification 분광석/점결제혼합비(wt%)Spectroscopy / Binder Mixing Ratio (wt%) 열처리 조건(℃-hr)Heat treatment condition (℃ -hr) 환원율(wt%)Reduction Rate (wt%) 발명예 1Inventive Example 1 80/2080/20 1200-11200-1 8787 발명예 2Inventive Example 2 70/3070/30 1200-11200-1 9090 발명예 3Inventive Example 3 60/4060/40 1100-11100-1 9090 발명예 4Inventive Example 4 50/5050/50 1000-11000-1 9191 발명예 5Inventive Example 5 60/4060/40 800-2800-2 8686 발명예 6Inventive Example 6 70/3070/30 900-2900-2 8888 발명예 7Inventive Example 7 80/2080/20 800-2800-2 8585 비교예 1Comparative Example 1 90/1090/10 1200-11200-1 7575 비교예 2Comparative Example 2 60/4060/40 600-5600-5 7575 비교예 3Comparative Example 3 50/5050/50 700-3700-3 7878

상기 표1에 나타낸 바와 같이, 발명예(1)~(7)의 경우에는 800~1200℃에서 1~2시간 열처리함으로써, 금속 Fe의 함량이 85wt%를 상회하는 결과를 얻을 수 있었다. 반면에, 비교예(1)~(3)은 분광석/점결제 혼합비 또는 열처리조건이 본 발명의 범위를 벗어나거나기 때문에, 환원율이 85wt% 미만으로 충분한 환원반응이 진행되지 못하고 있음을 알 수 있다.As shown in Table 1, in the case of Inventive Examples (1) to (7), heat treatment was performed at 800 to 1200 ° C. for 1 to 2 hours, whereby the content of metal Fe exceeded 85 wt%. On the other hand, Comparative Examples (1) to (3) shows that the reduction ratio is less than 85 wt%, so that the reduction reaction does not proceed because the mixing ratio or heat treatment condition of the spectroscopy / binder is out of the range of the present invention. have.

한편, 도1에는 발명예(1)과 같이 제조된 환원철에 대한 X-선 회절분석(XRD)결과를 나타내었다. 상기 X-선 회절분석도에 나타나 있는 바와 같이, 금속 Fe가 생성되었음을 확인할 수 있었다.On the other hand, Figure 1 shows the X-ray diffraction analysis (XRD) results for the reduced iron prepared as inventive example (1). As shown in the X-ray diffractogram, it was confirmed that the metal Fe was produced.

상술한 바와 같이, 본 발명에 따라 고상 환원법에 의해 괴상 환원철을 제조함으로써, 금속 Fe를 85% 이상 함유한 괴상 환원철을 얻을 수 있고, 이에 따라 전기로용 스크랩 대체재로의 활용이 가능할 뿐 아니라, 연속제조가 가능하여 제조시간을 단축할 수 있는 효과가 있는 것이다.As described above, by producing the bulk reduced iron by the solid phase reduction method according to the present invention, it is possible to obtain a bulk reduced iron containing 85% or more of the metal Fe, thereby making it possible to use as a substitute for scrap for electric furnaces, as well as continuous manufacturing It is possible to have an effect that can shorten the manufacturing time.

Claims (3)

환원철의 제조방법에 있어서,In the method for producing reduced iron, 입경 8mm 이하의 분광석과 고정탄소함량이 50~70wt%인 탄소질 점결제를 중량비로 50:50~80:20로 혼합하고, 그 혼합물을 혼련하여 용융혼합물로 한 다음, 불활성분위기하의 800~1200℃의 온도범위에서 열처리하는 것을 특징으로 하는 고상 환원법에 의한 괴상 환원철의 제조방법Spectroscopy having a particle size of 8 mm or less and a carbonaceous binder having a fixed carbon content of 50 to 70 wt% are mixed at a weight ratio of 50:50 to 80:20, and the mixture is kneaded to a melt mixture, and then 800 to 800 in an inert atmosphere. Process for producing mass reduced iron by solid phase reduction, characterized in that the heat treatment at a temperature range of 1200 ℃ 제1항에 있어서, 상기 분광석이 입경 0.1mm 이하인 미분광석을 40% 이상 함유하는 것을 특징으로 하는 고상 환원법에 의한 괴상 환원철의 제조방법The method for producing bulk reduced iron by the solid phase reduction method according to claim 1, wherein the spectroscopic stones contain 40% or more of finely divided ore having a particle diameter of 0.1 mm or less. 제1항 또는 제2항에 있어서, 상기 열처리시 열처리시간이 1~2시간인 것을 특징으로 하는 고상 환원법에 의한 괴상 환원철의 제조방법The method of claim 1 or 2, wherein the heat treatment time during the heat treatment is 1 to 2 hours.
KR10-1999-0061519A 1999-12-24 1999-12-24 A method for manufacturing reduced ore by solid phase direct reduction process KR100376540B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0061519A KR100376540B1 (en) 1999-12-24 1999-12-24 A method for manufacturing reduced ore by solid phase direct reduction process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0061519A KR100376540B1 (en) 1999-12-24 1999-12-24 A method for manufacturing reduced ore by solid phase direct reduction process

Publications (2)

Publication Number Publication Date
KR20010058058A KR20010058058A (en) 2001-07-05
KR100376540B1 true KR100376540B1 (en) 2003-03-17

Family

ID=19629135

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0061519A KR100376540B1 (en) 1999-12-24 1999-12-24 A method for manufacturing reduced ore by solid phase direct reduction process

Country Status (1)

Country Link
KR (1) KR100376540B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803987B1 (en) * 2006-12-19 2008-02-15 주식회사 포스코 Manufacturing method of direct reduced iron

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754232A (en) * 1980-09-17 1982-03-31 Res Assoc Residual Oil Process<Rarop> Manufacture of raw material-briquette for reduced iron production
JPH1129808A (en) * 1997-07-09 1999-02-02 Sumitomo Metal Ind Ltd Production of molten iron
KR20000039376A (en) * 1998-12-12 2000-07-05 이구택 Method for making fine reduced iron into mass for producing molten iron using sludge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754232A (en) * 1980-09-17 1982-03-31 Res Assoc Residual Oil Process<Rarop> Manufacture of raw material-briquette for reduced iron production
JPH1129808A (en) * 1997-07-09 1999-02-02 Sumitomo Metal Ind Ltd Production of molten iron
KR20000039376A (en) * 1998-12-12 2000-07-05 이구택 Method for making fine reduced iron into mass for producing molten iron using sludge

Also Published As

Publication number Publication date
KR20010058058A (en) 2001-07-05

Similar Documents

Publication Publication Date Title
US4032352A (en) Binder composition
KR101644785B1 (en) Process for producing agglomerates of finely particulate iron carriers
EP1004681B1 (en) Method of making iron oxide pellets incorporated with carbonaceous material for the production of reduced iron
KR101158883B1 (en) Self-reducing, cold-bonded pellets
CN101879599B (en) Method for preparing reductive iron powder and high-purity refined iron powder by using iron ores
US3765869A (en) Method of producing iron-ore pellets
KR20130053089A (en) Part reduced iron for blast furnace and method thereof
WO2011029269A1 (en) Method for innocuously treating chromium residue using metallurgical roasting and blast furnace
CN100580106C (en) Cold briquetting and pelletisation method
CN101538628A (en) Method for directly reducing laterite-nickel into nickel-bearing ball iron in tunnel kilns
KR100376506B1 (en) Method for agglomerating iron ore fines for coal based iron making using waste sludge
Pal et al. Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making
KR100376540B1 (en) A method for manufacturing reduced ore by solid phase direct reduction process
US4778523A (en) Process for using steelmaking slag
KR100905581B1 (en) Coal Briquettes For Iron and Steel Making Process, Method Of Manufacturing Thereof
YOSHIKOSHI et al. Development of composite cold pellet for silico-manganese production
AU719637B2 (en) Reuse of metallurgical fines
WO2001048250A1 (en) Method for utilizing activated carbon powder recovered from exhaust sintering gas treating apparatus
KR20050063490A (en) A method for preparing carbon contained reduced iron ore
US4822583A (en) Phosphate feed material for phosphorus electric furnaces and production of same
JP2000119722A (en) Production of reduced iron pellet
EP3253896A1 (en) Method and arrangement to prepare chromite concentrate for pelletizing and sintering and pelletizing feed
US4902491A (en) Phosphate feed material for phosphorus electric furnaces and production of same
Singh et al. Cold bond agglomerates of iron and steel plant byproducts as burden material for blast furnaces
CN117025949A (en) Method for preparing pellets by using ammonium humate and pellets

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060306

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee