JPS58217615A - Prereducing oven in melt reducing apparatus - Google Patents

Prereducing oven in melt reducing apparatus

Info

Publication number
JPS58217615A
JPS58217615A JP9752482A JP9752482A JPS58217615A JP S58217615 A JPS58217615 A JP S58217615A JP 9752482 A JP9752482 A JP 9752482A JP 9752482 A JP9752482 A JP 9752482A JP S58217615 A JPS58217615 A JP S58217615A
Authority
JP
Japan
Prior art keywords
gas
oven
furnace
reduction furnace
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9752482A
Other languages
Japanese (ja)
Inventor
Hisao Hamada
浜田 尚夫
Hisamitsu Kosakabashi
小坂橋 寿光
Toshihiro Inatani
稲谷 稔宏
Nobuo Tsuchitani
槌谷 暢男
Eiji Katayama
英司 片山
Shiko Takada
高田 至康
Mitsuo Kadoto
角戸 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9752482A priority Critical patent/JPS58217615A/en
Publication of JPS58217615A publication Critical patent/JPS58217615A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To hold a fluidized bed under an excellent condition for improving the ratio of prereduction, by forming an annular slit comprising inner and outer cylinders at the bottom of the titled oven, and providing a dispersing plate at the upper surface of the inner cylinder to sufficiently disperse supplied reducing gas. CONSTITUTION:At the bottom of the prereducing oven 1, an annular slit 6 comprising a double cylindrical tube constituted by inner and outer cylinders 10, 11 having bottom plates 12, 13 is formed and opened to the interior of the oven 1. A gas-dispersing plate 7 is provided at the upper surface of the inner cylinder 10 to supply low-temp. reducing gas to the inner space through a supply opening 8. On the other hand, high-temp. reducing gas is supplied through a supply opening 5 provided at the outer cylinder 11 to the interior of the annular slit 6. Inside the prereducing oven 1, the fluidized bed of a powdery ore is formed by the mixture of the high and low-temp. reducing gases. By this gas-supply mechanism, the introduced gases can be uniformly dispersed, and the fluidization of particles at the central part of the oven 1 can be satisfactorily performed.

Description

【発明の詳細な説明】 本発明は、金属酸化物を含有する粉粒状鉱石を予備還元
した後、溶融還元して溶融金属を製造する方法に使用す
る。予備還元炉と溶融還元炉とを直列に結合して成る溶
融還元装置における該予備還元炉に関するものであり、
好ましくはフェロクロム製造のための該溶融還元装置に
おける予備還元炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used in a method for producing a molten metal by pre-reducing a powdery ore containing a metal oxide and then melting and reducing the ore. It relates to a preliminary reduction furnace in a smelting reduction apparatus comprising a preliminary reduction furnace and a smelting reduction furnace connected in series,
Preferably, the present invention relates to a preliminary reduction furnace in the smelting reduction apparatus for producing ferrochrome.

近年、金属酸化物を含有する鉱石の資源は低品位化、粉
鉱化の傾向にある。鉱石の製錬によるフェロアロイの製
造は通常電気炉によっているが、電力原単位は数千KW
H/ tにも達し、極めてコスト高となる。
In recent years, ore resources containing metal oxides have tended to be of lower grade and become finer minerals. The production of ferroalloy by smelting ore is usually done using an electric furnace, but the electric power consumption is several thousand kilowatts.
H/t, resulting in extremely high costs.

最近は電力によらないフェロクロムその他のフェロアロ
イ製造技術としての溶融還元法が注目されている。本発
明者らはさきに予備還元炉と溶融還元炉とを直列に結合
した装置を用い、粉粒状鉱石から溶融金属を製造する方
法を提案したが、その方法は各種鉱石の製錬に応用可能
である。
Recently, the smelting reduction method has been attracting attention as a technology for producing ferrochrome and other ferroalloys that does not rely on electric power. The present inventors previously proposed a method for producing molten metal from powdery ore using a device in which a preliminary reduction furnace and a smelting reduction furnace were connected in series, and this method can be applied to the smelting of various ores. It is.

しかして、その方法では、金属酸化物を含有する鉱石の
予備還元に必要な還元剤及び熱の供給源として溶融還元
炉の高温の排ガスを利用する。予備還元炉は、粉粒状磁
石を塊成化することなく直接使用するので流動層形式で
ある。流動層での良好な流動化状態を得るには、導入ガ
スの分散が重要であることが知られて分り、溶融還元法
のように高温の排ガスを予備還元炉へ導入する場合には
特に重要である。この導入ガスの分散に関し、予備還元
炉のガス分散化手段には次の機能が必要である。
Accordingly, the method utilizes the high temperature exhaust gas of the smelting reduction furnace as a source of the reducing agent and heat necessary for preliminary reduction of ore containing metal oxides. The pre-reduction furnace is of a fluidized bed type because it uses powdered magnets directly without agglomerating them. It is known that dispersion of the introduced gas is important in order to obtain a good fluidization state in the fluidized bed, and it is especially important when high temperature exhaust gas is introduced into the pre-reduction furnace as in the smelting reduction method. It is. Regarding the dispersion of the introduced gas, the gas dispersion means of the preliminary reduction furnace must have the following functions.

/)#融還元炉からの1000− /7θO℃の高温還
元ガスの導入が可能であること。
/) #It is possible to introduce high temperature reducing gas of 1000-/7θO°C from the fusion furnace.

コ)高温排ガス中の多量の微細ダストの影響を受けにく
いこと。
h) Not easily affected by large amounts of fine dust in high-temperature exhaust gas.

3)ガスの炉内均一分散が可能であること。3) Uniform distribution of gas within the furnace is possible.

ダ)当該ガスとその他の導入ガスとの混合が十分に行わ
れること。
D) The gas concerned and other introduced gases are sufficiently mixed.

従来の一般的流動層形式の炉での導入ガスの分散化手段
としては、第1図の(イ)、(ロ)、(ハ)の各戸につ
いて示すようなものがある。
As means for dispersing the introduced gas in a conventional general fluidized bed type furnace, there are methods as shown in FIG. 1 (a), (b), and (c).

縦型の流動層炉/ψ内に粉粒状の粒子が装入されていて
導入ガス供給口/7からの導入ガスによって粒子は流動
化され、流動層/Sが形成される。導入ガスを流動層l
S内に均一に分散させるのに、(イ)。
Powder-like particles are charged into a vertical fluidized bed furnace/ψ, and the particles are fluidized by the gas introduced from the inlet gas supply port/7 to form a fluidized bed/S. Introduced gas into fluidized bed
(a) to disperse it uniformly within S.

(0)の流動層F/4tに設けられているようにガス分
散板/6が設けられているのが普通である。ガス分散板
としては、多孔板、焼結板、バルブキャップ方式のもの
などがある。
A gas distribution plate/6 is usually provided as shown in the fluidized bed F/4t (0). Examples of gas distribution plates include perforated plates, sintered plates, and valve cap type plates.

しかし従来の(イ)、(ロ)、(ハ)の炉lダを溶融還
元装置の予備還元炉に用いると、次のような問題点があ
る。
However, when the conventional furnaces (a), (b), and (c) are used as a preliminary reduction furnace of a melting reduction apparatus, the following problems arise.

すなわち(イ)、(ロ)の炉はガス分散板を設けている
ので、導入ガスの均一な分散化はできるものの。
In other words, since the furnaces (a) and (b) are equipped with a gas distribution plate, the introduced gas can be uniformly dispersed.

1000℃以上の高温ガスによるガス分散板の材質及び
強度上の問題と微細ダストによる目詰まりの問題がある
。また(ハ)の炉はガス分散板を設けていないので、前
記(イ)、(ロ)における問題点は生じないが、導入ガ
スの均一分散化に問題がある。更に(イ)〜(ハ)各戸
ともに他の導入ガスとの混合は不十分である。
There are problems with the material and strength of the gas distribution plate due to high-temperature gas of 1000° C. or higher, and problems with clogging due to fine dust. Further, since the furnace (c) is not provided with a gas distribution plate, the problems in (a) and (b) above do not occur, but there is a problem in uniformly dispersing the introduced gas. Furthermore, in each of (a) to (c), the mixing with other introduced gases is insufficient.

そこで本発明の目的は、従来の溶融還元装置の予備還元
炉における前記問題点を解消して、還元ガスの分散化が
十分に行われて、流動層の形成が効果的に行われるよう
にした手段を備えた、好ましくはフェロクロム製造のた
めの予備還元炉を提   □供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems in the preliminary reduction furnace of the conventional smelting reduction apparatus, so that the reducing gas can be sufficiently dispersed and the fluidized bed can be formed effectively. An object of the present invention is to provide a pre-reduction furnace, preferably for the production of ferrochrome, equipped with means.

すなわち本発明の要旨は、次のとおりのものである。That is, the gist of the present invention is as follows.

予備還元炉と溶融還元炉とから成る溶融還元装置におい
て、内筒と外筒とにより該予備還元炉内に開口する環状
スリットを形成するように、内外二重の同軸円筒によっ
て該予備還元炉の炉底部を構成し、該内筒の上面にガス
分散板を設け、かつ核外筒に高温還元性ガスの供給口を
設けると共に、該内筒に低温還元性ガスの供給口を設け
たことを特徴とする、溶融還元装置における予備還元炉
In a smelting reduction apparatus consisting of a pre-reduction furnace and a smelting reduction furnace, the pre-reduction furnace is connected by an inner and outer double coaxial cylinder such that an inner cylinder and an outer cylinder form an annular slit opening into the pre-reduction furnace. A gas dispersion plate is provided on the upper surface of the inner cylinder, a high temperature reducing gas supply port is provided in the nuclear outer cylinder, and a low temperature reducing gas supply port is provided in the inner cylinder. A preliminary reduction furnace in a smelting reduction device.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明の予備還元炉の概略は、その縦断面において第一
図に示される。予備還元炉/は縦型であってほぼ中央の
側壁には、例えばクロム鉱石のような金属酸化物を含有
する粉粒状鉱石とフラックスなどの原料の供給口3.予
備還元された鉱石の排出口ダが設けられ、上部側壁には
、予備還元の際の排ガスの排出口9が設けられている。
The outline of the preliminary reduction furnace of the present invention is shown in FIG. 1 in its longitudinal section. The pre-reducing furnace/ is vertical and has a feed port for raw materials such as powder and granular ore containing metal oxides such as chromium ore and flux on the approximately central side wall.3. A discharge port 9 for pre-reduced ore is provided, and a discharge port 9 for exhaust gas during pre-reduction is provided on the upper side wall.

炉底部は、炉/内に開口する環状のスリット6を形成す
るように、それぞれ底板/2./3を有する内筒10及
び外筒/lから成る内外二重の同軸円筒に構成されてお
り、内筒10の上面は低温還元ガス導入用のガス分散板
7となっている。内筒10には、内筒空間に開口する低
温還元性ガスの供給口ざが設けられ、外筒l/には、環
状スリット6内に開口する高温還元性ガスの供給口Sが
設けられている。
The bottom of the furnace is formed by a bottom plate 2. The inner cylinder 10 has an inner cylinder 10 and an outer cylinder 10 having a diameter of 1/3 and an outer cylinder 10 having a diameter of 1/3. The inner cylinder 10 is provided with a low-temperature reducing gas supply port opening into the inner cylinder space, and the outer cylinder l/ is provided with a high-temperature reducing gas supply port S opening into the annular slit 6. There is.

予備還元炉/内には、炉底部に導入された高温還元ガス
と低温還元性ガスとの混合ガスによって粉粒状鉱石の流
動層λが形成される。
A fluidized bed λ of granular ore is formed in the preliminary reduction furnace/by a mixed gas of high temperature reducing gas and low temperature reducing gas introduced into the bottom of the furnace.

前記したように、鉱石、フラックスなどの原料は供給口
3より供給し、予備還元鉱石は排出口qより排出され、
溶融還元炉へ移送される。溶融還元炉からの高温の還元
性ガスは供給口Sから導入される。クロム鉱石の予、備
還元の場合には、コークス炉ガスなどのCH4含有ガス
を供給すると、予備還元反応速度が著しく促進されるの
で、コークス炉ガスのように溶融還元炉排ガスよりも低
温で供給するガスは、供給口tより導入し、ガス分散板
7を介して流動層λ内に導入する。予備還元炉排ガスは
排出口tから排出される。
As mentioned above, raw materials such as ore and flux are supplied from the supply port 3, and pre-reduced ore is discharged from the discharge port q.
Transferred to a melting reduction furnace. High temperature reducing gas from the melting reduction furnace is introduced from the supply port S. In the case of pre-reduction of chromium ore, supplying a CH4-containing gas such as coke oven gas will significantly accelerate the pre-reduction reaction rate, so it can be supplied at a lower temperature than smelting reduction furnace exhaust gas like coke oven gas. The gas is introduced from the supply port t and into the fluidized bed λ via the gas distribution plate 7. The preliminary reduction furnace exhaust gas is discharged from the discharge port t.

ところで、流動層の流動化状態を良好にするためには、
ガス分散板でのガスの圧力損失を流動層でQ圧力損失の
10%以上にするのがよいとされている。多孔板やバブ
ルキャップ形式のガス分散板では1000〜/り00℃
の高温ガスの導入に対して材質及び強度上の問題が生じ
るし、焼結板では高温ガス中のダクトによって目詰まり
が起こる。第1図(ハ)のようなガス分散板を用いない
形式では、圧力損失が少なすぎて良好な流動化状態を得
ることはできない。
By the way, in order to improve the fluidization state of the fluidized bed,
It is said that it is best to make the pressure loss of the gas in the gas distribution plate 10% or more of the Q pressure loss in the fluidized bed. 1000 to 100℃ for perforated plates and bubble cap type gas distribution plates
Introducing high-temperature gas causes problems in terms of material quality and strength, and in sintered plates, the ducts in the high-temperature gas cause clogging. In the type shown in FIG. 1(c) that does not use a gas distribution plate, the pressure loss is too small to obtain a good fluidization state.

そこで本発明の予備還元炉/は、炉底部を同軸の内外二
重の円筒(IO,U)構造となし、これにより炉底部周
側に高温還元性ガス導入用の環状スリン)Aを設けると
共に、炉底部中心に低温ガス導入用のガス分散板りを装
着することによって、これらの問題点を解消したもので
ある。
Therefore, in the pre-reducing furnace of the present invention, the bottom of the furnace has a coaxial double inner and outer cylinder structure (IO, U), thereby providing an annular sulin (A) for introducing high temperature reducing gas on the circumferential side of the bottom of the furnace. These problems were solved by installing a gas dispersion plate for introducing low-temperature gas at the center of the bottom of the furnace.

すなわち、本発明によれば、環状スリットにおいて、そ
のスリット幅を適切に選択することによって、流動層を
効果的に形成するためのガス分散化に必要な圧力損失を
容易に得ることができ、かつスリット部を耐火物や耐熱
金属材料で容易に構成することができるので、スリット
部の材質上の問題や目詰まシのおそれ吃ない。
That is, according to the present invention, by appropriately selecting the slit width in the annular slit, it is possible to easily obtain the pressure loss necessary for gas dispersion to effectively form a fluidized bed, and Since the slit portion can be easily constructed from a refractory material or a heat-resistant metal material, there is no risk of problems with the material of the slit portion or clogging.

また中心部に装着するガス分散板には通常用いられてい
る分散板を利用することができ、これにより炉の中心部
分の流動化不足を補なうことができる。更に流動層の底
部から両者のガスを導入できるので、一方を底部から、
他方を側壁から導入する場合よりも両ガスの混合がよく
なされる。
In addition, a commonly used gas distribution plate can be used as the gas distribution plate installed in the center, thereby making up for the lack of fluidization in the center of the furnace. Furthermore, since both gases can be introduced from the bottom of the fluidized bed, one can be introduced from the bottom,
Both gases are better mixed than when the other is introduced from the side wall.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

予備還元炉 流動層部内径      /、、27Fl炉底部外筒内
径     o、sm 環状スリット幅      30mm ガス分散板の種類    多孔板 高温還元性ガス供給口内径    3ooIIII低温
還元性ガス供給口内径 10OIB上記予備還元炉とし
ての試験炉を用いて、以下に示す条件で粉状クロム鉱石
の予備還元を行なった。この試験において本発明による
導入ガスの分散化手段を設けた予備還元炉を用いたこと
にょって、予備還元炉への高温ガスの導入を従来炉にお
いて生ずるような問題を起こすことなしに行うことがで
き、よって流動層の形成を良好に行うことができた。
Prereduction furnace fluidized bed inner diameter /,, 27Fl Furnace bottom outer cylinder inner diameter o, sm Annular slit width 30mm Type of gas distribution plate Porous plate High temperature reducing gas supply port inner diameter 3ooIII Low temperature reducing gas supply port inner diameter 10OIB Above prereduction furnace Powdered chromium ore was pre-reduced using a test furnace as described below under the conditions shown below. In this test, by using a pre-reduction furnace equipped with a means for dispersing the introduced gas according to the present invention, it was possible to introduce high-temperature gas into the pre-reduction furnace without causing the problems that occur in conventional furnaces. Therefore, the fluidized bed could be formed well.

l)クロム鉱石:フィリピン産クロム鉱石組成: (1
!r203M9.24 FeO23,g チ 粒径Hst−1IgMq、q% lIt〜100 M  K4.7 % 100 M以下  5.弘チ (Mはメツシュである) コ)予備還元炉操業データ クロム鉱石供給量:/ざo kl?/ hr高温ガスと
しての 溶融還元炉排ガス量: A10 N m’!s/ hr
ガス温度:/3り0℃ 低温ガスとしての コークス炉ガス量: /コ5 N 7H3/ hrガス
温度ニア0℃ 予備還元炉温度: 1020℃ クロム鉱石の予備還元率:37チ 以上の試験例に対して、従来技術の第1図の(イ)及び
(ロ)の容重を用いる試験方法では、高温ガスによる熱
でガス分散板が変形して長時間の運転−1)i不可能で
あった。(ハ)の炉による方法では運転可會ヒてあった
が良好な流動化状態が得られず予備還元率は、刀チと低
かった。
l) Chromium ore: Composition of chromium ore from the Philippines: (1
! r203M9.24 FeO23,g Chi particle size Hst-1IgMq, q% lIt~100M K4.7% 100M or less 5. Hirochi (M stands for mesh) Co) Pre-reduction furnace operation data Chromium ore supply amount: /zao kl? / hr Amount of smelting reduction furnace exhaust gas as high-temperature gas: A10 N m'! s/hr
Gas temperature: /3 0°C Amount of coke oven gas as low temperature gas: /5 N 7H3/hr Gas temperature near 0°C Pre-reduction furnace temperature: 1020°C Preliminary reduction rate of chromium ore: For test examples of 37 or more On the other hand, in the conventional test method using the capacity shown in (a) and (b) in Figure 1, the gas distribution plate was deformed by the heat from the high-temperature gas, making long-term operation impossible. . Although the furnace method (c) could be operated, a good fluidization state could not be obtained and the preliminary reduction rate was extremely low.

本発明予備還元炉の奏する効果をまとめて示すと次のよ
うになる。
The effects of the preliminary reduction furnace of the present invention are summarized as follows.

/)高温還元性ガスの導入部分にガス分散板を用いてい
ないので、分散板の材質9強度に問題がない。
/) Since a gas dispersion plate is not used at the introduction part of the high temperature reducing gas, there is no problem with the strength of the material of the dispersion plate.

2)環状スリットにより、導入ガスを均一に分散するこ
とができる。
2) The annular slit allows the introduced gas to be uniformly dispersed.

3)中心部に装着したガス分散板よね、他の低温還元性
ガスを導入することができる。
3) Other low-temperature reducing gases can be introduced through the gas distribution plate attached to the center.

t)炉の中心部分の粒子の流動化を良好に行うことがで
きる。
t) The particles in the central part of the furnace can be fluidized well.

S)導入高温ガスと他の導入ガスとの混合を十分に行う
ことができる。
S) The introduced high-temperature gas and other introduced gases can be sufficiently mixed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図の(イ)、(ロ)、(ハ)は、従来の流動層炉に
おける導入ガスの分散化の態様を説明するだめの、それ
ぞれ炉下部の概略的縦断面図であり、第二図は、本発明
の一実施態様を示す概略的縦断面図である。 /・・・予備還元炉、コ・・・流動層、3・・・鉱石、
フラックスなどの供給口、ダ・・・予備還元鉱石排出口
。 5・・・高温還元性ガスの導入口、6・・・環状スリッ
ト、?・・・ガス分散板、S・・・低温還元性ガスの導
入口、10・・・内筒、/ハ・・外筒、lコ・・・内筒
の底板、13・・・外筒の底板、/ダ・・・流動層炉、
15−・・流動層、/6・・・ガス分散板、/7・−・
流動化ガス導入口。 特許出願人 川崎製鉄株式会社
(A), (B), and (C) in FIG. 1 are schematic vertical cross-sectional views of the lower part of the furnace, respectively, for explaining the mode of dispersion of introduced gas in a conventional fluidized bed furnace. The figure is a schematic longitudinal sectional view showing one embodiment of the present invention. /...Preliminary reduction furnace, Co...Fluidized bed, 3...Ore,
Supply port for flux, etc., pre-reduced ore discharge port. 5...Inlet for high temperature reducing gas, 6...Annular slit, ? ... Gas distribution plate, S ... Inlet for low-temperature reducing gas, 10 ... Inner cylinder, / C ... Outer cylinder, l Co ... Bottom plate of inner cylinder, 13 ... Outer cylinder Bottom plate, / da... fluidized bed furnace,
15-... Fluidized bed, /6... Gas distribution plate, /7...
Fluidization gas inlet. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] L 予備還元炉と溶融還元炉とから成る溶融還元装置に
おいて、内筒と外筒とにより該予備還元炉内に開口する
環状スリットを形成するように、内外二重の同軸円筒に
よって該予備還元炉の炉底部を構成し、該内筒の上面に
ガス分散板を設け、かつ核外筒に高温還元性ガスの供給
口を設けると共に、該内筒に低温還元性ガスの供給口を
設けたことを特徴とする、溶融還元装置における予備還
元炉。
L In a smelting reduction apparatus consisting of a pre-reduction furnace and a smelting reduction furnace, the pre-reduction furnace is connected to the pre-reduction furnace by an inner and outer double coaxial cylinder such that an inner cylinder and an outer cylinder form an annular slit opening into the pre-reduction furnace. A gas dispersion plate is provided on the upper surface of the inner cylinder, a high temperature reducing gas supply port is provided in the nuclear outer cylinder, and a low temperature reducing gas supply port is provided in the inner cylinder. A preliminary reduction furnace in a smelting reduction apparatus, characterized by:
JP9752482A 1982-06-09 1982-06-09 Prereducing oven in melt reducing apparatus Pending JPS58217615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9752482A JPS58217615A (en) 1982-06-09 1982-06-09 Prereducing oven in melt reducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9752482A JPS58217615A (en) 1982-06-09 1982-06-09 Prereducing oven in melt reducing apparatus

Publications (1)

Publication Number Publication Date
JPS58217615A true JPS58217615A (en) 1983-12-17

Family

ID=14194637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9752482A Pending JPS58217615A (en) 1982-06-09 1982-06-09 Prereducing oven in melt reducing apparatus

Country Status (1)

Country Link
JP (1) JPS58217615A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229064A (en) * 1990-12-27 1993-07-20 Kawasaki Steel Corporation Fluidized bed type preliminary reducing furnace for oxide raw material
US6110413A (en) * 1996-12-23 2000-08-29 Pohang Iron & Steel Co., Ltd. 3-Stage fluidized bed type fine iron ore reducing apparatus having x-shaped circulating tubes
US6491738B1 (en) 1999-06-21 2002-12-10 Pohang Iron & Steel Co., Ltd. 2-stage fluidized bed type fine iron ore reducing apparatus, and reducing method using the apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229064A (en) * 1990-12-27 1993-07-20 Kawasaki Steel Corporation Fluidized bed type preliminary reducing furnace for oxide raw material
US6110413A (en) * 1996-12-23 2000-08-29 Pohang Iron & Steel Co., Ltd. 3-Stage fluidized bed type fine iron ore reducing apparatus having x-shaped circulating tubes
US6491738B1 (en) 1999-06-21 2002-12-10 Pohang Iron & Steel Co., Ltd. 2-stage fluidized bed type fine iron ore reducing apparatus, and reducing method using the apparatus

Similar Documents

Publication Publication Date Title
CN107779536B (en) Method and device for producing direct reduced iron
KR850001211B1 (en) Method of manufacturing chromium steel
CN104302787A (en) Method for loading raw material into blast furnace
JPS58217615A (en) Prereducing oven in melt reducing apparatus
JPH04263003A (en) Method for operating blast furnace
CN107058666A (en) A kind of cooling gas system for shaft furnace cooling section
CA1213928A (en) Method of carrying out metallurgical or chemical processes in a shaft furnace, and a low shaft furnace therefor
AU2011381317B2 (en) Process for the manufacture of ferrochrome
CN102653803A (en) Short-flow method for reducing iron through two-step melting
JPH0699734B2 (en) Circulating fluidized bed type pre-reduction furnace for fine iron ore
JPS62224619A (en) Method for supplying carbon material to melting reduction furnace
CS273319B2 (en) Method of ferrous powders production from fine loose powdered iron trioxide
CN207468661U (en) Multiple coil direct reduction furnace
JP3522553B2 (en) Blast furnace raw material charging method
JPS59176584A (en) Disperser for gas of fluidized bed spare reducing furnace
JP7285423B2 (en) Method for smelting oxide ore
CN207749132U (en) The system containing Iron Ore Powder of processing
JPS59109771A (en) Dispersing plate of spare reducing furnace in melting reducing device
JPS59162212A (en) Transfer pipe of preliminarily reduced granular ore
JPS6136573B2 (en)
JPS5980706A (en) Operating method of preliminary reduction furnace with fluidized bed
JPS59143009A (en) Method and device for charging raw material to melt reducing furnace
JP2724208B2 (en) Blast furnace operation method
JPS6347305A (en) Method for charging starting material into blast furnace
CN108707723A (en) Steel-making quick slag material and its production method