JPS58100640A - Preliminary reducing method for chromium ore - Google Patents

Preliminary reducing method for chromium ore

Info

Publication number
JPS58100640A
JPS58100640A JP19729681A JP19729681A JPS58100640A JP S58100640 A JPS58100640 A JP S58100640A JP 19729681 A JP19729681 A JP 19729681A JP 19729681 A JP19729681 A JP 19729681A JP S58100640 A JPS58100640 A JP S58100640A
Authority
JP
Japan
Prior art keywords
ore
reduction furnace
reduction
chromium ore
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19729681A
Other languages
Japanese (ja)
Other versions
JPS6156303B2 (en
Inventor
Hisao Hamaguchi
浜口 尚夫
Hisamitsu Koitabashi
小板橋 寿光
Toshihiro Inatani
稲谷 稔宏
Nobuo Tsuchitani
槌谷 暢男
Shiko Takada
高田 至康
Eiji Katayama
英司 片山
Mitsuo Kadoto
角戸 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19729681A priority Critical patent/JPS58100640A/en
Publication of JPS58100640A publication Critical patent/JPS58100640A/en
Publication of JPS6156303B2 publication Critical patent/JPS6156303B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To perform low temp. preliminary reduction of chromium ore, by supplying coke furnace gas into a preliminary reducing furnace at prescribed ratios with respect to the introducing rate of the waste gas of a melting and reducing furnace and the amt. of the chromium ore to be supplied and further supplying carbonaceous materials in such a way as to exist in a specified amt. CONSTITUTION:Coke furnace gas as the methane source is supplied together with the waste gas produced from a melting and reducing furnace of the next stage into a preliminary reducing furnace in the range of 10-70% introducing rate of the above-described waste gas and 400-1,200Nm<3>/t-ore based on the amt. of the chromium ore to be supplied. Further, carbonaceous materials (e.g.; coke) are supplied into the fluidized layers of the preliminary reducing furnace so as to maintain 10-60% ratio based on the amt. of the ore. When the reducing temp. cannot be maintained only by the sensible heat of the waste gas of the melting and reducing furnace, the combustion heat of the carbonaceous materials is utilized by blowing O2 and high temp. air. This preliminary reducing temp. is maintained at 900-1,100 deg.C and the preliminarily reduced ore contg. the carbonaceous materials is discharged and is fed to the melting and reducing furnace of the next stage, where ferrochromium is produced.

Description

【発明の詳細な説明】 本発明は、フェロクロム製造のためのクロム鉱石の流動
予備還元方法K11lする。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a flow prereduction process K11 of chromium ore for the production of ferrochrome.

クロム鉱石の資源は低品位化、粉鉱化の傾向にある。ク
ロム鉱石の製錬によるフェロクロムの製造は通常電気炉
によっているが、電力原単位は数千xwn/lKも達し
、きわめてコスト高となる。
Chromium ore resources are trending toward lower grade and fine mineralization. Ferrochrome is usually produced by smelting chromium ore using an electric furnace, but the electric power consumption reaches several thousand xwn/lK, resulting in extremely high costs.

最近は電力によらないフェロクロムその他の合金鉄製造
技術としての溶融還元法が注目されている。本発明者ら
はさきに予備還元炉と溶融還元炉とを直列に結合した装
置を用い、粉粒状鉱石から溶融金属を製造する方法を提
案したが、その方法は各種鉱石の製錬に応用可能であ如
、当然クロム鉱石からのフェロクロム製造にも応用でき
る。
Recently, the smelting reduction method has been attracting attention as a technology for producing ferrochrome and other ferroalloys that does not rely on electricity. The present inventors previously proposed a method for producing molten metal from powdery ore using a device in which a preliminary reduction furnace and a smelting reduction furnace were connected in series, and this method can be applied to the smelting of various ores. Of course, it can also be applied to the production of ferrochrome from chromium ore.

しかし、クロム鉱石のように難還元性の鉱石の予備還元
炉に溶融還元炉からの高温の排ガスを還元ガスとして使
用する場合に、酸化クロム(Crt Os )がりpム
鉱石中に含まれる酸化鉄(Fed)に比し還元されにく
いので、クロム鉱石全体としての予備還元率が上がらな
いという問題がある。
However, when high-temperature exhaust gas from a smelting reduction furnace is used as a reducing gas in a pre-reduction furnace for hard-to-reducible ores such as chromium ore, chromium oxide (CrtOs) and iron oxide contained in PM ore are used. Since it is difficult to reduce compared to (Fed), there is a problem that the preliminary reduction rate of the chromium ore as a whole does not increase.

また本発明者らはクロム鉱石の予備還元方法として重油
や石炭などの還元剤を用いる方法につぃても提案してい
るが、反応炉内温度を1100〜1300”Cに保持す
る必要があわ、溶融還元炉からの排ガス温度が低い場合
には適さない。
The present inventors have also proposed a method using a reducing agent such as heavy oil or coal as a preliminary reduction method for chromium ore, but it is necessary to maintain the temperature inside the reactor at 1100 to 1300"C. , is not suitable when the exhaust gas temperature from the smelting reduction furnace is low.

クロム鉱石をもつと低温で還元する場合の還元剤として
メタン(CH4)が有効であることが文献で知られてい
る。メタンとして液化天然ガス(LNG)を使用するこ
とはコスト高となシ実用的ではない。本発明者らは製鉄
所内で容易に利用可能なメタン源としてコークス炉ガス
圧着目した。
It is known in the literature that methane (CH4) is effective as a reducing agent when reducing chromium ore at low temperatures. Using liquefied natural gas (LNG) as methane is expensive and impractical. The present inventors have focused on coke oven gas as a source of methane that can be easily used in steel plants.

しかし、コークス炉ガスを用いた流動層還元装置による
クロム鉱石の還元実験では第1図の人曲線に示すように
、還元源[1000°C以下では還元率がほとんど上昇
せず、1000°C以上では、クロム鉱石粒子が互いに
粘着し流動化状態を維持することができない。
However, in a reduction experiment of chromium ore using a fluidized bed reduction apparatus using coke oven gas, as shown in the human curve in Figure 1, the reduction rate hardly increased below 1000°C, and above 1000°C. In this case, the chromium ore particles stick to each other and cannot maintain a fluidized state.

コークス炉ガスの組成は次に示すように、メタン以外に
アセチレン、エチレン、エタンなどの炭化水素Ctn 
Hn +CotおよびH,Oも含有する。
The composition of coke oven gas is as shown below.
Also contains Hn + Cot and H, O.

C−H420〜26チ H,57〜65% CO5〜891+ Co、      1〜3チ N、       2〜4− CmHn     2〜3 % H,02〜3− 従って、コークス炉ガスは、メタンのみの場合とは還元
挙動が異なってくる。また、予備還元炉ではコークス炉
ガスを単独で用いることはなく、溶融還元炉からの高温
の排ガスと混合することに対する考慮も必要である。
C-H 420-26% H, 57-65% CO5-891+ Co, 1-3% N, 2-4- CmHn 2-3% H, 02-3- Therefore, the coke oven gas is different from the case where only methane is used. have different reduction behavior. Further, coke oven gas is not used alone in the pre-reduction furnace, and consideration must be given to mixing it with high-temperature exhaust gas from the smelting reduction furnace.

以上の実状に鑑み、本発明者らは、コークス炉ガスを用
いる低温のクロム鉱石の予備還元操業方法を見出すため
各種の実験を行なった結果、本発明に到達したものであ
る。
In view of the above-mentioned circumstances, the present inventors conducted various experiments to discover a method for preliminary reduction operation of low-temperature chromium ore using coke oven gas, and as a result, they arrived at the present invention.

本発明の要旨とするところは、予備還元炉と溶融還元炉
とからなる装置を用い溶融還元炉排ガスを予備還元炉に
導入し粉粒状鉱石を流動予備還元したのち溶融還元炉に
供給して溶融金属を製造するクロム鉱石の予備還元方法
において、予備還元炉にコークス炉ガスを、溶融還元炉
排ガス導入量010〜70チ、予備還元炉供給クロム鉱
石量に対して400〜120ON/7//を一鉱石の範
囲で供給すると共に1予備量元炉流動層内の炭材量が鉱
石量に対して10〜60チを維持するように炭材を供給
し、かつ必要に応じて酸素または空気を供給して予備還
元温度を900〜1100℃に保持し、炭材の混入した
予備還元鉱石を排出することを特徴とするクロム鉱石の
予備還元法に存する。
The gist of the present invention is to use a device consisting of a pre-reduction furnace and a smelting reduction furnace to introduce the smelting reduction furnace exhaust gas into the pre-reduction furnace to pre-reduce the granular ore through fluidization, and then supply it to the smelting reduction furnace and melt it. In the preliminary reduction method of chromium ore for producing metal, coke oven gas is introduced into the preliminary reduction furnace, the amount of smelting reduction furnace exhaust gas introduced is 010 to 70 cm, and the amount of chromium ore supplied to the preliminary reduction furnace is 400 to 120 ON/7//. The amount of carbon material is supplied within the range of one ore, and the amount of carbon material in the fluidized bed of the main furnace is maintained at 10 to 60 inches relative to the amount of ore, and oxygen or air is supplied as necessary. The present invention relates to a method for pre-reducing chromium ore, which is characterized in that the pre-reduction temperature of chromium ore is maintained at 900 to 1100° C., and the pre-reduced ore mixed with carbonaceous material is discharged.

コークス炉ガス中に含まれるCOlやH,Oは還元反応
を阻害するので、これに対処するためには、クロム鉱石
にコークスや石炭などの炭材を添加することが有効であ
る。よく知られているように1100’C以下の還元温
度では、コークスや石炭などの炭材による還元速度はか
な)小さい。しかし、炭材とコークス炉ガス中のCO,
やH20がツルージョンロス反応を起こしてCOやHl
に転換することKよって結果として還元反応が促進され
ることになる。また炭材をクロム鉱石に添加することに
よって、還元温度を1000°C以上にしてもクロム鉱
石粒子が相互に粘着し合うことによる流動化阻害を防止
することができる0例えば、第1図のBIMlllは、
クロム鉱石85−1炭材15−の装入物をコークス炉ガ
ス30哄、還元ガス70−の還元ガスで還元したときの
温度と還元率との関係を示し、流動化阻害を防止できた
ので還元温度を高めることができ、還元率が増加した。
Since CO1, H, and O contained in coke oven gas inhibit the reduction reaction, it is effective to add carbonaceous materials such as coke and coal to chromium ore in order to deal with this. As is well known, at reduction temperatures below 1100'C, the rate of reduction by carbonaceous materials such as coke and coal is low. However, CO in carbonaceous materials and coke oven gas,
and H20 cause a trusion loss reaction and produce CO and Hl.
As a result, the reduction reaction is promoted by converting K into K. Furthermore, by adding carbonaceous material to chromium ore, it is possible to prevent fluidization inhibition due to mutual adhesion of chromium ore particles even if the reduction temperature is increased to 1000°C or higher. teeth,
The relationship between temperature and reduction rate is shown when a charge of chromium ore 85-1 carbon material 15- is reduced with 30 liters of coke oven gas and reducing gas 70-, and fluidization inhibition can be prevented. It was possible to raise the reduction temperature and increase the reduction rate.

クロム鉱石に混入する炭材の混入比率は、炭材がクロム
鉱石に対して10チ以下ではクロム鉱石粒子相互の粘着
(焼結現象)による流動化阻害を防止する効果が少なく
、6〇−以上では体積が嵩みすぎて反応容積わたりの生
産性が減少するので、10〜60チが適当である。
The mixing ratio of carbonaceous material mixed into chromium ore is such that if the carbonaceous material is less than 10% of the chromium ore, there is little effect in preventing fluidization inhibition due to mutual adhesion (sintering phenomenon) of chromium ore particles; However, since the volume is too large and the productivity per reaction volume decreases, 10 to 60 inches is appropriate.

混入する炭材の粒径はクロム鉱石の粒径と差があ如すぎ
ると偏析を起すので同程度の粒径であることが望ましい
。実験に使用したクロム鉱石の粒径Fi48〜100メ
ツシュ80チ以上であり、これに対して混入した炭材の
粒径は48〜100メツシユのものを用いた。
If the particle size of the carbonaceous material to be mixed is too different from the particle size of the chromium ore, segregation will occur, so it is desirable that the particle size is about the same. The particle size Fi of the chromium ore used in the experiment was 48 to 100 mesh and 80 or more, whereas the particle size of the carbon material mixed therein was 48 to 100 mesh.

次に、コークス炉ガスとCOやH3等の他の還元ガスと
の比率を変化させて還元率との関係を調べた結果を第2
図に示す。第2図の曲線Cは還元温度tooo’c%−
線りは還元温度1100°Cの場合である。第2図から
、コークス炉ガスの混入により還元率を高めることがで
きることが明らかである。コークス炉ガスの混入比率が
1(l以下では効果が少なくまた、過多となっても効果
が減するので還元ガスに対して10〜70チの範囲が好
適である。
Next, we investigated the relationship between the reduction rate by changing the ratio of coke oven gas and other reducing gases such as CO and H3, and examined the results in the second section.
As shown in the figure. Curve C in Figure 2 is the reduction temperature too'c%-
The lines are for a reduction temperature of 1100°C. It is clear from FIG. 2 that the reduction rate can be increased by mixing in coke oven gas. If the mixing ratio of coke oven gas is less than 1 (l), the effect will be small, and if it is too much, the effect will be reduced, so a range of 10 to 70 l is suitable for the reducing gas.

鉱石量に対するコークス炉カス量と還元率との関係を第
3図に示す。図中曲線Eは還元温度1000°C1曲線
Fは1100”Cの場合である。
Figure 3 shows the relationship between the amount of coke oven scum and the reduction rate relative to the amount of ore. In the figure, curve E is for the case where the reduction temperature is 1000°C, and curve F is for the case where the reduction temperature is 1100''C.

第3図からコークス炉ガス量は400 Nvl/ を−
鉱石以上は必要で600 Nrd/を一鉱石附近が最も
還元率が高く、それ以上では逆に還元率は減少傾向とな
る。コスト面も考慮すれば1200 Nvl/l−鉱石
程度が上限となる。
From Figure 3, the coke oven gas amount is 400 Nvl/-
For more than ore, 600 Nrd/ ore is required, and the reduction rate is highest near one ore, and above that, the reduction rate tends to decrease. Considering the cost, the upper limit is about 1200 Nvl/l-ore.

第4図は本発明方法の実施に用いられる流動予備還元炉
の実施例を模式的に示す断面図である。
FIG. 4 is a cross-sectional view schematically showing an embodiment of a fluidized pre-reduction furnace used in carrying out the method of the present invention.

予備還元炉1は流動層反応器からなり、形状は通常竪形
円筒形である。粉状のクロム鉱石はクロム鉱石供給口3
よ如予備還元炉内に供給され流動層2を形成する。予備
還元炉1内で予備還元されたり四ム鉱石は予備還元鉱排
出口4から排出され溶融還元炉(図示せず)へ輸送され
て吹き込まれる。コークスや石炭などの炭材およびフラ
ックス等はクロム鉱石と混合して供給してもよく、また
別の供給口5,5から供給することもできる。
The pre-reduction furnace 1 consists of a fluidized bed reactor, and is usually vertically cylindrical in shape. Powdered chromium ore is available at chromium ore supply port 3.
The fluidized bed 2 is then supplied to the pre-reduction furnace. The pre-reduced ore which has been pre-reduced in the pre-reduction furnace 1 is discharged from the pre-reduced ore discharge port 4 and is transported and blown into a smelting reduction furnace (not shown). Carbon materials such as coke and coal, flux, etc. may be mixed with chromium ore and may be supplied, or may be supplied from separate supply ports 5, 5.

溶融還元炉からの高温の排ガスは、流動層の下部の供給
口8から供給される。ガス分散板9は必要に応じて設け
ることができる。
High temperature exhaust gas from the smelting reduction furnace is supplied from the supply port 8 at the bottom of the fluidized bed. The gas distribution plate 9 can be provided as necessary.

コークス炉ガスは予備還元炉1の側面の供給口6から供
給する。溶融還元炉からの高温の排ガスと混合して排ガ
ス供給口8から供給することもできる。
Coke oven gas is supplied from the supply port 6 on the side of the preliminary reduction furnace 1 . It can also be mixed with high-temperature exhaust gas from the smelting reduction furnace and supplied from the exhaust gas supply port 8.

流動予備還元炉1を用いて、還元温度を900〜110
0°C1炭材供給量を流動層内における炭材とクロム鉱
石との比率が10〜60チを維持す   ゛る量、コー
クス炉ガス供給量をクロム鉱石を当如400〜120O
NtIl、溶融還元炉排ガス量に対して10〜70チの
操業条件下でクロム鉱゛石の予備還元を行なうことによ
って、クロム鉱石の予備還元率20〜60チを達成する
ことができる。
Using fluidized pre-reduction furnace 1, reduce the reduction temperature to 900-110
0°C1 The amount of carbonaceous material supplied is such that the ratio of carbonaceous material and chromium ore in the fluidized bed is maintained at 10 to 60 degrees, and the amount of coke oven gas supplied is 400 to 120 degrees of chromium ore.
By carrying out preliminary reduction of chromium ore under operating conditions of NtIl and smelting reduction furnace exhaust gas amount of 10 to 70 degrees, a preliminary reduction rate of chromium ore of 20 to 60 degrees can be achieved.

溶融還元炉からの排ガスの顕熱だけで必要な還元温度の
900〜1100’Cを維持できない場合は、予備還元
炉の排出口10から排出される排ガスとの熱交換による
クロム鉱石の予熱が必要でおる。クロム鉱石の予熱方法
としては流動層を多段にする方法やサスペンション・プ
レヒーターe用いる方法が適当である。
If the necessary reduction temperature of 900 to 1100'C cannot be maintained with only the sensible heat of the exhaust gas from the smelting reduction furnace, it is necessary to preheat the chromium ore by heat exchange with the exhaust gas discharged from the outlet 10 of the preliminary reduction furnace. I'll go. As a method for preheating chromium ore, a method using a multi-stage fluidized bed or a method using a suspension preheater e is suitable.

溶融還元炉からの高温排ガスの顕熱と装入鉱石を予熱す
ることとによっても熱量が不足する場合は、酸素または
高温の空気を供給ロアから供給して炭材をCOまで部分
燃焼させた燃焼熱を利用することができる。
If the amount of heat is insufficient due to the sensible heat of the high-temperature exhaust gas from the smelting reduction furnace and the preheating of the charged ore, oxygen or high-temperature air is supplied from the supply lower to partially burn the carbonaceous material to CO. Heat can be used.

予備還元鉱排出口4から排出される予備還元鉱石中に混
入する粉状炭材は、予備還元鉱と共に溶融還元炉に吹き
込まれて還元剤および燃料として消費されることになる
。従って、溶融還元炉に装入するコークス量が減少し、
塊状コークスを節約することができる大きな利点がおる
Powdered carbonaceous material mixed in the pre-reduced ore discharged from the pre-reduced ore discharge port 4 is blown into the smelting reduction furnace together with the pre-reduced ore and is consumed as a reducing agent and fuel. Therefore, the amount of coke charged into the smelting reduction furnace is reduced,
This has the great advantage of saving lump coke.

本発明方法によれば、コークス炉ガスと炭材とを使用す
ることKよ如、従来、溶融還元炉の排ガスだけでは還元
のしにくいクロム鉱石を比較的低温で予備還元すること
ができる。
According to the method of the present invention, as with the use of coke oven gas and carbonaceous material, chromium ore, which conventionally has been difficult to reduce with only exhaust gas from a smelting reduction furnace, can be pre-reduced at a relatively low temperature.

本発明の効果をまとめると次のようになる。The effects of the present invention can be summarized as follows.

(1)  $1鉄所内で入手容易なコークス炉ガスをメ
タン源として使用できる。
(1) $1 Coke oven gas, which is easily available in ironworks, can be used as a methane source.

(2)クロム鉱石に炭材を混入することによって、コー
クス炉ガスの還元力を高めることができる。
(2) By mixing carbonaceous material into chromium ore, the reducing power of coke oven gas can be increased.

(3)炭材を添加することKよって、クロム鉱石粒子が
粘着することを防止できるので還元温度を高めることが
でき、予備還元率を上げることができる。
(3) By adding carbonaceous material, it is possible to prevent the chromium ore particles from sticking, thereby increasing the reduction temperature and increasing the preliminary reduction rate.

(4)溶融還元炉排ガスの顕熱だけでは還元温度が維持
できないときは、酸素や高温空気を吹き込んで炭材の燃
焼熱を利用できる。
(4) When the reduction temperature cannot be maintained by the sensible heat of the smelting reduction furnace exhaust gas alone, the combustion heat of the carbonaceous material can be utilized by blowing in oxygen or high-temperature air.

(5)予備還元鉱とともに炭材が溶融還元炉へ吹き込ま
れるので、溶融還元炉のコークス消費量を減少すること
ができる。すなわち塊状コークスを粉状の炭材で代替す
ることができる。
(5) Since the carbonaceous material is blown into the smelting reduction furnace together with the preliminary reduced ore, the amount of coke consumed in the smelting reduction furnace can be reduced. That is, lump coke can be replaced with powdered carbonaceous material.

次に本発明の実施例を以下に示す。Next, examples of the present invention will be shown below.

実施例 1)・クロム鉱石:フィリピン産クロム鉱石組成: C
rto、  49.25k Fe0   23.8− 粒11:28〜48M    7.9慢48〜100M
  86.7嗟 100M以下   5.4チ (Mはメツシュである) 2)炭 材:コークス(CDQ(コーク・ドライ・クエ
ンチャ)ダスト) 粒径:48〜100メツシユ 3)予備還元炉操業データ クロム鉱石供給量:175匈/ hr 炭 材  供給量= 68睦/ hr (炭材/クロム鉱石=39チ) 溶融還元炉排ガス量: 590 Nm’/ hrコーク
ス炉ガス量:  12 ON7F// hr(コークス
炉ガス量/溶融還元炉排ガス量=20%) (コークス炉ガス量/クロム鉱石量 =686Nm/を一鉱石) 酸素量:47Ni/hr 予備還元炉温度:1030℃ クロム鉱石の予備還元率:38チ
Example 1) Chromium ore: Chromium ore from the Philippines Composition: C
rto, 49.25k Fe0 23.8- Grain 11: 28-48M 7.9 Arrogant 48-100M
86.7mm 100M or less 5.4mm (M is mesh) 2) Charcoal material: Coke (CDQ (coke dry quencher) dust) Particle size: 48-100 mesh 3) Pre-reduction furnace operation data Chrome ore Supply amount: 175 Nm'/hr Charcoal material supply amount = 68 Mutsumi/hr (Charcoal material/Chromium ore = 39 Chi) Melting reduction furnace exhaust gas amount: 590 Nm'/ hr Coke oven gas amount: 12 ON7F// hr (Coke oven Gas amount / smelting reduction furnace exhaust gas amount = 20%) (Coke oven gas amount / chromium ore amount = 686 Nm / one ore) Oxygen amount: 47 Ni/hr Pre-reduction furnace temperature: 1030℃ Pre-reduction rate of chromium ore: 38 chi

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ還元温度、コークス炉ガス濃
度、鉱石量に対するコークス炉ガス量。 K対するクロム鉱石予備還元率との関係を示す図表、第
4図は予備還元炉の模式縦断面図である。 ム−・・クロム鉱石100%装入しコークス炉ガス10
0Sの場合、B・・・クロム鉱石85%炭材15−装入
しコークス炉ガス30チ還元ガス70−の場合、C,E
・・・還元温度1000℃の場合、D。 F・・・還元温度1100°Cの場合、1・・・予備還
元炉、2・・・流動層、3・−・クロム鉱石供給口、4
・・・予備還元鉱排出口、5・・・炭材およびフラック
ス供給口、6−・・コークス炉ガス供給口、7・・・酸
素または高温空気の供給口、8・・・溶融還元炉の排ガ
ス供給口、9・・・ガス分散板。 第1図 道元品崖(’C) 第2図
Figures 1 to 3 show the reduction temperature, coke oven gas concentration, and amount of coke oven gas relative to the amount of ore, respectively. A chart showing the relationship between K and the chromium ore preliminary reduction rate, and FIG. 4 is a schematic longitudinal sectional view of the preliminary reduction furnace. Mu... 100% chromium ore charged coke oven gas 10
In the case of 0S, B... 85% chromium ore, 15% carbonaceous material, 30% coke oven gas, 70% reducing gas, C, E
...When the reduction temperature is 1000°C, D. F... When the reduction temperature is 1100°C, 1... Pre-reduction furnace, 2... Fluidized bed, 3... Chromium ore supply port, 4
...Preliminary reduced ore discharge port, 5...Charcoal material and flux supply port, 6-...Coke oven gas supply port, 7...Oxygen or high temperature air supply port, 8...Melting reduction furnace Exhaust gas supply port, 9...gas distribution plate. Figure 1 Dogenshin Cliff ('C) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 予備還元炉と溶融還元炉とからなる装置を用い溶融
還元炉排ガスを予備還元炉に導入し粉粒状鉱石を流動予
備還元したのち溶融還元炉に供給して溶融金属を製造す
るクロム鉱石の予備還元方法において、予備還元炉にコ
ークス炉ガスを溶融還元炉排ガス導入量の10〜70−
1予備還元炉供給クロム鉱石量に対して400〜120
ONm’/を一鉱石の範囲で供給すると共に、予備還元
炉流動層内の炭材量が鉱石量に対して10〜60−を維
持するようKm材を供給し、かつ、必要に応じて酸素ま
たは空気を供給して予備還元温度を900〜1100°
Cに保持し、炭材の混入した予備還元鉱石を排出するこ
とを特徴とする、クロム鉱石の予備還元法。
1 Preparation of chromium ore using a device consisting of a pre-reduction furnace and a smelting-reduction furnace, introducing the smelting-reduction furnace exhaust gas into the pre-reduction furnace, fluidizing the granular ore and supplying it to the smelting-reduction furnace to produce molten metal. In the reduction method, the amount of coke oven gas introduced into the preliminary reduction furnace is 10 to 70-
400 to 120 per amount of chromium ore supplied to one preliminary reduction furnace
ONm'/ is supplied in the range of one ore, Km material is supplied so that the amount of carbon material in the fluidized bed of the pre-reduction furnace is maintained at 10 to 60 - relative to the amount of ore, and oxygen is added as necessary. Or supply air and adjust the pre-reduction temperature to 900-1100°.
A method for pre-reducing chromium ore, which is characterized by discharging pre-reduced ore mixed with carbonaceous material.
JP19729681A 1981-12-08 1981-12-08 Preliminary reducing method for chromium ore Granted JPS58100640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19729681A JPS58100640A (en) 1981-12-08 1981-12-08 Preliminary reducing method for chromium ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19729681A JPS58100640A (en) 1981-12-08 1981-12-08 Preliminary reducing method for chromium ore

Publications (2)

Publication Number Publication Date
JPS58100640A true JPS58100640A (en) 1983-06-15
JPS6156303B2 JPS6156303B2 (en) 1986-12-02

Family

ID=16372096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19729681A Granted JPS58100640A (en) 1981-12-08 1981-12-08 Preliminary reducing method for chromium ore

Country Status (1)

Country Link
JP (1) JPS58100640A (en)

Also Published As

Publication number Publication date
JPS6156303B2 (en) 1986-12-02

Similar Documents

Publication Publication Date Title
WO2023040469A1 (en) Method for blast furnace iron smelting using multiple media blowing
WO2023029816A1 (en) Low carbon blast furnace ironmaking method
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
US2986460A (en) Production of iron
CA2408720C (en) Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore
US2864686A (en) Method of treating iron oxide fines
US5069716A (en) Process for the production of liquid steel from iron containing metal oxides
CA1089649A (en) Reduction of metal oxides to sponge metal
JPS58100640A (en) Preliminary reducing method for chromium ore
EP0319966B1 (en) Method of smelting reduction of ores containing metal oxides
JPH0699734B2 (en) Circulating fluidized bed type pre-reduction furnace for fine iron ore
CN214781945U (en) Self-heating gas-based shaft furnace direct reduction device
JPH0784624B2 (en) Method for producing molten metal from powdered ore containing metal oxide
JPS5980706A (en) Operating method of preliminary reduction furnace with fluidized bed
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
JPH032922B2 (en)
CN207699619U (en) The system containing Iron Ore Powder of processing
YAMAOKA et al. A New Ironmaking Process Consisted of Shaft Type Reduction Furnace and Cupola Type Melting Furnace
JPS59179726A (en) Preliminary reducing method of hardly reducible ore
CN115305305A (en) Self-heating gas-based shaft furnace direct reduction method and reduction device
JPS62230923A (en) Manufacture of iron by smelting and reduction
JP2837282B2 (en) Production method of chromium-containing hot metal
JPS6187847A (en) Reducing method of chromium ore
JPS62230924A (en) Manufacture of smelted and reduced iron
JPS58217615A (en) Prereducing oven in melt reducing apparatus