JPH01283305A - Production of metallic iron powder from ferrous dust - Google Patents
Production of metallic iron powder from ferrous dustInfo
- Publication number
- JPH01283305A JPH01283305A JP11212488A JP11212488A JPH01283305A JP H01283305 A JPH01283305 A JP H01283305A JP 11212488 A JP11212488 A JP 11212488A JP 11212488 A JP11212488 A JP 11212488A JP H01283305 A JPH01283305 A JP H01283305A
- Authority
- JP
- Japan
- Prior art keywords
- fluidized bed
- dust
- iron powder
- metallic iron
- fluidized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 84
- 239000000428 dust Substances 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title abstract 3
- 239000002245 particle Substances 0.000 claims abstract description 25
- 239000004576 sand Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 19
- 238000007670 refining Methods 0.000 claims abstract description 10
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 9
- 239000010959 steel Substances 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims description 27
- 239000006185 dispersion Substances 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 3
- 102100025840 Coiled-coil domain-containing protein 86 Human genes 0.000 abstract 1
- 101000932708 Homo sapiens Coiled-coil domain-containing protein 86 Proteins 0.000 abstract 1
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 abstract 1
- 238000003756 stirring Methods 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 239000007789 gas Substances 0.000 description 21
- 238000006722 reduction reaction Methods 0.000 description 13
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005243 fluidization Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010291 electrical method Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、鋼の精錬工程で発生する鉄系ダストから金属
鉄粉を製造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing metallic iron powder from iron-based dust generated in a steel refining process.
(従来の技術)
従来、鋼の精錬工程で発生する鉄系ダストとしては、通
常の転炉精錬において発生する転炉ダストや、特願昭6
2−73997号の如き全量冷鉄源を原料とする転炉製
鋼法における冷鉄源溶解専用転炉および精錬専用転炉で
の発生ダストが挙げられる。これらのダストはFeOあ
るいはFe2O。(Prior art) Conventionally, iron-based dust generated in the steel refining process includes converter dust generated in normal converter refining, and
Examples include dust generated in a converter exclusively for melting cold iron sources and a converter exclusively for refining in a converter steel manufacturing method using a cold iron source as raw material, such as No. 2-73997. These dusts are FeO or Fe2O.
の酸化鉄を主成分としており、若干の金属鉄を含有する
場合もある。そのため大部分は鉄源として烏炉、転炉等
で再使用されてきた。The main component is iron oxide, and may also contain some metallic iron. Therefore, most of it has been reused as a source of iron in Uro furnaces, converters, etc.
(発明が解決しようとする課題)
しかしながら、一方では上記ダストの新たな利用法の開
拓が強(望まれているのが現状である。(Problems to be Solved by the Invention) However, on the other hand, there is currently a strong desire to develop new ways to use the dust.
本発明は、このような問題点を有利に解決するものであ
り、鋼の精錬工程で発生する鉄系ダストから種々の用途
に用いられる付加価値の烏い金属鉄粉を製造する方法を
提供する。The present invention advantageously solves these problems and provides a method for producing value-added coarse metallic iron powder used for various purposes from iron-based dust generated in the steel refining process. .
(課題を解決するための手Pi)
本発明の要旨とするところは、鋼の精錬工程で発生する
鉄系ダストを流動層内に供給し、還元性ガスで還元する
ことにより金属鉄粉を製造するに際し、鉄系ダストの粒
度を1〜10μtoに調整するとともに、流動媒体とし
て0.2〜0.3 m+nの砂粒を用い、流動層内温度
を800〜900 ”Cに保持し、還元ガスを供給する
ことにより、流動層がら粒度1〜10μmの金属鉄粉を
流出させることを特徴とする鉄系ダストから金属鉄粉を
製造する方法である。還元がスはH2を主成分とし、そ
の供給速度を10〜500m/secとすることは好ま
しい。(Measures Pi to Solve the Problems) The gist of the present invention is to supply iron-based dust generated in the steel refining process into a fluidized bed and reduce it with a reducing gas to produce metallic iron powder. In this process, the particle size of the iron-based dust is adjusted to 1 to 10 μto, sand grains of 0.2 to 0.3 m+n are used as the fluidized medium, the temperature inside the fluidized bed is maintained at 800 to 900''C, and reducing gas is This is a method for producing metallic iron powder from iron-based dust, which is characterized by flowing out metallic iron powder with a particle size of 1 to 10 μm from a fluidized bed by supplying it.Reducing gas has H2 as its main component, and its supply It is preferable that the speed is 10 to 500 m/sec.
(作用)
鋼の精錬工程で発生する鉄系ダストは、Fe01F e
203および金属鉄(M、Fe)が主成分であり、10
μm以下の微細な粒子を30〜50重量%含有するとい
う特徴がある。従って、鉄系ダスト中の微細粒子をFe
まで還元できれば、最近粉末冶金の分野で用途が拡大し
つつある金属鉄粉として利用可能である。このような考
え方に基づき、10μm以下の微細鉄系ダストの効率的
な1lye方法として砂粒を媒体とした流動層方式を発
明するに至った。(Function) Iron-based dust generated in the steel refining process is Fe01F e
203 and metallic iron (M, Fe) are the main components, 10
It is characterized by containing 30 to 50% by weight of fine particles of μm or less. Therefore, fine particles in iron-based dust are
If it can be reduced to this level, it can be used as metallic iron powder, which has been increasingly used in the field of powder metallurgy. Based on this idea, we came to invent a fluidized bed method using sand grains as a medium as an efficient 1lye method for fine iron-based dust of 10 μm or less.
まず、砂粒を流動媒体とした流動層還元方式の優位性に
ついて述べる。流動層は粒子ハンドリングが容易であり
、かつ層内での粒子混合が良好であるため、温度を均一
に保持できるとともに熱交換あるいは熱伝達を有利に行
うことが可能で、鉄系ダストの還元には適した方式であ
る。さらに、流動媒体として砂粒を用いる理由は、砂粒
が安価であることに加え、800〜900 ”Cで溶融
しないためこれを流動化することによりダストの還元時
のステッキングを防止でき、効率的な還元が行なえるこ
とによる。なお、砂粒としてはケイ砂、川砂等を用いる
ことができる。First, we will discuss the advantages of the fluidized bed reduction method using sand grains as a fluidized medium. Fluidized beds have easy particle handling and good particle mixing within the bed, so they can maintain a uniform temperature and advantageously perform heat exchange or transfer, making them ideal for reducing iron-based dust. is a suitable method. Furthermore, the reason why sand grains are used as a fluidizing medium is that in addition to being cheap, sand grains do not melt at 800 to 900 ''C, so by fluidizing them, it is possible to prevent sticking during dust reduction, which is an efficient method. This is because reduction can be performed. Note that silica sand, river sand, etc. can be used as the sand grains.
次にダストと砂粒の粒度条件について述べる。Next, we will discuss the particle size conditions of dust and sand grains.
ダストは還元時にステッキングが起こらないため、粒度
がほとんど変化することなく金属鉄粉となる。Since dust does not undergo sticking during reduction, it becomes metallic iron powder with almost no change in particle size.
従って、ダスト粒度は鉄粉の望ましい粒度と合わせるべ
きであり、1〜10μmに調整すべきである。また、1
〜10μmの微細ダストは還元が容易であり、後述の如
く砂粒流動層から流出分離しやすい利点も有する。ダス
トの粒度調整方法は特に限定するものではなく、通常の
ふるい分けで良い。Therefore, the dust particle size should match the desired particle size of iron powder and should be adjusted to 1-10 μm. Also, 1
Fine dust of ~10 μm is easy to reduce, and has the advantage of being easy to flow out and separate from the sand grain fluidized bed as described below. The method for adjusting the particle size of the dust is not particularly limited, and ordinary sieving may be used.
一方、砂粒の粒度を0.2〜0.3 mmに特定する理
由は以下の通りである。On the other hand, the reason why the grain size of the sand grains is specified to be 0.2 to 0.3 mm is as follows.
■流動化が容易であり、かつ流動層高さ等をコントロー
ルしやすいこと。■Easy to fluidize and easy to control the height of the fluidized bed.
■還元ガスの供給速度すなわちガス流速を適正にコント
ロールすることにより、砂粒を流動媒体として残留させ
、金属鉄粉のみを流動層から流出分離できること。■By appropriately controlling the supply rate of reducing gas, that is, the gas flow rate, the sand grains remain as a fluidized medium, and only the metallic iron powder can flow out and be separated from the fluidized bed.
このうち■は、流動層において粒子を激しく流動化する
と、流動化粒子のうち比較的微細な粒子のみ流動層外へ
飛び出してゆく現象を利用するものである。この際、粒
子の飛び出しは流動化ガスの流速が(1)式で与えられ
る終末速度より大きくなった場合に起こる。従って、流
動化ガスの流速をダストの終末速度以上、かつ砂粒の終
末速度以下にコントロールすることによりダストのみを
流出分離することができる。Of these, method (2) utilizes the phenomenon that when particles are violently fluidized in a fluidized bed, only relatively fine particles among the fluidized particles fly out of the fluidized bed. At this time, particles fly out when the flow velocity of the fluidizing gas becomes greater than the terminal velocity given by equation (1). Therefore, by controlling the flow rate of the fluidizing gas to be higher than the terminal velocity of the dust and lower than the terminal velocity of the sand grains, only the dust can be flowed out and separated.
u=g(ρ、−ρf)D2/18μ −(1)U:
粒子の終末速度(cm/5ee)
ρ、二粒子密度(g/c1113)
ρ、二原流体密度g/c1)
g二重力加速度= 980 (cm/ 5ee2)D
:粒子直径(cm)
μ :流体粘度(g/cIIl−8ec)(1)式によ
り、流動化ガス例えばH2を主成分とする還元ガスの流
速の範囲を計算すると、流動層内平均温度を850℃と
して0.14〜350cm/secとなる。この範囲に
おいて現実的な望ましい流速範囲を検討した結果、10
〜50cIIl/secが最適であることがわかった。u=g(ρ, -ρf)D2/18μ-(1)U:
Particle terminal velocity (cm/5ee) ρ, dual particle density (g/c1113) ρ, dual fluid density g/c1) g double force acceleration = 980 (cm/5ee2)D
: Particle diameter (cm) μ : Fluid viscosity (g/cIIl-8ec) When calculating the flow rate range of the fluidizing gas, for example, the reducing gas whose main component is H2, using equation (1), the average temperature in the fluidized bed is 850 It is 0.14 to 350 cm/sec in degrees Celsius. As a result of examining the realistic and desirable flow velocity range within this range, we found that 10
~50cIIl/sec was found to be optimal.
この範囲では砂粒が適度に流動化されるため、還元反応
を効率的に促進できるとともに、金属鉄粉のみを効率的
に流出分離できる。ガス流速が100m/sec未満で
は砂粒の流動化が不十分であり、ダストの還元効率が低
下する。またガス流速が50 cm7secMiになっ
ても、ダストの流動層内滞留時間が減少し、還元効率は
低下する。In this range, the sand grains are appropriately fluidized, so that the reduction reaction can be efficiently promoted and only the metallic iron powder can be efficiently separated. If the gas flow rate is less than 100 m/sec, the fluidization of sand grains will be insufficient and the dust reduction efficiency will decrease. Furthermore, even if the gas flow rate is 50 cm7 secMi, the residence time of the dust in the fluidized bed decreases, and the reduction efficiency decreases.
次に、流動層内温度条件について述べる。流動層内温度
はダスト中のFeoおよびF ez O3の還元速度と
密接な関係があり、その範囲について検討した。その結
果、800 ’C未満では還元速度が着しく低下するこ
と、および900℃超になると還元速度の増大効果が鈍
化することが明らかとなった。さらに900℃超では還
元時のステッキングも起こることがわかった。これらの
結果より適正温度範囲は800〜900℃となる。Next, the temperature conditions within the fluidized bed will be described. The temperature within the fluidized bed is closely related to the reduction rate of Feo and Fez O3 in dust, and the range thereof was investigated. As a result, it was revealed that below 800'C, the reduction rate drops sharply, and above 900C, the effect of increasing the reduction rate slows down. Furthermore, it was found that sticking occurs during reduction at temperatures above 900°C. From these results, the appropriate temperature range is 800 to 900°C.
還元ガスとしでN2を主成分としたガスを用いると好ま
しい理由は、N2がFeo 、 F ez0 、の同速
還元に有利であるためである。N2濃度としては70〜
100%が適正範囲であり、希釈ガスとしてはN2等の
不活性ガスを用いればよい。N2濃度が70%未満にな
ると還元速度が低下して好ましくない。ガス供給速度は
、前述の通り流動層内温度においてガス流速が10〜5
0 cm/seeになるようにコントロールすればよい
。The reason why it is preferable to use a gas containing N2 as a main component as the reducing gas is that N2 is advantageous for reducing Feo and Fez0 at the same rate. N2 concentration is 70~
100% is an appropriate range, and an inert gas such as N2 may be used as the diluent gas. When the N2 concentration is less than 70%, the reduction rate decreases, which is not preferable. As mentioned above, the gas supply rate is such that the gas flow rate is 10 to 5 at the temperature inside the fluidized bed.
It may be controlled so that it becomes 0 cm/see.
なお、本発明において鉄系ダストの流動層内への供給方
法は限定されるものではなく、スフ17゜−フィダーに
よる供給方法等を採用できる。この際、ダストは流動層
内の流動化多孔分散板の下部に供給しなければならない
。ここに供給されたダストは還元ガス上昇流にのって、
流動化多孔分散板中の孔を通り、流動層に導かれること
になる。In the present invention, the method of supplying the iron-based dust into the fluidized bed is not limited, and a method of supplying the iron-based dust using a 17° feeder or the like can be adopted. At this time, the dust must be supplied to the lower part of the fluidized porous dispersion plate in the fluidized bed. The dust supplied here rides the upward flow of reducing gas,
It passes through the holes in the fluidized porous distribution plate and is guided into the fluidized bed.
多孔分散板はステンレス製鉄板に直径1ma+程度の穴
を多数有した板であり、開化面積比は3%程度である。The porous dispersion plate is a stainless steel plate having many holes with a diameter of about 1 ma+, and the open area ratio is about 3%.
また、流動層の加熱方式も限定されるものではなく、電
気的方法等によって層内を800〜900℃に保持でき
ればよい。Moreover, the heating method of the fluidized bed is not limited either, as long as the inside of the bed can be maintained at 800 to 900° C. by an electrical method or the like.
さらに、流動層から飛び出した金属鉄粉は流動層と連結
したサイクロン等により容易に分離回収でトる。Furthermore, the metallic iron powder flying out of the fluidized bed can be easily separated and recovered using a cyclone or the like connected to the fluidized bed.
次に図面により本発明の実施態様について説明する。第
1図は本発明の実施態様を示す図である。Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of the present invention.
ダスト1はスクリューフイグー2を介して流動層内の流
動化多孔分散板3の下部へ供給される。−方、還元ガス
4は流動層下部より導入され、流動層内を上昇し、ダス
ト1と共に流動層5に到達する。流動層内は加熱ヒータ
ー6によって800〜900℃に保持され、砂粒7とダ
スト1が適度に攪拌流動化され、還元が終了し金属鉄粉
8が流動層5より流出してくる。流出した金属鉄粉8は
サイクロン9に導かれ、分離回収される。The dust 1 is supplied via a screw figure 2 to the lower part of the fluidized porous dispersion plate 3 in the fluidized bed. - On the other hand, the reducing gas 4 is introduced from the lower part of the fluidized bed, rises within the fluidized bed, and reaches the fluidized bed 5 together with the dust 1. The inside of the fluidized bed is maintained at 800 to 900° C. by a heating heater 6, and the sand grains 7 and dust 1 are appropriately stirred and fluidized, and when the reduction is completed, metallic iron powder 8 flows out from the fluidized bed 5. The metallic iron powder 8 that flows out is led to a cyclone 9 and separated and recovered.
(実施例)
内径1.0cm、全高さ100cmのステンレス製流動
層装置を製作した。流動化分散板は厚さ3+amのステ
ンレス製とし、直径1mmの孔を一辺1cmの正方形上
に配列した。この分散板の開孔率は約3%であり、流動
層装置下部から30cmの位置lこ設置した。また流動
層は炭化ケイ素発熱体により電気的に加熱でき、ダスト
供給装置としてスクリューフイグー、金属鉄粉回収装置
としてサイクロンおよびバグフィルタ−を装備した。(Example) A stainless steel fluidized bed apparatus with an inner diameter of 1.0 cm and a total height of 100 cm was manufactured. The fluidization distribution plate was made of stainless steel and had a thickness of 3+ am, and holes with a diameter of 1 mm were arranged in a square shape of 1 cm on each side. This dispersion plate had a porosity of about 3% and was installed at a position 30 cm from the bottom of the fluidized bed apparatus. The fluidized bed can be electrically heated by a silicon carbide heating element, and is equipped with a screw feeder as a dust supply device and a cyclone and bag filter as a metal iron powder recovery device.
この装置を用いて、以下の条件で鉄系ダストの還元をお
こなった。Using this equipment, iron-based dust was reduced under the following conditions.
鉄系ダスト・・・組成:FeO72% F ez0317% M、Fe 8% 粒度: 1〜10μ。Iron-based dust...composition: FeO72% F ez0317% M, Fe 8% Particle size: 1-10μ.
供給速度: l 5 g/ min
還元ガス ・・・組成:8290%、N210%供給速
度:ガス流速14.17
can/5ec(於850℃)
流動層 ・・・砂粒粒径:0.2〜0.3mm静止層
高さ:20cm
平均温度:830〜870°に
の処理により粒度1〜10μmの金属鉄粉を10.6g
/min *造することができた。これは原料ダスト中
の鉄分のうち93%を金属鉄粉として回収したことにな
り、極めて回収効率が高い。Supply rate: l 5 g/min Reducing gas...Composition: 8290%, N210% Supply rate: Gas flow rate 14.17 can/5ec (at 850℃) Fluidized bed...Sand grain size: 0.2-0 .3mm Static layer height: 20cm Average temperature: 10.6g of metallic iron powder with a particle size of 1-10μm by processing at 830-870°
/min * was able to be built. This means that 93% of the iron content in the raw material dust was recovered as metallic iron powder, which is an extremely high recovery efficiency.
また、金属鉄粉の金属化率もほとんど100%であった
。さらに金属鉄粉中には砂粒等異物混入も全くなかった
。Furthermore, the metallization rate of the metallic iron powder was almost 100%. Furthermore, there was no foreign matter such as sand particles mixed into the metallic iron powder.
(発明の効果)
以上詳述したように、本発明により鋼の精錬工程で発生
する鉄系ダストから金属鉄粉を効率的に製造することが
可能となる。これにより、鉄系グストを付加価値の高い
金属鉄粉として利用でき、鉄系ダストの新有勤利用法が
開拓される。さらに本発明は省資源効果へも波及するも
のであり、極めて有意義である。(Effects of the Invention) As detailed above, the present invention makes it possible to efficiently produce metallic iron powder from iron-based dust generated in the steel refining process. As a result, iron-based gust can be used as high-value-added metallic iron powder, and new ways of using iron-based dust will be developed. Furthermore, the present invention has a ripple effect on resource saving, which is extremely significant.
第1図は本発明の実施態様の概念図である。
1・・・ダスト、2・・・スクリューフィダー、3・・
・流動化多孔分散板、4・・・還元ガス、5・・・流動
層、6・・・加熱ヒーター、7・・・砂粒、8・・・金
属鉄粉、9・・・サイクロン。FIG. 1 is a conceptual diagram of an embodiment of the present invention. 1...Dust, 2...Screw feeder, 3...
- Fluidized porous dispersion plate, 4... Reducing gas, 5... Fluidized bed, 6... Heater, 7... Sand grains, 8... Metallic iron powder, 9... Cyclone.
Claims (2)
供給し、還元性ガスで還元することにより金属鉄粉を製
造するに際し、鉄系ダストの粒度を1〜10μmに調整
するとともに、流動媒体として0.2〜0.3mmの砂
粒を用い、流動層内温度を800〜900℃に保持し、
還元ガスを供給することにより、流動層から粒度1〜1
0μmの金属鉄粉を流出させることを特徴とする鉄系ダ
ストから金属鉄粉を製造する方法。(1) When producing metallic iron powder by supplying iron-based dust generated in the steel refining process into a fluidized bed and reducing it with a reducing gas, the particle size of the iron-based dust is adjusted to 1 to 10 μm, and , using sand grains of 0.2 to 0.3 mm as a fluidized medium, and maintaining the temperature in the fluidized bed at 800 to 900°C,
By supplying reducing gas, the particle size is reduced from the fluidized bed to 1 to 1.
A method for producing metallic iron powder from iron-based dust, characterized by flowing out metallic iron powder of 0 μm.
10〜50cm/secとすることを特徴とする請求項
1記載の鉄系ダストから金属鉄粉を製造する方法。(2) The method for producing metallic iron powder from iron-based dust according to claim 1, characterized in that the reducing gas has H_2 as its main component and its supply rate is 10 to 50 cm/sec.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11212488A JPH01283305A (en) | 1988-05-09 | 1988-05-09 | Production of metallic iron powder from ferrous dust |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11212488A JPH01283305A (en) | 1988-05-09 | 1988-05-09 | Production of metallic iron powder from ferrous dust |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01283305A true JPH01283305A (en) | 1989-11-14 |
Family
ID=14578795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11212488A Pending JPH01283305A (en) | 1988-05-09 | 1988-05-09 | Production of metallic iron powder from ferrous dust |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01283305A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06212226A (en) * | 1992-07-29 | 1994-08-02 | Kumsan Material Co Ltd | Powdery iron material for use as friction material and method for reduction thereof |
LU90972B1 (en) * | 2002-10-11 | 2004-04-13 | Wurth Paul Sa | Method of reducing fine metal oxide powder |
JP2007092099A (en) * | 2005-09-27 | 2007-04-12 | Nippon Steel Corp | Method for producing iron particle for producing hydrogen and method for producing gaseous hydrogen |
-
1988
- 1988-05-09 JP JP11212488A patent/JPH01283305A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06212226A (en) * | 1992-07-29 | 1994-08-02 | Kumsan Material Co Ltd | Powdery iron material for use as friction material and method for reduction thereof |
LU90972B1 (en) * | 2002-10-11 | 2004-04-13 | Wurth Paul Sa | Method of reducing fine metal oxide powder |
JP2007092099A (en) * | 2005-09-27 | 2007-04-12 | Nippon Steel Corp | Method for producing iron particle for producing hydrogen and method for producing gaseous hydrogen |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2070936C1 (en) | Method and device for treatment of gases and solid particles in fluidized bed | |
US2978315A (en) | Electrical heating process and apparatus | |
US2455915A (en) | Catalytic conversion of hydrocarbons | |
US2758021A (en) | Process of preparing metal powders by a fluo-solid reduction process | |
US4583299A (en) | Fluidization aid for cohesive materials | |
US3022989A (en) | Hydraulic cement process | |
US2538201A (en) | Method of reducing metallic oxides | |
JP3553499B2 (en) | Method and apparatus for heat treatment of fine particulate matter in a coarse-grained fluidized bed | |
US2874950A (en) | Hydraulic cement process | |
CA2128605A1 (en) | Method for reducing material containing metal oxide in solid phase | |
JPH01283305A (en) | Production of metallic iron powder from ferrous dust | |
GB2123440A (en) | Method of converting iron ore into molten iron | |
US3092490A (en) | Process and apparatus for the reduction of iron ore | |
US3295956A (en) | Ore reduction | |
JPH04210411A (en) | Method for reducing iron-based dust with high efficiency | |
JP2021188093A (en) | Facility and method for producing reduced iron | |
JPS61213305A (en) | Apparatus for producing ultrafine particle iron | |
US3135599A (en) | Production of uranium metal powder in a pulsed fluidized bed and powder resulting therefrom | |
JP2843907B2 (en) | Composite particle synthesis method by vibrating fluidized bed method | |
JPS61215210A (en) | Production of silicon carbide powder | |
WO1998038129A1 (en) | Production method of iron carbide | |
JP2501662B2 (en) | Control method of ore retention in circulating fluidized bed preliminary reduction furnace | |
JP2541019B2 (en) | Method for producing silicon nitride powder | |
JPH0159724B2 (en) | ||
JPS59176584A (en) | Disperser for gas of fluidized bed spare reducing furnace |