JPH0637655B2 - Operating method of circulating fluidized bed reduction equipment - Google Patents
Operating method of circulating fluidized bed reduction equipmentInfo
- Publication number
- JPH0637655B2 JPH0637655B2 JP34386289A JP34386289A JPH0637655B2 JP H0637655 B2 JPH0637655 B2 JP H0637655B2 JP 34386289 A JP34386289 A JP 34386289A JP 34386289 A JP34386289 A JP 34386289A JP H0637655 B2 JPH0637655 B2 JP H0637655B2
- Authority
- JP
- Japan
- Prior art keywords
- fluidized bed
- ore
- circulating fluidized
- reduction
- sticking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacture Of Iron (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、循環流動層還元炉を用いて鉱石、特に鉄鉱石
を還元する場合の操業方法に関する。TECHNICAL FIELD The present invention relates to an operating method for reducing ore, particularly iron ore, using a circulating fluidized bed reduction furnace.
高炉を用いた製鉄法は設備投資が大きく、原燃料面でも
良質の塊成鉱やコークスを必要とする。このため、これ
らの設備、原燃料面の制約を解消する溶融還元法が注目
されている。溶融還元法は溶融還元炉と予備還元炉との
2つの大きなプロセスによって構成されている。予備還
元炉には粒子循環装置を有する流動層、すなわち循環流
動層を応用する方法がある。かかる循環流動層還元法
は、例えば特開昭62−228878号公報に記載されているよ
うに、粉鉱石を装入し、さらにその底部から主流動ガス
である還元ガスを導入して流動層を形成するライザーを
有し、そのライザーの上方に固体−ガス分離のためのサ
イクロンを設け、さらに同サイクロンに連続してライザ
ー下部に連結したダウンカマーを設けた構造の装置にお
いて、流動層からの粉鉱石をサイクロンを経て再度流動
層に循環しつつ予備還元される。The iron manufacturing method using a blast furnace requires large capital investment and requires high quality agglomerated ore and coke in terms of raw fuel. Therefore, the smelting reduction method, which eliminates the restrictions on these facilities and raw fuels, has been drawing attention. The smelting reduction method is composed of two large processes, a smelting reduction furnace and a preliminary reduction furnace. In the preliminary reduction furnace, there is a method of applying a fluidized bed having a particle circulation device, that is, a circulating fluidized bed. Such a circulating fluidized bed reduction method, for example, as described in JP-A-62-228878, charged powdered ore, further introducing a reducing gas that is the main fluidized gas from the bottom of the fluidized bed. In a device having a riser to be formed, a cyclone for solid-gas separation above the riser, and a downcomer continuously connected to the cyclone at the bottom of the riser, a device from a fluidized bed The ore is pre-reduced while circulating through the cyclone to the fluidized bed again.
この流動層還元法においては、他の気泡流動層等に比べ
てガス流速が大きいために使用する鉱石粒子の粒度分布
幅を広くできること、生産性が高いという利点がある。In this fluidized bed reduction method, since the gas flow velocity is higher than that of other bubbling fluidized beds and the like, there are advantages that the particle size distribution width of the ore particles used can be widened and the productivity is high.
また、粉鉱石のガス還元速度は還元温度に大きく影響さ
れ、還元温度を高くすれば還元速度が大きくなり高効率
となる。ところが、還元温度の上昇はスティッキングの
発生を招き鉱石の流動が停止し操業ができなくなるとい
う問題がある。Further, the gas reduction rate of powdered ore is greatly affected by the reduction temperature, and if the reduction temperature is raised, the reduction rate increases and the efficiency becomes high. However, there is a problem that the increase of the reduction temperature causes sticking, the flow of the ore is stopped, and the operation cannot be performed.
このスティッキング現象は気泡流動層では「化学装置」
1986年6月号に記載されているように、還元過程におい
て鉱石表面に金属鉄の突起が生成し、焼結することによ
って粒子運動が不活発になり流動停止に至ると考えられ
ている。循環流動層においてはガス流速が大きいので流
動反応炉であるライザー内ではこの様なスティッキング
は起こらないが、還元温度を上昇させると粒子移動層で
あるダウンカマーでスティッキングする。This sticking phenomenon is a "chemical device" in a bubbling fluidized bed.
As described in the June 1986 issue, it is considered that during the reduction process, protrusions of metallic iron are generated on the surface of the ore and the sintering causes the particle motion to become inactive and the flow to stop. In the circulating fluidized bed, since the gas flow velocity is high, such sticking does not occur in the riser, which is a fluidized reactor, but when the reduction temperature is raised, sticking is performed by the downcomer, which is the particle moving bed.
このスティッキングは還元温度を低下させれば回避でき
るが、還元温度の低下は還元反応の進行が遅くなり、生
産性、ガス原単位の悪化をもたらすという欠点がある。This sticking can be avoided by lowering the reduction temperature, but the reduction of the reduction temperature has a drawback that the progress of the reduction reaction is slowed down, resulting in deterioration of productivity and gas basic unit.
本発明において解決すべき課題は、循環流動層還元法の
高生産性の特長を失うことなくスティッキングの発生を
防止する手段を見出すことにある。The problem to be solved in the present invention is to find means for preventing the occurrence of sticking without losing the high productivity feature of the circulating fluidized bed reduction method.
本発明は、循環流動層による粉鉱石の還元において、装
入粉鉱石を2mm粒径以上の粗粒が10〜40重量%、2〜0.
5mmの粒径を有する中間粒が15〜30重量%になるように
粒度調整し、かつ装入鉱石の平均T.Fe含有量が65重量%
以下にすることによって上記課題を解決した。また、好
ましくは0.5mm粒径以下の細粒のT.Fe含有量を65重量%
以下とすることが望ましい。According to the present invention, in the reduction of fine ore by a circulating fluidized bed, coarse ore having a particle diameter of 2 mm or more is contained in an amount of 10 to 40% by weight and 2 to 0.
The grain size is adjusted so that the intermediate grains having a grain size of 5 mm are 15 to 30% by weight, and the average T.Fe content of the charged ore is 65% by weight.
The above problems have been solved by the following. Further, preferably, the T.Fe content of fine particles having a particle size of 0.5 mm or less is 65% by weight.
The following is desirable.
本発明は、以下の知見に基づいて完成した。 The present invention has been completed based on the following findings.
循環流動層還元装置におけるダウンカマー内のクラスタ
ーの発生は、装入鉱石の粒度分布と鉄分品位(T.Fe含有
量)に影響される。鉱石の粒度分布の影響は以下の通り
である。粒度分布幅が狭い場合には粗粒程クラスターは
生成しにくく、0.5mm以下の細粒は巨大クラスターを生
成しやすくする。この様な関係は鉱石の鉄分品位が高く
なるとよりクラスターを生成しやすくなり、T.Feが65重
量%を越えると特にクラスターの生成が顕著になる。こ
のため、鉄分品位が高い鉱石の場合、一定以上の0.5mm
以下の細粒が存在すると巨大クラスターの生成が顕著に
なり操業トラブルが発生する。The generation of clusters in downcomers in a circulating fluidized bed reduction system is affected by the particle size distribution and iron content (T.Fe content) of the charged ore. The influence of the particle size distribution of the ore is as follows. When the particle size distribution width is narrow, coarser particles are less likely to generate clusters, and finer particles of 0.5 mm or less are more likely to generate giant clusters. Such a relationship makes it easier for clusters to form when the iron content of the ore is high, and especially when T.Fe exceeds 65% by weight. Therefore, in the case of ores with high iron content, a certain value of 0.5 mm
If the following fine particles are present, the formation of huge clusters will become noticeable and operation problems will occur.
一方、2mm径以上の粗粒と、2〜0.5mmの粒径を有する
中間粒をそれぞれ10〜40重量%と15〜30重量%の範囲内
にあるように粒度分布を調整することによってクラスタ
ーの生成を抑制できる。特に、中間粒は粗粒間に存在す
ることによって粒子接点の応力を分散させる機能を有
し、これによってクラスターの生成を抑制する。したが
って、粗粒と細粒の間に存在する中間粒の鉄分品位が低
ければクラスターの生成はより抑制される。On the other hand, coarse particles with a diameter of 2 mm or more and intermediate particles with a particle diameter of 2 to 0.5 mm are adjusted to have a particle size distribution of 10 to 40% by weight and 15 to 30% by weight, respectively. Generation can be suppressed. In particular, the intermediate particles have a function to disperse the stress at the particle contact points by being present between the coarse particles, thereby suppressing the formation of clusters. Therefore, if the iron content of the intermediate grains existing between the coarse grains and the fine grains is low, the formation of clusters is further suppressed.
第1図に鉄分品位とスティッキングの関係を示す。ここ
で、スティッキング指数とはスティッキングによって装
入原料粒度の最大径以上になった鉱石の割合を示す。T.
Feが65重量%を越えるとスティッキングしやすくなるこ
とがわかる。次に、第2図に鉱石粒子径とスティッキン
グの関係を示す。細粒ほどスティッキングしやすいこと
がわかる。Figure 1 shows the relationship between iron quality and sticking. Here, the sticking index indicates the proportion of ore that has become equal to or larger than the maximum particle size of the charging raw material due to sticking. T.
It can be seen that sticking tends to occur when the Fe content exceeds 65% by weight. Next, Fig. 2 shows the relationship between ore particle size and sticking. It can be seen that the finer the particles, the easier the sticking.
中間粒の混合によるスティッキングの変化を第3図に示
す。中間粒が15〜30重量%の範囲でスティッキングの抑
制効果がある。このとき、中間粒の鉱石のT.Fe含有量を
低下させるとスティッキングの抑制効果が顕著になる。
第3図において示したAの鉱石混合割合の場合はクラス
ターが生成せずに操業できる還元温度は850℃であっ
た。また、Bの鉱石混合割合の場合はクラスターが生成
せずに操業できる還元温度は900℃以上であった。Fig. 3 shows the change in sticking due to the mixing of the intermediate particles. When the intermediate particles are in the range of 15 to 30% by weight, sticking is suppressed. At this time, if the T.Fe content of the intermediate-grained ore is reduced, the effect of suppressing sticking becomes remarkable.
In the case of the ore mixing ratio of A shown in Fig. 3, the reduction temperature at which the operation was possible without forming clusters was 850 ° C. Further, in the case of the B ore mixing ratio, the reduction temperature at which the operation was possible without forming clusters was 900 ° C or higher.
以上のように、装入鉱石の粒度調整によってクラスター
の生成を抑制することができる。さらに、中間粒のT.Fe
含有量を低くすることによってよりクラスターの生成を
抑制できる。As described above, the formation of clusters can be suppressed by adjusting the particle size of the charged ore. In addition, the intermediate grain T.Fe
By lowering the content, generation of clusters can be further suppressed.
本発明によって以下の効果を奏することができる。 The following effects can be achieved by the present invention.
(1) 粒度分布の調整によってスティッキングの発生を
防止できることから、循環流動層の還元温度の上昇が可
能となり、ガス利用率を上げることができる。(1) Since the occurrence of sticking can be prevented by adjusting the particle size distribution, the reduction temperature of the circulating fluidized bed can be increased and the gas utilization rate can be increased.
(2) 循環流動層の生産性をさらに上昇できる。(2) The productivity of the circulating fluidized bed can be further increased.
(3) 溶融還元法の予備還元プロセスに循環流動層を適
用すれば同一のガス量でもより予備還元率を上げること
ができるので、溶銑製造における石炭原単位を低下でき
る。(3) If the circulating fluidized bed is applied to the preliminary reduction process of the smelting reduction method, the preliminary reduction rate can be further increased even with the same gas amount, so that the coal basic unit in hot metal production can be reduced.
第1図は鉄分品位とスティッキングの関係を示す図、第
2図は鉱石粒子径とスティッキングの関係を示す図、第
3図は中間粒の混合によるスティッキングの変化を示す
図である。FIG. 1 is a diagram showing a relation between iron quality and sticking, FIG. 2 is a diagram showing a relation between ore particle diameter and sticking, and FIG. 3 is a diagram showing a change in sticking due to mixing of intermediate grains.
Claims (1)
した流動層塔内に還元ガスを主要な流動性ガスとして導
入して流動還元せしめ、還元鉱石を同塔の上方から取り
出して同塔の下方に循環供給する循環流動層還元法にお
いて、2mm粒径以上の粗粒が10〜40重量%、2〜0.5mm
の粒径が15〜30重量%の粒度構成を有する粉鉱石を装入
する循環流動層還元装置の操業方法。1. A reducing gas is introduced as a main fluidizing gas into a fluidized bed column charged with a powdered ore having a T.Fe content of 65% by weight or less for fluidized reduction, and the reducing ore is provided above the column. In the circulating fluidized bed reduction method, the coarse particles having a particle size of 2 mm or more are 10 to 40% by weight, and 2 to 0.5 mm.
Of operating a circulating fluidized bed reduction apparatus in which powdered ore having a particle size composition of 15 to 30% by weight is charged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34386289A JPH0637655B2 (en) | 1989-12-26 | 1989-12-26 | Operating method of circulating fluidized bed reduction equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34386289A JPH0637655B2 (en) | 1989-12-26 | 1989-12-26 | Operating method of circulating fluidized bed reduction equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03197610A JPH03197610A (en) | 1991-08-29 |
JPH0637655B2 true JPH0637655B2 (en) | 1994-05-18 |
Family
ID=18364812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34386289A Expired - Lifetime JPH0637655B2 (en) | 1989-12-26 | 1989-12-26 | Operating method of circulating fluidized bed reduction equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0637655B2 (en) |
-
1989
- 1989-12-26 JP JP34386289A patent/JPH0637655B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03197610A (en) | 1991-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0748391B1 (en) | Fluidized bed type reduction apparatus for iron ore particles and its use for reducing iron ore particles | |
US3135598A (en) | Rapid direct reduction method of iron oxide | |
US2864686A (en) | Method of treating iron oxide fines | |
JPH0637655B2 (en) | Operating method of circulating fluidized bed reduction equipment | |
US5919281A (en) | 2-stage fluidized bed furnace for pre-reducing fine iron ore and method for pre-reducing fine iron ore using the furnace | |
KR940001137B1 (en) | Prereduction furnace of circulation type | |
US3251678A (en) | Fluid bed process | |
JPH0637656B2 (en) | A method for suppressing sticking during reduction of fine ore by a circulating fluidized bed. | |
US6235079B1 (en) | Two step twin-single fluidized bed pre-reduction apparatus for pre-reducing fine iron ore, and method therefor | |
CA1204943A (en) | Process of producing sponge iron by a direct reduction of iron oxide-containing material | |
CA2534863A1 (en) | Process and plant for reducing solids containing iron oxide | |
WO1998038129A1 (en) | Production method of iron carbide | |
US3759697A (en) | Iron ore reduction process | |
JPS62230912A (en) | Vertical type fluidized reduction method | |
JP3874320B2 (en) | Fluidized reduction method of high crystal water powder iron ore | |
JPH03294410A (en) | Device for blowing gas in circulating fluidized bed reduction apparatus | |
JPS59104411A (en) | Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace | |
JPH0637662B2 (en) | Fluidized bed pre-reduction method for powdered ore | |
JPS63103008A (en) | Blast furnace operational method using high al2o3 ore | |
JPH077313Y2 (en) | Pre-reduction equipment for smelting reduction of iron ore | |
JPH08239708A (en) | Fluidized reduction method of powder iron ore | |
JP2724208B2 (en) | Blast furnace operation method | |
JPH062893B2 (en) | Method for producing molten metal from powdered ore | |
JPH0320443B2 (en) | ||
JPH02107710A (en) | Method for operating circulating type fluidized bed |