JPS59109771A - Dispersing plate of spare reducing furnace in melting reducing device - Google Patents

Dispersing plate of spare reducing furnace in melting reducing device

Info

Publication number
JPS59109771A
JPS59109771A JP21813982A JP21813982A JPS59109771A JP S59109771 A JPS59109771 A JP S59109771A JP 21813982 A JP21813982 A JP 21813982A JP 21813982 A JP21813982 A JP 21813982A JP S59109771 A JPS59109771 A JP S59109771A
Authority
JP
Japan
Prior art keywords
reduction furnace
dispersion plate
ore
furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21813982A
Other languages
Japanese (ja)
Inventor
勉 藤田
浜田 俊二
浜田 尚夫
稲谷 稔宏
英司 片山
槌谷 暢男
高田 至康
角戸 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21813982A priority Critical patent/JPS59109771A/en
Publication of JPS59109771A publication Critical patent/JPS59109771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属酸化物を含有する粉、粒状鉱石を予備還元
した後、溶融還元を行い溶融金属を製造する溶融還元装
置における予備還元炉の分散板に関し、とくに7エロク
ロム製造のための溶融還元81における予備還元炉の分
散板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a dispersion plate of a pre-reduction furnace in a smelting reduction apparatus which pre-reduces powder or granular ore containing metal oxides and then performs smelting reduction to produce molten metal. In particular, the present invention relates to a dispersion plate of a pre-reduction furnace in smelting reduction 81 for the production of 7-erochrome.

従来技術 近年、鉄鉱石をはじめ各種の金属酸化物を主成分とする
原料鉱石は、塊状鉱石よりはむしろ、粉、粒状鉱石の方
が多くなりつつあり、今後もますますその比率は増加傾
向にあるとみられる。粉、粒状鉱石を原料としてフェロ
クロムその他のフェロアロイを製造する技術には、通常
電気炉による方法があるが、電力原単位が数千KWH/
 tにも達し、極めてコスト高である。
Conventional technology In recent years, the raw material ores mainly composed of various metal oxides, including iron ore, have become more powdery and granular ores rather than lumpy ores, and this proportion will continue to increase in the future. It seems that there is. The technology for manufacturing ferrochrome and other ferroalloys from powder and granular ore is usually a method using an electric furnace, but the electricity consumption is several thousand KWH/
The cost is extremely high.

本発明者らは、電力によらない方法として、さきに予備
還元炉と溶融還元炉とを直列に結合した装置を用い、粉
、粒状鉱石から溶融金属を製造する溶融還元法を提案し
た(特願昭56−63294゜特願昭56−68110
)。この方法では、金属酸化物を含有する鉱石の予備還
元に必要な還元剤および熱の供給源として溶融還元炉の
高温の排ガスを利用する。この高温の排ガスを導入する
予備還元炉は、粉、粒状鉱石を塊成化することなく、直
接粉、粒状のままで使用する流動層形式である。
As a method that does not rely on electricity, the present inventors previously proposed a smelting reduction method for producing molten metal from powder or granular ore using an apparatus in which a preliminary reduction furnace and a smelting reduction furnace are connected in series (particularly Application No. 56-63294゜Special application No. 56-68110
). This method utilizes the high-temperature exhaust gas of a smelter reduction furnace as a source of the reducing agent and heat necessary for preliminary reduction of ore containing metal oxides. The pre-reduction furnace into which this high-temperature exhaust gas is introduced is of a fluidized bed type in which the powder or granular ore is used directly in its powder or granular form without agglomerating it.

流動層での良好な流動化状態を得るには、導入ガスの分
散が重要であることが知られている。溶融還元法のよう
に高温の排ガスを予備還元炉へ導入する場合、このよう
な導入ガスの分散は特に重要である。この導入ガスの分
散に関し、予備還元炉のガス分散化手段には次の機能が
必要である。
It is known that dispersion of introduced gas is important to obtain a good fluidization state in a fluidized bed. When high-temperature exhaust gas is introduced into the pre-reduction furnace as in the smelting reduction method, such dispersion of the introduced gas is particularly important. Regarding the dispersion of the introduced gas, the gas dispersion means of the preliminary reduction furnace must have the following functions.

l)溶融還元炉からの1000〜1400°Cの高温還
元ガスの導入が可能であること。
l) It is possible to introduce high temperature reducing gas of 1000 to 1400°C from the melting reduction furnace.

2)高温排ガス中の多量の微細ダストの影皆を受けにく
いこと。
2) It is difficult to be affected by the large amount of fine dust in high-temperature exhaust gas.

8)ガスの炉内均一分散が可能であること。8) Uniform distribution of gas within the furnace is possible.

4)流動層の起動および停止時に粉状鉱石等の流動層か
らの、流出を防ぐことができること。
4) It is possible to prevent powdered ore and the like from flowing out of the fluidized bed when the fluidized bed is started and stopped.

これらの機能を満たすガス分散化手段の開発研究が重要
であるが、従来の一般的な流動層形式の炉における導入
ガスの分散化手段としては1例えば第1図に示すような
多数の垂直に貫通する開孔部を有する分散板8がある。
Research and development of gas dispersion means that satisfy these functions is important, but as a means of dispersing the introduced gas in a conventional general fluidized bed type furnace, for example, there are many vertical There is a dispersion plate 8 having apertures therethrough.

第1図において、たて型炉l内の分散板8上には粉、粒
状の鉱石が装入されている。ガス導入口4から供給され
、分散板8の開孔部を通過した導入ガスによって粉、粒
状鉱石は流動化され、流動層2を形成する0分散板8は
通常導入ガスを流動M2内に均一に分散させるために設
けられている。分散板としては、上記の多孔板方式の他
に、焼結板、バブルキャップ方式のものがある。
In FIG. 1, powder or granular ore is charged onto a dispersion plate 8 in a vertical furnace l. Powder and granular ore are fluidized by the introduced gas supplied from the gas inlet 4 and passed through the openings of the dispersion plate 8, and the dispersion plate 8 that forms the fluidized bed 2 normally distributes the introduced gas uniformly into the flow M2. It is provided to disperse the In addition to the above-mentioned perforated plate type, the dispersion plate includes a sintered plate type and a bubble cap type.

しかし、従来の方式を溶融還元装置の予備還元炉に用い
ると次のような問題点がでてくる。すなわち、多孔板方
式では、第1図に示すように分散板8の開孔部の中心線
が流動層2の中心軸と平行であり、起動および停止時に
粉、粒状鉱石が流動層から分散板の開孔部を通って流出
することを防ぐことができない。また、この流出を防ぐ
ため開孔部の数を少なくすると、流動層内でのガス流が
均一分散化し難く、気泡の集合を生じることがある。次
に焼結板方式□では開孔部が小さく%導入ガスに含まれ
る微細ダストによる目詰まりの問題がある。またバブル
キャップ方式では起動および停止時に粉、粒状鉱石が流
動層から分散板の下方に流出することを防ぐことができ
るが、1000°C以上の高温ガスに耐えられる材質お
よび強度の而で問題がある。
However, when the conventional method is used in the preliminary reduction furnace of the melting reduction apparatus, the following problems arise. That is, in the perforated plate method, the center line of the opening of the dispersion plate 8 is parallel to the central axis of the fluidized bed 2, as shown in FIG. cannot prevent water from flowing through the openings. Furthermore, if the number of openings is reduced in order to prevent this outflow, it is difficult to uniformly disperse the gas flow within the fluidized bed, and bubbles may aggregate. Next, in the sintered plate method □, the openings are small and there is a problem of clogging due to fine dust contained in the introduced gas. In addition, the bubble cap method can prevent powder and granular ore from flowing out from the fluidized bed to the bottom of the dispersion plate during startup and shutdown, but there are problems with the material and strength that can withstand high-temperature gases of 1000°C or more. be.

発明の目的 そこで本発明の目的は、従来の溶融還元装置の予備還元
炉における分散板の前記問題点を解消し、導入ガスの分
散化を十分に行うと共に流動層の形成を効果的に行い、
また流動層の起動および停止時の粉、粒状鉱石が流動層
から流出することを防止できる手段を備えた分散根分提
供することにある。とくに、高温の排ガスを利用するフ
ェロクロム製造に+Ijtえられる予備還元炉の分散板
を提供することにある。
OBJECT OF THE INVENTION Therefore, the object of the present invention is to solve the above-mentioned problems of the dispersion plate in the pre-reduction furnace of the conventional melting reduction apparatus, sufficiently disperse the introduced gas, and effectively form a fluidized bed.
Another object of the present invention is to provide a dispersion bed having a means for preventing powder and granular ore from flowing out of the fluidized bed when the fluidized bed is started and stopped. Particularly, it is an object of the present invention to provide a dispersion plate for a pre-reduction furnace that can be used in the production of ferrochrome using high-temperature exhaust gas.

発明の構成 本発明は金属歳化物を含有する粉、粒状鉱石を流動層で
予備還元する予備還元炉と、予備還元した部分還元鉱を
溶融還元して溶融金属を製造する溶融還元炉とから成る
溶融還元装置における前記予備還元炉の分散板にある0
この分散板は、溶融還元炉で発生した還元性の排ガスを
分散板上部に導入し、このガスを分散させて粉、粒状鉱
石の流動層を形成させる開孔部を有する。この分散板の
開孔部は、開孔部の中心線の少くとも一部と水平面との
成す傾き角が、粉、粒状鉱石の靜止女息角より小さいこ
とを特徴とする。
Structure of the Invention The present invention comprises a pre-reduction furnace for pre-reducing powder and granular ore containing aged metal products in a fluidized bed, and a smelting-reduction furnace for producing molten metal by melting and reducing the pre-reduced partially reduced ore. 0 on the dispersion plate of the preliminary reduction furnace in the smelting reduction equipment
This dispersion plate has openings that introduce reducing exhaust gas generated in the smelting reduction furnace into the upper part of the dispersion plate and disperse this gas to form a fluidized bed of powder and granular ore. The perforated portion of the dispersion plate is characterized in that the angle of inclination formed between at least a portion of the center line of the perforated portion and the horizontal plane is smaller than the angle of repose of the powder or granular ore.

発明の構成の具体的説明 本発明に用いる予備還元炉は、分散板8を除いて、先に
説明した第1図に示すものと同様のものを用いることが
できる。第1図において、予備還元Fはたて型炉lであ
り、はぼ中央の側壁には、例えばクロム鉱石のような金
属酸化物を含有する粉、粒状鉱石とフラックスなどの原
料供給口5、予備還元した鉱石の排出口6を設け、上部
側壁には、予備還元の際の排ガスの排出ロアを設ける。
Detailed Description of the Structure of the Invention The preliminary reduction furnace used in the present invention can be the same as that shown in FIG. 1 described above, except for the dispersion plate 8. In FIG. 1, the preliminary reduction F is a vertical furnace L, and the side wall at the center of the hoop has a feed port 5 for feeding powder, granular ore, and flux containing metal oxides such as chromium ore. A discharge port 6 for pre-reduced ore is provided, and an exhaust lower for exhaust gas during pre-reduction is provided on the upper side wall.

炉底部には、炉l内に通ずるガス導入口4があり、溶融
還元炉で発生した還元性の排ガスを分散板を通じて上部
に導入し、高温の高速ガス流によ、つて粉、粒状鉱石の
流動層2を形成する。流動層2で予備還元した部分還元
鉱は、排出口6を経て溶融還元炉へ移送される。
At the bottom of the furnace, there is a gas inlet 4 that communicates with the inside of the furnace, and the reducing exhaust gas generated in the smelting-reduction furnace is introduced into the upper part through a dispersion plate, and the high-temperature, high-speed gas flow is used to remove powder and granular ore. A fluidized bed 2 is formed. The partially reduced ore pre-reduced in the fluidized bed 2 is transferred to the smelting reduction furnace via the discharge port 6.

本発明の分散板8 / 、 3 N、δ“、3′を第2
〜4図に示す。これら分散板は溶融還元炉からの排ガス
を流動層に導入する多数の開孔部を有する。開孔部の少
くとも一部と水平面との成す傾き角αは、粉、粒状鉱石
の静止饗息角より小さくする。傾き角αが静止安息角よ
り小さいと、粉、粒状鉱石が分散板に堆積してもその面
がくずれずに女定しており、分散板の開孔部からすべり
落して下方に落下することがない。角αの大きさは通常
15〜40度位である。
The dispersion plate 8/, 3N, δ", 3' of the present invention is
- Shown in Figure 4. These distribution plates have a large number of openings that introduce exhaust gas from the smelting reduction furnace into the fluidized bed. The inclination angle α between at least a portion of the opening and the horizontal plane is made smaller than the resting angle of the powder or granular ore. If the angle of inclination α is smaller than the rest angle of repose, even if powder or granular ore accumulates on the dispersion plate, the surface will not collapse and it will remain fixed, and it will slide down from the opening of the dispersion plate and fall downward. There is no. The size of the angle α is usually about 15 to 40 degrees.

第2図(イ)に示す分散板3′の開孔部は斜方向に設け
である。第2図(ロ)に示す分散板8′の開孔部は段状
に水平部と鉛直部の組合せから成る。図には示していな
いが開孔部を斜方向と鉛直部の組合せとする形状にする
こともできる。また、第3図に示すように分散板8′の
開孔部を交互に反対方向に形成することもできる。これ
らの開孔部は、例えば分散板を冷間成型する際に開孔部
に合成樹脂材料を埋込み、熱同成型する際にこれを溶融
焼失させて除去することにより形成する。こnらの開孔
部は平面状の分散板だけでなく、第4図に示すアーチ状
の分散板87にも応用することができる。
The openings of the dispersion plate 3' shown in FIG. 2(A) are provided in an oblique direction. The opening portion of the dispersion plate 8' shown in FIG. 2(B) consists of a combination of horizontal portions and vertical portions in the form of steps. Although not shown in the drawings, the apertures may have a combination of diagonal and vertical apertures. Further, as shown in FIG. 3, the apertures of the dispersion plate 8' can be formed alternately in opposite directions. These openings are formed, for example, by embedding a synthetic resin material in the openings during cold molding of the distribution plate, and removing it by melting and burning out during hot molding. These openings can be applied not only to a planar dispersion plate but also to an arch-shaped dispersion plate 87 shown in FIG.

実施例 次に本発明の詳細な説明する。Example Next, the present invention will be explained in detail.

予備還元炉 流動層部内径  i、gm ガス分散板の種類  斜方向多孔板8′(第2図(イ)
)と81の組合せ(第8図) 厚さ250謔 孔径5間 多孔部の傾き角α80度 孔数500 上記予備還元炉を試験炉に用いて、以下に示す条件で粉
状クロム鉱石を予備還元した。
Prereduction furnace fluidized bed inner diameter i, gm Type of gas distribution plate Oblique perforated plate 8' (Fig. 2 (a)
) and 81 combination (Fig. 8) Thickness: 250 cm, hole diameter: 5, angle of inclination of the porous part: α: 80 degrees, number of holes: 500 Using the above pre-reduction furnace as a test furnace, powdered chromium ore was pre-reduced under the conditions shown below. did.

l)クロム鉱石:フィリピン産クロム鉱石組成: ar
2o849.2% 1i’13Q   28,8% 粒径:28〜48メツシユ 7.9% 48〜100メツシユ 86.7チ iooメツシユ以下 5.4% 2)予備還元炉操業データ クロム鉱石供給量 : 180句/hrガス温度   
  :  11300″Cコ一クス炉ガスM  :  
l 25 Nm’/ hr予備還元炉温度  :  1
020°にの試験において本発明による導入ガスの分散
化手段を設けた予備還元炉を用いたことによって、予備
還元炉への高温ガスの導入を、従来炉において生ずるよ
うな問題を起こすことなしに行うことができ、よって流
動層の形成を良好に行うことができた。
l) Chromium ore: Chromium ore composition from the Philippines: ar
2o849.2% 1i'13Q 28.8% Particle size: 28~48 mesh 7.9% 48~100 mesh 86.7 inch mesh or less 5.4% 2) Pre-reduction furnace operation data Chromium ore supply amount: 180 clause/hr gas temperature
: 11300″C cox oven gas M :
l 25 Nm'/hr Pre-reduction furnace temperature: 1
By using the pre-reduction furnace equipped with the introduced gas dispersion means according to the present invention in the 020° test, it was possible to introduce high-temperature gas into the pre-reduction furnace without causing the problems that occur in conventional furnaces. Therefore, the fluidized bed could be formed satisfactorily.

同様の条件で段状の多孔板8′(第2図(す)を用いる
と、クロム鉱石の予備還元率は第2図(イ)の場合と同
様な良好な結果が得らnだ。
Using the step-shaped perforated plate 8' (Fig. 2 (a)) under similar conditions, the preliminary reduction rate of chromium ore was as good as in the case of Fig. 2 (a).

とくに多孔部を交互に反対方向に設けた第8図のタイプ
の多孔板では、ガスの噴出方向が多方向に分散され、多
孔板の上部で激しく乱nる流れとなり、ガス気泡の粗大
化を防ぎ、流動化に良い結果が得られ、還元反応が促進
した0 以上の試験例に対して同様の条件で従来技術の分散板8
を用いる試験では、流動層の起動および停止時に、粉、
粒状鉱石の流出があり、これらを回収するための装置を
別に要した。
In particular, in a perforated plate of the type shown in Figure 8, in which perforations are alternately provided in opposite directions, the direction of gas ejection is dispersed in multiple directions, resulting in a violently turbulent flow at the top of the perforated plate, which causes the gas bubbles to become coarse. The dispersion plate 8 of the prior art under similar conditions was used for the test examples 0 or more in which good results were obtained for fluidization and promotion of the reduction reaction.
In tests using
There was a spill of granular ore, and separate equipment was required to recover it.

また、同様の条件でバブルキャップ方式を用いる試験で
は、バブルキャップが長時間(1週間位)の運転に耐え
なかった。
Furthermore, in a test using the bubble cap method under similar conditions, the bubble cap could not withstand long-term operation (about one week).

これらの試験では、上記本発明による分散板を用いた試
験と同じ時間(4時間)におけるクロム鉱石の予備還元
率は約δ8係と低かった。
In these tests, the preliminary reduction rate of chromium ore during the same time (4 hours) as in the test using the dispersion plate according to the present invention was as low as about δ8 factor.

発明の効果 本発明による分散板の奏する効果をまとめると次のよう
になる。
Effects of the Invention The effects of the dispersion plate according to the present invention are summarized as follows.

l)分散板の開孔部を、中心線の少なくとも一部と水平
面との成す傾き角が粉、粒状鉱石の静止安息角より小さ
くなるようにしたので、流動層の起動および停止時にお
ける粉、粒状鉱石の開孔部からの流出を防ぐことができ
る。これにより、安定かつ容易に炉を運転することがで
きる。
l) The opening of the dispersion plate is made so that the angle of inclination between at least a part of the center line and the horizontal plane is smaller than the rest angle of the powder and granular ore, so that the powder and granular ore are not easily affected when starting and stopping the fluidized bed. It is possible to prevent granular ore from flowing out through the openings. Thereby, the furnace can be operated stably and easily.

2)また分散板より下方に粉、粒状鉱石が流出しないの
で、ガス導入を円滑に行うことができ、ガス流を均一に
分散させることができ、気泡の生成を抑制し流動層内で
の均一反応が促進される。
2) In addition, since powder and granular ore do not flow out below the dispersion plate, gas can be introduced smoothly and the gas flow can be uniformly dispersed, suppressing the formation of bubbles and ensuring uniformity within the fluidized bed. The reaction is accelerated.

8)流動層の流動化状態を良好にするにはガス分散板で
のガスの圧力損失を流動層での圧力損失の1oLs以上
にするのがよいとされているが、本発明の分散板によれ
ばガス分散化に必要な圧力損失を得ることができる。(
例えは上記最初の実施例ではガスの圧力損失は5チであ
った)0これにより、多孔部の目詰まシの問題は生じな
い。
8) In order to improve the fluidization state of the fluidized bed, it is said that it is better to make the pressure loss of the gas in the gas distribution plate 1oLs or more than the pressure loss in the fluidized bed. Accordingly, the pressure loss necessary for gas dispersion can be obtained. (
For example, in the first embodiment described above, the gas pressure loss was 5 cm). This eliminates the problem of clogging of the pores.

4)本発明分アーチ状分散板(第4図)に容易に適用で
きる。これによシ、フェロクロム製造の場合のような、
高温流動層における材質の強度上の問題が一層解決され
る。
4) The present invention can be easily applied to an arch-shaped dispersion plate (FIG. 4). In addition to this, as in the case of ferrochrome production,
Problems regarding the strength of materials in high-temperature fluidized beds are further resolved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の予備還元炉における導入ガスの分散板を
示す概略断面図、 第2図は本発明の実施例を示す分散板の部分拡大断面図
であシ5多孔部が(イ)では斜方向5(ロ)では段状を
示す。 第3図は本発明の実施例を示す分散板の部分拡大平面図
であり、交互に反対方向に設けた多孔部を示す0 第4図は本発明の実施例を示す予備還元炉の部分断面図
であυ、アーチ状の分散板を示す図である。 l・・・予備還元炉のたて型炉 2・・流動層      8・・・分散板4・・・ガス
導入口    5・・・原料供給口6゛・・予備還元鉱
排出口 7・・・排ガス排出口α・・・傾き角。 第1図    第2゜ 第3図    第4図 第1頁の続き 0発 明 者 高田至康 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内 0発 明 者 角戸三男 千葉市川崎町1番地川崎製鉄株 式会社千葉製鉄所内
Figure 1 is a schematic sectional view showing a distribution plate for introducing gas in a conventional pre-reduction furnace, and Figure 2 is a partially enlarged sectional view of a distribution plate showing an embodiment of the present invention. In the diagonal direction 5 (b), a stepped shape is shown. FIG. 3 is a partially enlarged plan view of a dispersion plate showing an embodiment of the present invention, showing porous portions provided alternately in opposite directions. FIG. 4 is a partial cross-section of a pre-reduction furnace showing an embodiment of the present invention. Figure υ is a diagram showing an arch-shaped dispersion plate. l... Vertical furnace of preliminary reduction furnace 2... Fluidized bed 8... Dispersion plate 4... Gas inlet 5... Raw material supply port 6゛... Preliminary reduced ore discharge port 7... Exhaust gas outlet α...Tilt angle. Fig. 1 Fig. 2゜Fig. 3 Fig. 4 Continuation of page 1 0 Inventor: Shikayasu Takada, 1 Kawasaki-cho, Chiba City, Kawasaki Steel Co., Ltd. Chiba Works 0 Inventor: Mitsuo Kakudo, 1 Kawasaki-cho, Chiba City Kawasaki Steel Corporation Chiba Works

Claims (1)

【特許請求の範囲】[Claims] 1 金属酸化物を含有する粉、粒状鉱石を流動層で予備
還元する予備還元炉と、予備還元した部分還元鉱を溶融
還元して溶融金属を製造する溶融還元炉とから成る溶融
還元装置における予備還元炉の分散板が、溶融還元炉で
発生した還元性の排ガスを分散板上部に導入しこのガス
を分散させて粉、粒状鉱石の流動層を形成させる開孔部
を有し、開孔部の中心線の少くとも一部と水平面との成
す傾き角が、粉、粒状鉱石の静止安息角より小さいこと
を特徴とする溶融還元装置における予備還元炉の分散板
1 Preparation in a smelting reduction equipment consisting of a pre-reduction furnace that pre-reduces powder and granular ore containing metal oxides in a fluidized bed, and a smelting-reduction furnace that produces molten metal by melting and reducing the pre-reduced partially reduced ore. The dispersion plate of the reduction furnace has an opening that introduces the reducing exhaust gas generated in the smelting reduction furnace into the upper part of the dispersion plate and disperses this gas to form a fluidized bed of powder and granular ore. A dispersion plate of a preliminary reduction furnace in a smelting reduction apparatus, characterized in that the angle of inclination formed between at least a part of the center line of the plate and the horizontal plane is smaller than the rest angle of the powder or granular ore.
JP21813982A 1982-12-13 1982-12-13 Dispersing plate of spare reducing furnace in melting reducing device Pending JPS59109771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21813982A JPS59109771A (en) 1982-12-13 1982-12-13 Dispersing plate of spare reducing furnace in melting reducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21813982A JPS59109771A (en) 1982-12-13 1982-12-13 Dispersing plate of spare reducing furnace in melting reducing device

Publications (1)

Publication Number Publication Date
JPS59109771A true JPS59109771A (en) 1984-06-25

Family

ID=16715245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21813982A Pending JPS59109771A (en) 1982-12-13 1982-12-13 Dispersing plate of spare reducing furnace in melting reducing device

Country Status (1)

Country Link
JP (1) JPS59109771A (en)

Similar Documents

Publication Publication Date Title
EP0316819B1 (en) Metal-making process and apparatus involving the smelting reduction of metallic oxides
JPH04263003A (en) Method for operating blast furnace
JPS59109771A (en) Dispersing plate of spare reducing furnace in melting reducing device
JPS59176584A (en) Disperser for gas of fluidized bed spare reducing furnace
JPS58217615A (en) Prereducing oven in melt reducing apparatus
JPH08239704A (en) Method for charging raw material in blast furnace
JPH06220513A (en) Circulation layer type preliminary reducing furnace for powdery iron ore
JP2579785B2 (en) Pre-reduction device for smelting reduction
JPS59104410A (en) Fluidized bed type preliminary reducing furnace
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JP4379097B2 (en) Pseudoparticles for sintering and method for producing the same
CN207749132U (en) The system containing Iron Ore Powder of processing
Beer et al. Process Engineering and Metallurgical Measures to Reduce Energy Consumption in Sintering Plants
JPS6056991B2 (en) Fluidized bed pre-reduction furnace with internal
JPH01283305A (en) Production of metallic iron powder from ferrous dust
JPS59180278A (en) Fluidized bed spare reducing furnace
JPS6136573B2 (en)
JPS5980706A (en) Operating method of preliminary reduction furnace with fluidized bed
JPH03183715A (en) Fluidized bed pre-reduction method for powdery ore
JP3536509B2 (en) Blast furnace operation method for producing low Si pig
JPH0637655B2 (en) Operating method of circulating fluidized bed reduction equipment
JPS6347305A (en) Method for charging starting material into blast furnace
JPH0441608A (en) Method for charging raw material in blast furnace
JP2003183714A (en) Method for operating melting/reducing furnace
JPH03197611A (en) Method for restraining sticking at the time of reducing powdery ore with circulating fluidized bed