JPS62230924A - Manufacture of smelted and reduced iron - Google Patents

Manufacture of smelted and reduced iron

Info

Publication number
JPS62230924A
JPS62230924A JP7532586A JP7532586A JPS62230924A JP S62230924 A JPS62230924 A JP S62230924A JP 7532586 A JP7532586 A JP 7532586A JP 7532586 A JP7532586 A JP 7532586A JP S62230924 A JPS62230924 A JP S62230924A
Authority
JP
Japan
Prior art keywords
reduction
reduction furnace
ore
fluidized bed
smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7532586A
Other languages
Japanese (ja)
Inventor
Yoshimichi Takenaka
竹中 芳通
Tsunao Kamijo
上條 綱雄
Katsufumi Shinohara
篠原 克文
Takehiko Ashinaga
足永 武彦
Kenji Mori
憲二 森
Reijiro Nishida
西田 禮次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7532586A priority Critical patent/JPS62230924A/en
Publication of JPS62230924A publication Critical patent/JPS62230924A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably maintain high operational efficiency when smelted and reduced iron is manufactured by combining reduction in a fluidized bed with smelting and reduction, by specifying the rate of prereduction of iron ore in a prereducing stage and the efficiency of secondary combustion in a smelting and reducing furnace. CONSTITUTION:Powdery iron ore is preheated with a preheater 1 and sent to a fluidized bed type carbon coating tower 2, where the ore is brought into contact with tar or the like fed to the tower 2 to coat the surface of the ore with carbon. The ore is sent to a fluidized bed prereducing furnace 3, prereduced at 75-95% rate of prereduction and sent to a smelting and reducing furnace 4, where the ore is finally reduced with gaseous CO produced by the reaction of a carbonaceous material with oxygen. At the same time, quick lime is blown to carry out dephosphorization and secondary combustion is carried out with <=40% efficiency of combustion by further blowing oxygen. Molten iron is discharged from the lower part of the furnace 4 and slag from the upper part.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は溶融還元鉄の製造方法に関し、より詳細には、
流iIJ層還光還元融還元を組合せて還元鉄を得る方法
において、操業効率を高レベルで安定に保つことのでき
る方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing molten reduced iron, and more specifically,
The present invention relates to a method for obtaining reduced iron by combining flow reduction, reduction, and fusion reduction in a flow iIJ layer, which can stably maintain operational efficiency at a high level.

[従来の技術] 高炉−転炉方式による間接製鉄法やシャフト炉等による
直接製鉄法では原料鉄鉱石を事前に塊成化処理(ベレッ
ト、焼結、ブリケット等)するか、或は塊状の鉄鉱石を
使用する必要があるが、粉粒状の鉄鉱石を還元性ガスで
流動状態にして予備還元する流!I!III層還元方式
層間元方式るに及び、原料予備処理が簡略できるという
点から大きな期待が寄せられている。しかしこの流動層
還元方式もシステムとして完成された訳ではなく、未解
決の問題を多く残している。
[Prior art] In the indirect iron manufacturing method using a blast furnace-converter method or the direct iron manufacturing method using a shaft furnace, the raw material iron ore is subjected to agglomeration treatment (by pellets, sintering, briquettes, etc.) in advance, or iron ore in the form of lumps is processed in advance. Although it is necessary to use stones, this method involves pre-reducing powdered iron ore by making it fluidized with reducing gas! I! III-layer reduction method The inter-layer reduction method has great expectations because it simplifies the preliminary treatment of raw materials. However, this fluidized bed reduction method has not yet been completed as a system, and many problems remain unresolved.

[発明が解決しようとする問題点] 上記の様な流動層還元法で最も問題となるのは、スティ
ッキング現象(後述)である。即ち流動層予備還元工程
における還元率を向上するには還元温度をある程度高め
ればよいが、高温条件下では粉粒状鉄鉱石の表面に還元
鉄がひげ状に生成して相互に絡み合い、塊状化して流動
状態を喪失するスティッキング現象が発生する。その為
低めの温度に抑えた状態で流動層予備還元を行なわなけ
ればならず、還元効率を十分に高めることができておら
ない。そこで本発明者等はスティッキング防止対策を確
立すべく色々研究を行なった結果■流動層予備還元に先
立って粉粒状鉄鉱石の表面に炭材を付着させておけばス
ティッキングが防止され、高温条件のもとでも安定して
且つ効率良く予備還元を進行せしめ得ること、■炭材原
料としては石炭が最も経済的であり、直接還元設備に石
炭乾留流動層設備を併設し、該乾留により生成する炭素
含有気体成分又は液体成分を還元雰囲気中で粉粒状鉄鉱
石と接触させれば、該鉄鉱石表面に炭材を均一に付着せ
しめ得ること、 を確認し、別途特許出願を行なった。
[Problems to be Solved by the Invention] The most problematic problem in the fluidized bed reduction method as described above is the sticking phenomenon (described later). In other words, in order to improve the reduction rate in the fluidized bed pre-reduction process, it is sufficient to raise the reduction temperature to a certain extent, but under high temperature conditions, reduced iron forms in whiskers on the surface of powdered iron ore, becomes entangled with each other, and becomes agglomerated. A sticking phenomenon occurs in which fluidity is lost. Therefore, fluidized bed pre-reduction must be carried out while the temperature is kept low, making it impossible to sufficiently increase the reduction efficiency. Therefore, the present inventors conducted various studies to establish measures to prevent sticking. As a result, sticking was prevented by adhering carbonaceous material to the surface of powdered iron ore prior to fluidized bed pre-reduction, and it was found that sticking could be prevented under high temperature conditions. 1) Coal is the most economical raw material for carbonaceous materials, and a coal carbonization fluidized bed facility is attached to the direct reduction facility to reduce the carbon produced by carbonization. We have confirmed that carbonaceous material can be uniformly adhered to the surface of iron ore by bringing the contained gas or liquid component into contact with powdered iron ore in a reducing atmosphere, and have filed a separate patent application.

一方、上記の様にして予備還元された鉄鉱石(以下半還
元鉄鉱石ということがある)は、ブリケット等として製
品化する場合を除くと一般に溶融還元炉に導入され、こ
こで最終的な還元及び脈石成分との分離が行なわれる。
On the other hand, iron ore that has been pre-reduced as described above (hereinafter sometimes referred to as semi-reduced iron ore) is generally introduced into a smelting reduction furnace, where it undergoes final reduction, unless it is to be commercialized as briquettes, etc. and separation from gangue components.

即ち該溶融還元炉では、酸素(又は空気)と炭材の吹込
みによって生成するC O(2C+ 02 = 2 C
O) ニよる還元が行なわれると共に、脈石成分の分離
と精錬の為に還元鉄の溶融を行なう必要があり、当該溶
融の為の必要熱量及び流動層予備還元炉等を含めた付帯
設備における必要熱量を確保する為、還元性発生ガスの
鉄浴上における2次燃焼(ポストコンパッション)が行
なわれる。こうして得られる高温の燃焼排ガスは温度及
び成分を調整し予備還元に好適な温度及び組成にしてか
ら前記流動層還元炉へ送られる。
That is, in the smelting reduction furnace, CO (2C + 02 = 2C) generated by blowing oxygen (or air) and carbonaceous material
O) At the same time, it is necessary to melt the reduced iron for separation and refining of gangue components, and the amount of heat required for the melting and associated equipment including a fluidized bed pre-reduction furnace etc. In order to secure the necessary amount of heat, secondary combustion (post-compression) of the reducing generated gas is performed on an iron bath. The high-temperature combustion exhaust gas obtained in this way is sent to the fluidized bed reduction furnace after adjusting its temperature and composition to a temperature and composition suitable for preliminary reduction.

ところで上記一連の還元鉄製造プロセスにおける操業効
率、殊に溶融還元炉における操業効率を高める為には、
流動層予備還元炉における予備還元効率を高めて溶融還
元炉における還元負荷を減らすと共に、ポストコンパッ
ションの燃焼効率を高めることが望まれる。ところがポ
ストコンパッションの燃焼効率を高めると発生ガス中の
酸化性ガス(Co、やH2O)量が増大し、改質設備に
おける改質負荷が増大するだけでなく、改質が不十分な
場合には流動層予備還元炉における予備還元効率が低下
してくる。しかも該発生ガス中の酸化性ガス濃度が高く
なると、粉粒状鉄鉱石の表面に付着した炭材がソリュー
ションロス反応(C+Co2−2CO)や水性ガス反応
(C+H2O−C0+H2)によって消費され、スティ
ッキング防止効果が有効に発揮されなくなる。
By the way, in order to increase the operational efficiency in the above-mentioned series of reduced iron production processes, especially in the smelting reduction furnace,
It is desired to increase the pre-reduction efficiency in the fluidized bed pre-reduction furnace to reduce the reduction load in the smelting reduction furnace and to increase the post-compression combustion efficiency. However, increasing the combustion efficiency of post-compassion increases the amount of oxidizing gases (Co, H2O) in the generated gas, which not only increases the reforming load in the reforming equipment, but also causes problems when reforming is insufficient. In this case, the pre-reduction efficiency in the fluidized bed pre-reduction furnace decreases. Moreover, when the concentration of oxidizing gas in the generated gas increases, the carbonaceous material adhering to the surface of the powdery iron ore is consumed by solution loss reaction (C+Co2-2CO) and water gas reaction (C+H2O-C0+H2), resulting in a sticking prevention effect. will no longer be effective.

上記の傾向からも明らかな様に、流動層予備還元炉内に
おけるスティッキング現象の発生を防止し、且つ溶融還
元炉における熱の過不足を生ずることなく操業を円滑に
遂行していく為には、流動層予備還元炉内での予備還元
効率及び溶融還元炉内での2次燃焼効率を、相互の関連
を考慮しつつ適正に調節する必要があるものと考えられ
るが、現在のところこうした観点に立った研究は十分に
なされておらず、結果的に見て満足の行く操業効率が得
られているとは言えない。
As is clear from the above trends, in order to prevent the occurrence of the sticking phenomenon in the fluidized bed pre-reduction reactor and to ensure smooth operation without causing excess or deficiency of heat in the smelting reduction reactor, it is necessary to It is thought that it is necessary to appropriately adjust the pre-reduction efficiency in the fluidized bed pre-reduction furnace and the secondary combustion efficiency in the smelting reduction furnace, taking into consideration their mutual relationship. Sufficient research has not been conducted, and as a result, it cannot be said that satisfactory operational efficiency has been achieved.

本発明はこうした事情に着目してなされたものであって
、その目的は、流ih層予備還元炉における予備還元効
率及び溶融還元炉における2次燃焼効率を相互の関連を
考慮しつつ適正に制御し、スティッキングを生ずること
なく且つ操業に必要な熱量に過不足を生ずることなく、
優れた操業効率を安定的に得ることのできる溶融還元鉄
の製造方法を提供しようとするものである。
The present invention has been made with attention to these circumstances, and its purpose is to appropriately control the pre-reduction efficiency in the fluidized bed pre-reduction furnace and the secondary combustion efficiency in the smelting-reduction furnace while considering their mutual relationship. without causing sticking and without causing excess or deficiency in the amount of heat required for operation.
The present invention aims to provide a method for producing molten reduced iron that can stably obtain excellent operational efficiency.

[問題点を解決する為の手段] 本発明に係る方法の構成は、炭素の付着された粉粒状鉄
鉱石を流動層方式で予備還元した後、溶融還元炉で溶融
還元すると共に、溶融還元炉で発生するガスを鉄浴上で
2次燃焼させ、高温の発生ガスを予備還元炉へ供給する
溶融還元鉄の製造方法において、予備還元工程における
鉄鉱石の予備還元率を75〜95%に制御すると共に、
溶融還元炉における上記2次燃焼効率を40%以下に制
御するところに要旨を有するものである。
[Means for Solving the Problems] The structure of the method according to the present invention is that after pre-reducing powdery iron ore to which carbon is attached in a fluidized bed method, it is melted and reduced in a smelting reduction furnace. A method for producing molten reduced iron in which the gas generated in the process is secondary-combusted on an iron bath and the high-temperature generated gas is supplied to a preliminary reduction furnace.The preliminary reduction rate of iron ore in the preliminary reduction process is controlled to 75 to 95%. At the same time,
The gist of this method is to control the secondary combustion efficiency in the smelting reduction furnace to 40% or less.

[作用] 第1図は本発明を実施する際の基本的なフロー図を示す
ものであり、粉粒状の鉄鉱石(粒鉱)を予熱器1で予熱
した後流動層式炭素被覆塔2へ送り、該被覆塔2におい
て、図示しない石炭乾留塔から供給されるタール等と接
触させることにより、粒鉱の表面に炭素を被覆する。そ
して炭素の被覆された粒鉱は流動層式予備還元炉3へ送
って予備還元を行なりた後、溶融還元炉4へ送る。溶融
還元炉4では、別途供給される炭材と酸素の反応によっ
て生ずるCOガスによって最終還元を行なうと共に、生
石灰等の吹込みによって脱燐処理等を行ない、下層部か
ら溶鉄を抜き出すと共に上層部からはスラグを排出する
。そして溶融還元炉4の鉄浴上には別途酸素を吹込み、
該還元炉4で生成する還元性ガスを2次燃焼させて熱エ
ネルギーを発生せしめ、前記還元の為の炭材−酸素の反
応熱を勘案することにより当該処理系の必要熱量を確保
する。溶融還元炉4で生成する高温の排ガスは、後述す
るリサイクルガスと混合することにより適正な温度まで
降温させた後予備還元炉3へ送り、更に炭素被覆浴2を
通した後冷却器5で冷却し、一部はリサイクルガスとし
てコンプレッサー6へ送り、残部は還元性の余剰ガスと
して系外へ抜き出す。コンプレッサー6で加圧されたリ
サイクルガスは、脱炭酸器7で炭酸ガスを除去し還元ポ
テンシャルを高めた後、溶融還元炉4からの高温排ガス
に適量混合して予備還元炉3へ送る。
[Operation] Fig. 1 shows a basic flowchart when carrying out the present invention, in which powdery iron ore (grain ore) is preheated in a preheater 1 and then transferred to a fluidized bed carbon coating tower 2. In the coating tower 2, the surface of the grain ore is coated with carbon by bringing it into contact with tar or the like supplied from a coal carbonization tower (not shown). The carbon-coated grain ore is sent to a fluidized bed pre-reduction furnace 3 for preliminary reduction, and then sent to a smelting reduction furnace 4. In the smelting reduction furnace 4, final reduction is carried out using CO gas produced by the reaction of carbonaceous material and oxygen, which are supplied separately, and dephosphorization is carried out by blowing quicklime etc., and molten iron is extracted from the lower layer and removed from the upper layer. discharges slag. Then, oxygen is separately blown onto the iron bath of the melting reduction furnace 4,
The reducing gas produced in the reduction furnace 4 is subjected to secondary combustion to generate thermal energy, and the necessary amount of heat for the treatment system is ensured by taking into account the reaction heat of the carbonaceous material and oxygen for the reduction. The high-temperature exhaust gas generated in the melting reduction furnace 4 is cooled down to an appropriate temperature by mixing with recycled gas, which will be described later, and then sent to the preliminary reduction furnace 3, and then passed through the carbon coating bath 2 and then cooled in the cooler 5. A part of the gas is sent to the compressor 6 as a recycled gas, and the rest is extracted from the system as a reducing surplus gas. The recycled gas pressurized by the compressor 6 removes carbon dioxide gas in the decarbonator 7 to increase its reduction potential, and then is mixed with an appropriate amount of high-temperature exhaust gas from the smelting reduction furnace 4 and sent to the preliminary reduction furnace 3.

こうした一連の溶融還元鉄製造工程を効率良く遂行して
いく為には、前述の様な理由から予備還元炉3における
予備還元効率と溶融還元炉4における2次燃焼効率を、
相互の関連を考慮しつつ適正にコントロールしなければ
ならない。
In order to carry out this series of molten reduced iron production processes efficiently, for the reasons mentioned above, the preliminary reduction efficiency in the preliminary reduction furnace 3 and the secondary combustion efficiency in the smelting reduction furnace 4 must be
They must be controlled appropriately while taking into account their mutual relationships.

こうした観点に立って色々研究を行なった結果、予備還
元炉3における予備還元率は75〜95%に、また溶融
還元炉4における2次燃焼率を40%以下に抑えてやれ
ば、上記一連の操業を無駄なくスムーズに遂行し得るこ
とが分かった。
As a result of conducting various studies from this perspective, we found that if the preliminary reduction rate in the preliminary reduction furnace 3 is kept at 75-95% and the secondary combustion rate in the smelting reduction furnace 4 is suppressed to 40% or less, the above series of results can be achieved. It has been found that operations can be carried out smoothly and without waste.

以下、予備還元率及び2次燃焼率を定めた理由を詳細に
説明する。
The reasons for determining the preliminary reduction rate and secondary combustion rate will be explained in detail below.

まず予備還元率が75%未満では、溶融還元炉4におけ
る還元負荷量が増大するばかりでなく、溶融還元炉4か
ら予備還元炉3へ導入される排ガス中の酸化性ガス(C
O2+H20)濃度が高く(7%以上)なり、予備還元
炉3内で、前述の如きソリューションロス反応や水性ガ
ス反応によるガス化消費炭素量が増大し、スティッキン
グ現象が発生し易くなり、安定な操業状態が得られなく
なる。
First, if the preliminary reduction rate is less than 75%, not only will the reduction load in the smelting reduction furnace 4 increase, but also the oxidizing gas (C
O2 + H20) concentration becomes high (7% or more), and the amount of carbon consumed by gasification due to the solution loss reaction and water gas reaction increases in the pre-reduction furnace 3, making it easier for the sticking phenomenon to occur, resulting in unstable operation. state is no longer available.

一方、予備還元率を95%以上に高める為には、予備還
元炉3内における粒鉱の滞留時間を極端に長くしなけれ
ばならず、生産性が著しく低下するばかりでなく、長大
な予備還元炉を使用しなければならなくなるので経済的
にも好ましくない。
On the other hand, in order to increase the preliminary reduction rate to 95% or more, it is necessary to extremely lengthen the residence time of the grain ore in the preliminary reduction furnace 3, which not only significantly reduces productivity but also requires a long preliminary reduction process. It is also economically unfavorable because a furnace must be used.

また2次燃焼率が40%を超えると、溶融還元炉4内の
温度が高くなりすぎて内張り耐火物の劣化が著しくなる
ばかりでなく、排ガス温度も非常に高くなる為ガス穆送
配管の熱劣化も著しくなり、更には排ガス中の酸化性ガ
ス(C02+H20)濃度が高くなり過ぎて、予備還元
炉3内でスティッキング現象を生じ易くなり、加えてリ
サイクルガス中の還元性ガスの絶対量が不足気味となっ
て所定の予備還元率を確保することが困難となり、連続
操業自体に破綻が生じてくる。
In addition, if the secondary combustion rate exceeds 40%, the temperature inside the smelting reduction furnace 4 will become too high and the deterioration of the lining refractory will become significant, and the exhaust gas temperature will also become very high, causing the heat in the gas transmission piping to become too high. Deterioration becomes significant, and furthermore, the concentration of oxidizing gas (C02 + H20) in the exhaust gas becomes too high, making it easy to cause a sticking phenomenon in the preliminary reduction furnace 3, and in addition, the absolute amount of reducing gas in the recycled gas is insufficient. This will make it difficult to secure a predetermined preliminary return rate, and the continuous operation itself will fail.

ちなみに第2図は、第1図に示した溶融還元鉄の製造プ
ロセスにおいて、各設備毎の物質収支及び熱収支を算出
するサブプログラムを作成し、それらを総合したトータ
ルシステムの計算機プログラムに基づいて、予備還元率
と2次燃焼率を種々組合せた場合の適正な条件をグラフ
化して示したものである。
By the way, Figure 2 is based on a total system computer program that combines subprograms that calculate the material balance and heat balance for each piece of equipment in the manufacturing process of molten reduced iron shown in Figure 1. , is a graph showing appropriate conditions for various combinations of preliminary reduction rate and secondary combustion rate.

第2図において、直線a −bはリサイクルされる還元
性ガスの量が実質的に零となる限界を示し、これより上
方側の条件では実質的なリサイクルガス量が;となる為
所定の予備還元率を得ることができず、連続操業が不可
能となる。
In Figure 2, the straight line a-b indicates the limit at which the amount of recycled reducing gas becomes essentially zero, and under conditions above this, the actual amount of recycled gas becomes; Continuous operation becomes impossible because the reduction rate cannot be obtained.

また直線c −dは、余剰ガスの燃焼熱により、■粒鉱
の予熱、■リサイクルガスからの002除去に必要な水
蒸気の生成、■溶融還元炉へ吹込む酸素を製造する為の
電気エネルギー、■リサイクルガスの昇圧に要する動力
、更には■溶融還元鉄の鋳造、圧延等、本設備以後の処
理工程に必要とされるエネルギーの総和(I Gcal
)に対応するエネルギーを供給することのできる限界を
示しており、これより下方側の条件では、直接製鉄から
鋳造・圧延といった後処理を含めた一貫工程として必要
な量を超える還元ガスが余剰ガスとして生成することと
なり、本設備以外への還元性ガス供給体制を検討する必
要が生じてくる。従って本設備内で還元性ガス(熱源と
しての作用を含む)の需給バランスを保つうえでは、上
記直線c −d上で操業を行なうのが最善であるが、余
剰の還元性ガスを他の用途へ利用する体制が確立されて
おれば、直線c −dよりも下の領域で操業を行なうこ
とも可能である。
In addition, the straight line c-d shows that the combustion heat of the surplus gas is used to: 1. preheat the grain ore, 2. generate the steam necessary for removing 002 from the recycled gas, and 2. generate electrical energy to produce oxygen to be blown into the smelting reduction furnace. ■The power required to boost the pressure of recycled gas, and also ■The total energy required for processing steps after this facility, such as casting and rolling of molten reduced iron (I Gcal)
) indicates the limit at which energy can be supplied corresponding to As a result, it will be necessary to consider a system for supplying reducing gas to areas other than this facility. Therefore, in order to maintain the supply and demand balance of reducing gas (including its function as a heat source) within this facility, it is best to operate along the above straight line c - d, but surplus reducing gas can be used for other purposes. It is also possible to operate in the area below the straight line c-d if a system has been established to utilize it.

直線e −fは、予備還元炉3への入側ガス中の酸化性
ガス(CO2+H20)濃度が7%(スティッキングを
防止し得る上限)となる限界を示しており、これより左
側の領域では酸化性ガス成分濃度が7%以上となり、予
備還元炉3内で粒鉱表面の炭素が酸化・消費され、ステ
ィッキングを生じ易くなる。
The straight line e-f indicates the limit at which the oxidizing gas (CO2+H20) concentration in the gas entering the preliminary reduction furnace 3 is 7% (the upper limit that can prevent sticking), and in the region to the left of this, oxidation When the concentration of toxic gas components reaches 7% or more, carbon on the surface of the grain ore is oxidized and consumed in the pre-reduction furnace 3, making it easy to cause sticking.

また直線g−hは、予備還元炉内における予備還元率が
95%となる条件を示しており、この線よりも右側の領
域で操業することは、前述の様な理由から設備的にもま
た生産性からいっても極めて不利である。
In addition, the straight line g-h indicates the conditions under which the pre-reduction rate in the pre-reduction furnace is 95%, and operating in the area to the right of this line is difficult from a facility standpoint for the reasons mentioned above. This is extremely disadvantageous in terms of productivity.

尚上記第2図は、前述の如くトータルシステムの計算機
プログラムを用い、流動層還元工程における還元率と溶
融還元炉における2次燃焼率とを種々組合せた場合のケ
ーススタディ−を実施し、その結果得られた下記第3〜
5図の結果を総合して求めたものである。
The above Figure 2 shows the results of a case study in which various combinations of the reduction rate in the fluidized bed reduction process and the secondary combustion rate in the smelting reduction furnace were carried out using the total system computer program as described above. The following 3rd ~
This was determined by combining the results shown in Figure 5.

即ち第3図は、2次燃焼率を色々変えた場合における流
allll光率(%)と余剰ガス量(N m3/THM
)(溶鉄1トン当たりの流量)の関係を示しており、余
剰ガス量が零となる還元率と2次燃焼率の値(i、j)
より第2図の直線a −bが求められる。
In other words, Figure 3 shows the flow rate (%) and surplus gas amount (N m3/THM) when the secondary combustion rate is varied.
) (flow rate per ton of molten iron), and the values of reduction rate and secondary combustion rate (i, j) at which the amount of surplus gas becomes zero
From this, the straight line a-b in FIG. 2 can be found.

第4図は、2次燃焼率を変えた場合における流動層還元
率と余剰熱量(Gcal/T HM )の関係を示した
ものであり、余剰熱量が1 (Gcal/THM)(図
中の鎖線で示すライン)となる還元率と2次燃焼率(k
、1)の値より、第2図の直線c −dが求められる。
Figure 4 shows the relationship between the fluidized bed reduction rate and surplus heat (Gcal/THM) when the secondary combustion rate is changed. The reduction rate and secondary combustion rate (k
, 1), the straight line c-d in FIG. 2 can be found.

また第5図は、同じく2次燃焼率を変えた場合における
流動N還元率(%)と流動層還元炉入口ガス中の(Co
2+H20)濃度(%)の関係を示しており、該(CO
2+H20)濃度が7%(図中の鎖線:流動層還元炉内
におけるスティッキング発生を防止し得る限界濃度)と
なる還元率と2次燃焼率の値(図中のm、n、p+ q
)より、第2図の直線e −fが求められる。
Figure 5 also shows the fluidized N reduction rate (%) and (Co
2+H20) concentration (%), and the (CO
2+H20) concentration is 7% (dashed line in the figure: limit concentration that can prevent the occurrence of sticking in the fluidized bed reduction furnace).
), the straight line e-f in FIG. 2 can be found.

ちなみに第6図は、H2100%の還元ガスを用い、4
重量%の炭素で表面を被覆した鉄鉱石を850℃で流動
層還元を行なうという条件のもとでガス圧力を0〜7に
g/cm’の範囲で変えた場合における還元率と還元時
間の関係を示したグラフであり、流動層還元により還元
率を95%以上に高めることは非能率的であることが分
かる。
By the way, Figure 6 shows 4
Reduction rate and reduction time when the gas pressure is varied in the range of 0 to 7 g/cm' under the condition that iron ore whose surface is coated with % by weight of carbon is subjected to fluidized bed reduction at 850℃. This is a graph showing the relationship, and it can be seen that increasing the reduction rate to 95% or more by fluidized bed reduction is inefficient.

上記の結果からも明らかな様に、本発明におけるより好
ましい操業範囲は第2図に示した1jfhで囲まれる範
囲であり、更に本設備内でエネルギー収支を保つという
要件を付加したときの好ましい操業範囲は1jklで囲
まれる範囲ということになる。
As is clear from the above results, the more preferred operating range in the present invention is the range surrounded by 1jfh shown in Figure 2, and the preferred operating range when the requirement of maintaining energy balance within this facility is added. The range is the range surrounded by 1jkl.

尚第1図に示す例では、粒鉱に炭素を付着させる方法と
して、流動層予備還元炉3の前に流動層式の炭素被覆浴
2を設け、還元性雰囲気の下に流動状態で炭材と接触さ
せる方法を採用しており、この方法であれば粒鉱のすべ
てに万遍なく且つ均一に炭材を付着させることができる
ので、流動層予備還元時のスティッキングを効果的に阻
止することができる。粒鉱表面に付着させる炭材の種類
は特に限定されず、石炭系或は石油系のタール、ピッチ
、コークス等が挙げられるが、最も有利なのは安価で豊
富に存在する石炭系の炭材である。
In the example shown in FIG. 1, as a method for attaching carbon to grain ore, a fluidized bed type carbon coating bath 2 is provided in front of the fluidized bed pre-reduction furnace 3, and the carbon material is coated in a fluidized state under a reducing atmosphere. This method allows the carbonaceous material to adhere evenly and evenly to all of the grain ores, effectively preventing sticking during fluidized bed pre-reduction. I can do it. The type of carbonaceous material to be attached to the surface of the grain ore is not particularly limited, and examples include coal-based or petroleum-based tar, pitch, coke, etc., but the most advantageous is coal-based carbonaceous material, which is cheap and abundant. .

石炭を炭材とする場合の鉄鉱石への付着法としては、■
粉粒状の石炭を粉粒状鉄鉱石と共に流動状態で混合し3
00〜600℃程度に加熱する方法(この温度で粉炭は
粘結性を示す様になり鉄鉱石表面へ付着する)、或は■
石炭ガス化装置を別途設け、石炭を熱分解してCOの豊
富なガスを生成せしめ、これを炭素被覆基2で粉粒状鉄
鉱石と混合処理して鉄鉱石表面にCを析出させる(2C
O−CO2+C)方法、■石炭乾留装置を別途設け、石
炭を乾留してタール等を発生せしめ、これを炭素被覆基
2で粉粒鉄鉱石表面に付着させる方法、■同炭素被覆塔
中に、加温等の手段によりあらかじめ液化したタール、
ピッチ、溶剤精製炭等の炭材を吹込んで粉状鉄鉱石表面
に炭素を付着させる方法、等が代表的な方法として挙げ
られる。
When coal is used as a carbonaceous material, the method of adhesion to iron ore is ■
Mixing powdered coal with powdered iron ore in a fluid state3
A method of heating to about 00 to 600 degrees Celsius (at this temperature, powdered coal becomes caking and adheres to the iron ore surface), or
A separate coal gasifier is installed to thermally decompose the coal to generate CO-rich gas, which is mixed with powdered iron ore using the carbon coating base 2 to precipitate C on the surface of the iron ore (2C).
O-CO2+C) method, ■ A method in which a coal carbonization device is separately provided, coal is carbonized to generate tar, etc., and this is attached to the surface of powdered iron ore with a carbon coating base 2, ■ In the same carbon coating column, Tar that has been liquefied in advance by heating or other means,
Typical methods include a method in which carbon is deposited on the surface of powdered iron ore by injecting a carbonaceous material such as pitch or solvent-refined coal.

鉄鉱石表面への炭材の付着量は特に限定されないが、実
験により確認したところでは鉄鉱石に対し2〜10重量
%、特に好ましくは3.5〜5!ifc%の炭材を付着
させることによって、流動層還元時のスティッキングを
より確実に防止することが出来る。
The amount of carbonaceous material attached to the surface of the iron ore is not particularly limited, but it has been confirmed through experiments that it is 2 to 10% by weight, particularly preferably 3.5 to 5% by weight, based on the iron ore. By attaching carbonaceous material of ifc%, sticking during fluidized bed reduction can be more reliably prevented.

上記の様に本発明により予備還元炉3における還元率及
び溶融還元炉4における2次燃焼率を適正にコントロー
ルすることによって予備還元から溶融還元を含めた一連
の工程を無駄なく円滑に遂行することができるが、更に
溶融還元炉4の負荷を少なくして処理効率を一段と高め
る為には、溶融還元炉4への炭素被覆粒鉱及び炭材の吹
込みをホットチャージ方式とするのが有利であり、殊に
前記■として示した石炭乾留装置を併設してタール等を
粒鉱表面付着用炭材として使用する方式を採用した場合
、当該乾留工程で生成するチャーを溶融還元炉4への供
給炭材として利用することにより、上記ホットチャージ
方式の利点を一層有効に活用することができる。
As described above, according to the present invention, by appropriately controlling the reduction rate in the preliminary reduction furnace 3 and the secondary combustion rate in the smelting reduction furnace 4, a series of processes from preliminary reduction to smelting reduction can be carried out smoothly without waste. However, in order to further reduce the load on the smelting reduction furnace 4 and further increase processing efficiency, it is advantageous to blow the carbon-coated granules and carbonaceous material into the smelting reduction furnace 4 using a hot charge method. In particular, if a method is adopted in which a coal carbonization device shown in (■) above is installed and tar or the like is used as a carbon material for adhering to the surface of granules, the char produced in the carbonization process is supplied to the smelting reduction furnace 4. By using it as a carbon material, the advantages of the hot charging method described above can be utilized more effectively.

即ち通常の石炭をホットチャージ方式で溶融還元炉4へ
吹込もうとした場合、キャリヤガス温度を高め過ぎると
急激なガス発生により配管内が昇圧したり或は石炭がコ
ーキングを起こす恐れがあるので、吹込み温度を極端に
高めることができない。しかし乾留により揮発分の除去
されたチャーは半コークス化しており、相当の高温にさ
らした場合でも熱分解による雰囲気の昇圧或は粒子同士
の付着・粗粒化、ひいてはコーキングといった問題を一
切生じることがないので、溶融還元炉4内へのホットチ
ャージを支障なく行なうことができる。この場合、石炭
乾留設備から排出されるチャーは相当の高温(約550
℃程度)状態にあるので、これをそのままの?Mr度で
ホットチャージすることにより、チャーの有する顕熱を
有効に活用することができる。また予備還元を終えた粉
w、(800〜1100℃程度)についても、この高温
を保ったままで溶融還元炉4ヘホツトチヤージすること
により、顕熱の無駄をなくすことができる。但し予備還
元鉱粉については、ホットチャージ温度が1100℃を
超えると還元鉄の一部が粘着性を帯びて相互に付着・ブ
ロック化し、配管内で付着堆積して送給不能になる恐れ
があるので、1100℃以下に抑えるべきである。
That is, when trying to blow ordinary coal into the smelting reduction furnace 4 using the hot charge method, if the carrier gas temperature is raised too high, there is a risk that the pressure inside the pipe will increase due to rapid gas generation or that the coal will cause coking. It is not possible to raise the blowing temperature extremely. However, the char from which the volatile matter has been removed by carbonization is semi-coked, and even when exposed to considerably high temperatures, problems such as increased pressure in the atmosphere due to thermal decomposition, adhesion of particles to each other, coarsening, and even coking do not occur. Therefore, hot charging into the melting reduction furnace 4 can be performed without any problem. In this case, the char discharged from the coal carbonization equipment has a considerably high temperature (approximately 550
℃), so leave this as it is? By hot charging at Mr degree, the sensible heat of the char can be effectively utilized. Further, by hot-charging the powder w (approximately 800 to 1100° C.) that has been pre-reduced to the melting reduction furnace 4 while maintaining this high temperature, it is possible to eliminate waste of sensible heat. However, with regard to pre-reduced ore powder, if the hot charge temperature exceeds 1100°C, some of the reduced iron may become sticky and stick to each other, forming blocks, and there is a risk that they will accumulate in the pipes and become impossible to feed. Therefore, the temperature should be kept below 1100°C.

この様にして溶融還元炉4への吹込み原料をホットチャ
ージする方式を採用すれば、該溶融還元炉4における消
費熱量が低減し、その低減分だけ炭材の使用量を少なく
することができる。
By adopting a method of hot charging the raw material blown into the smelting reduction furnace 4 in this way, the amount of heat consumed in the smelting reduction furnace 4 is reduced, and the amount of carbon material used can be reduced by the amount of the reduction. .

ちなみに第7図は、予備還元率が86%である予備還元
粒鉱を溶融還元する場合において、2次燃焼率を0〜6
0%に変えた場合における、操業に必要な石炭量と原料
(予備還元粒鉱及びチャー)吹込み温度の関係を調べた
結果を示したものであり、溶融還元炉への原料吹込み温
度を高めるにつれて必要石炭量は大幅に減少してくる。
Incidentally, Figure 7 shows that when pre-reduced grain ore with a pre-reduction rate of 86% is melt-reduced, the secondary combustion rate is varied from 0 to 6.
This shows the results of investigating the relationship between the amount of coal required for operation and the raw material (pre-reduced grain ore and char) injection temperature when the temperature is changed to 0%. As the amount of coal increases, the amount of coal required will decrease significantly.

図中の破線C−Dは予備還元率86%の半還元鉄鉱石を
完全還元するのに必要な石炭量、破線E−Fは本設備及
び付帯設備の全必要エネルギー(I Gcal/THM
)と均衡を保つのに必要な石炭量、鎖線G−Hは採用可
能な吹込み温度の上限温度を夫々示す。この図において
上記の目的を有効に果たすことのできる条件は、AB’
  D″ C’ E’ で囲まれる領域に入る条件であ
り、本設備及び付帯設備の全必要エネルギーと均衡を保
ちつつ操業を行なう為の条件は、EF’ D’ C’ 
 E’ で囲まれる領域に入る条件ということになる。
The dashed line C-D in the figure is the amount of coal required to completely reduce semi-reduced iron ore with a preliminary reduction rate of 86%, and the dashed line E-F is the total energy required for this facility and auxiliary equipment (I Gcal/THM
) and the amount of coal required to maintain equilibrium, and the chain line GH indicates the upper limit temperature of the blowing temperature that can be adopted, respectively. In this diagram, the conditions that can effectively achieve the above purpose are AB'
EF'D'C'
This is a condition that falls within the area surrounded by E'.

更にホットチャージによる石炭原単位低減の目的を有効
に生かす為には、上記の条件のうち原料吹込み温度を2
00℃以上、より好ましくは400℃以上に設定するの
がよい。
Furthermore, in order to effectively utilize the purpose of reducing the coal consumption rate by hot charging, it is necessary to set the raw material injection temperature to 2 of the above conditions.
It is preferable to set the temperature to 00°C or higher, more preferably 400°C or higher.

[実施例] 実施例1 第8図は本発明の実施例を示すフロー図であり、予備還
元率を86%、2次燃焼率を30%、粒鉱表面への炭素
被覆率を2.7%に夫々設定した場合における各部の物
質収支及び熱収支を示している。尚本例では炭材供給源
として粉炭を用い、石炭予熱器9で予熱した後石炭乾留
流動層8で乾留し、生成したタール分を粒鉱表面への被
覆用炭材として使用すると共に、生成したチャーは溶融
還元炉4への供給炭材として利用する方式を採用してい
る。
[Example] Example 1 Figure 8 is a flow diagram showing an example of the present invention, in which the preliminary reduction rate was 86%, the secondary combustion rate was 30%, and the carbon coverage rate on the surface of grain ore was 2.7. The material balance and heat balance of each part are shown when each part is set to %. In this example, powdered coal is used as the carbon material supply source, and after being preheated in a coal preheater 9, it is carbonized in a coal carbonization fluidized bed 8, and the generated tar is used as a carbon material for coating the surface of the granule ore. The resulting char is used as a carbon material to be supplied to the melting reduction furnace 4.

また下記第1表は、第8図に■〜@として示した各ライ
ンNo、における流量、温度及びガス組成を示したもの
である。
Further, Table 1 below shows the flow rate, temperature, and gas composition in each line No. shown as ■ to @ in FIG. 8.

第8図及び第1表からも明らかな様に本発明はトータル
システムとして有効に成立し得ることが分かる。
As is clear from FIG. 8 and Table 1, it can be seen that the present invention can be effectively implemented as a total system.

実施例2 上記第8図に示したフロー図に従い、予備還元率を86
%、2次燃焼率を20%に設定し、且つ溶融還元炉への
粉状原料の吹込み温度を30℃及び550℃に夫々設定
した場合における、溶融還元炉への必要石炭量及び同吹
込み酸素量並びに還元性ガスとして系外へ排出される余
剰エネルギーを比較したところ、下記第2表に示す結果
が得られた。
Example 2 According to the flowchart shown in Figure 8 above, the preliminary return rate was set to 86.
%, the secondary combustion rate is set to 20%, and the injection temperature of powdered raw material to the smelting reduction furnace is set at 30°C and 550°C, respectively. A comparison of the amount of oxygen included and the surplus energy discharged outside the system as reducing gas resulted in the results shown in Table 2 below.

第   2   表 第2表からも明らかな如く、本発明にホットチャージ法
を組合せることによって炭材及び酸素の使用量を大幅に
低減することができ、操業経費を著しく低減し得ること
がわかる。
Table 2 As is clear from Table 2, by combining the present invention with the hot charging method, it is possible to significantly reduce the amount of carbonaceous material and oxygen used, and it is possible to significantly reduce operating costs.

[発明の効果コ 本発明は以上の様に構成されており、予備還元炉におけ
る予備還元率及び溶融還元炉における2次燃焼率を適正
に制御することによって、スティッキング現象を生ずる
ことなくまた熱エネルギーの過不足を生ずることなく優
れた生産性のもとで安定した操業状態を維持することが
できる。しかもこの方法に加えて溶融還元炉への原料吹
込みにホットチャージ法を採用すれば炭材の使用量を著
しく低減することができ、操業経済性を一段と高めるこ
とができる。
[Effects of the Invention] The present invention is constructed as described above, and by appropriately controlling the preliminary reduction rate in the preliminary reduction furnace and the secondary combustion rate in the smelting reduction furnace, thermal energy can be reduced without causing a sticking phenomenon. It is possible to maintain stable operating conditions with excellent productivity without causing excess or deficiency. In addition to this method, if a hot charge method is adopted for injecting raw materials into the smelting reduction furnace, the amount of carbon material used can be significantly reduced, and the economical efficiency of operation can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す基本フロー図、第2図は
還元率と2次燃焼率の相互作用を示すグラフ、第3〜5
図は第2図の結論を導く為の根拠データを示すグラフ、
第6図は還元時間と還元率の関係を示すグラフ、第7図
は溶融還元炉への原料吹込み温度と必要石炭量の関係を
示すグラフ、第8図は実施例で得た物質収支と熱収支を
併記して示すフロー図である。 1・・・予熱器     2・・・流動層式炭素被覆浴
3・・・流動層予備還元炉 4・・・溶融還元炉
Figure 1 is a basic flow diagram showing an embodiment of the present invention, Figure 2 is a graph showing the interaction between reduction rate and secondary combustion rate, and Figures 3 to 5 are graphs showing the interaction between reduction rate and secondary combustion rate.
The figure is a graph showing the basis data for drawing the conclusion in Figure 2,
Figure 6 is a graph showing the relationship between reduction time and reduction rate, Figure 7 is a graph showing the relationship between raw material injection temperature into the smelting reduction furnace and the required amount of coal, and Figure 8 is the material balance obtained in the example. It is a flow diagram which also shows heat balance. 1... Preheater 2... Fluidized bed type carbon coating bath 3... Fluidized bed preliminary reduction furnace 4... Melting reduction furnace

Claims (2)

【特許請求の範囲】[Claims] (1)炭素の付着された粉粒状鉄鉱石を流動層方式で予
備還元した後、溶融還元炉で溶融還元すると共に、溶融
還元炉で発生するガスを鉄浴上で2次燃焼させ、高温の
発生ガスを予備還元炉へ供給する溶融還元鉄の製造方法
において、予備還元工程における鉄鉱石の予備還元率を
75〜95%に制御すると共に、溶融還元炉における上
記2次燃焼効率を40%以下に制御することを特徴とす
る溶融還元鉄の製造方法。
(1) After pre-reducing carbon-coated iron ore using a fluidized bed method, it is melted and reduced in a smelting reduction furnace, and the gas generated in the smelting reduction furnace is secondaryly combusted on an iron bath to generate a high-temperature In a method for producing molten reduced iron in which generated gas is supplied to a preliminary reduction furnace, the preliminary reduction rate of iron ore in the preliminary reduction step is controlled to 75 to 95%, and the secondary combustion efficiency in the smelting reduction furnace is controlled to be 40% or less. 1. A method for producing molten reduced iron, which is characterized by controlling:
(2)溶融還元炉内への原料供給をホットチャージ方式
とすることにより溶融還元炉への炭材供給量を低減する
特許請求の範囲第1項に記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the amount of carbon material supplied to the smelting reduction furnace is reduced by supplying raw materials into the smelting reduction furnace using a hot charge method.
JP7532586A 1986-03-31 1986-03-31 Manufacture of smelted and reduced iron Pending JPS62230924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7532586A JPS62230924A (en) 1986-03-31 1986-03-31 Manufacture of smelted and reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7532586A JPS62230924A (en) 1986-03-31 1986-03-31 Manufacture of smelted and reduced iron

Publications (1)

Publication Number Publication Date
JPS62230924A true JPS62230924A (en) 1987-10-09

Family

ID=13572999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7532586A Pending JPS62230924A (en) 1986-03-31 1986-03-31 Manufacture of smelted and reduced iron

Country Status (1)

Country Link
JP (1) JPS62230924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584760B1 (en) * 2001-12-26 2006-05-30 주식회사 포스코 Method of fine Ore Injection with Tar into Blast Furnace
US7160353B2 (en) 2002-01-24 2007-01-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for producing molten iron
CN104870657A (en) * 2012-12-27 2015-08-26 株式会社Posco Molten iron manufacturing apparatus and molten iron manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100584760B1 (en) * 2001-12-26 2006-05-30 주식회사 포스코 Method of fine Ore Injection with Tar into Blast Furnace
US7160353B2 (en) 2002-01-24 2007-01-09 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for producing molten iron
EP2218796A1 (en) * 2002-01-24 2010-08-18 Kabushiki Kaisha Kobe Seiko Sho Method for making molten iron
CN104870657A (en) * 2012-12-27 2015-08-26 株式会社Posco Molten iron manufacturing apparatus and molten iron manufacturing method
US10422582B2 (en) 2012-12-27 2019-09-24 Posco Molten iron manufacturing apparatus and molten iron manufacturing method

Similar Documents

Publication Publication Date Title
JP4267843B2 (en) Metal iron manufacturing method
KR20110040930A (en) Method and system for energy-optimized and carbon dioxide emission-optimized iron production
WO2010117008A1 (en) Method for producing metallic iron
JPH0360883B2 (en)
JPH10251720A (en) Method for refining iron
TWI338716B (en) Method and apparatus for manufacturing granular metallic iron
JPS6169910A (en) Fluidized bed reducing method of iron ore
KR100769794B1 (en) Process and plant for producing pig iron or liquid primary steel products in a blast furnace
JPH04505945A (en) Preheating and prereduction of metal oxides
JP2002509194A (en) Sustainable steelmaking process by effective direct reduction of iron oxide and solid waste
JPS62230924A (en) Manufacture of smelted and reduced iron
JPH079015B2 (en) Smelting reduction method for iron ore
US5810905A (en) Process for making pig iron
EP1718775B1 (en) Pre-treatment process for feed material for direct reduction process
JPH01252714A (en) Mixed agglomerating briquette for smelting reduction furnace and smelting reduction method for mixed agglomerating briquette
JP2004176170A (en) Method for producing molten iron
JPS5918452B2 (en) Method for producing molten metal from powdered ore
NZ551516A (en) A direct reduction process characterised by agglomeration of fine ore particles and increased retention time
JPS6362809A (en) Production of iron from fine particulate iron ore
JPS63213613A (en) Combining type direct iron making method
JPS62243706A (en) Method for circulating gas generated in melt reduction smelting
JPS62230912A (en) Vertical type fluidized reduction method
JPS62230923A (en) Manufacture of iron by smelting and reduction
JPS62230921A (en) Method for reducing iron ore in fluidized bed
CN116949236A (en) Method and system for producing steel by reducing non-blast furnace step by step