JPH0637662B2 - Fluidized bed pre-reduction method for powdered ore - Google Patents

Fluidized bed pre-reduction method for powdered ore

Info

Publication number
JPH0637662B2
JPH0637662B2 JP32134889A JP32134889A JPH0637662B2 JP H0637662 B2 JPH0637662 B2 JP H0637662B2 JP 32134889 A JP32134889 A JP 32134889A JP 32134889 A JP32134889 A JP 32134889A JP H0637662 B2 JPH0637662 B2 JP H0637662B2
Authority
JP
Japan
Prior art keywords
fluidized bed
ore
reduction
powdered
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32134889A
Other languages
Japanese (ja)
Other versions
JPH03183715A (en
Inventor
和彦 佐藤
宏 板谷
秀行 桃川
崇 牛島
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP32134889A priority Critical patent/JPH0637662B2/en
Publication of JPH03183715A publication Critical patent/JPH03183715A/en
Publication of JPH0637662B2 publication Critical patent/JPH0637662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は粉状鉱石の流動層予備還元方法に関し、流動層
予備還元の操業及び生産性の安定化を図るものである。
TECHNICAL FIELD The present invention relates to a fluidized bed pre-reduction method for powdered ores, and aims to stabilize the operation and productivity of the fluidized bed pre-reduction.

〔従来の技術〕 近年、酸化鉄又は各種金属酸化物を含有する鉱石原料
は、塊状鉱石が減少して粉状もしくは粒状の鉱石が多く
なっており、その傾向は今後ますます顕著になると予想
される。
[Prior Art] In recent years, in ore raw materials containing iron oxide or various metal oxides, massive ores are decreasing and powdery or granular ores are increasing, and this tendency is expected to become more prominent in the future. It

このような現状にかんがみ、粉粒状鉱石を直接使用して
製練する技術が発展したきた。例えば、流動層予備還元
炉と竪型溶融還元炉との結合に係る装置を用い、粉粒状
鉱石から直接溶融金属を製造する方法がそれである。こ
の方法は、金属酸化物含有鉱石の予備還元に必要な還元
剤及び熱の供給源として、溶融還元炉の高温排ガスを利
用して流動層形式により予備還元する方法である。この
方法によれば、粉粒状鉱石を塊成化することなく直接原
料として使用することができるので低コストで溶融金属
を製造することが可能である。
In view of such a current situation, the technology of directly using powdery granular ore for smelting has been developed. For example, there is a method of directly producing molten metal from powdered ore using an apparatus relating to a fluidized bed preliminary reduction furnace and a vertical smelting reduction furnace. This method is a method of performing pre-reduction in a fluidized bed form using high temperature exhaust gas of a smelting reduction furnace as a supply source of a reducing agent and heat necessary for pre-reduction of ore containing metal oxide. According to this method, powdered ore can be directly used as a raw material without agglomerating, so that molten metal can be produced at low cost.

第2図に流動層を用いた粉粒状鉱石予備還元装置を示
す。
FIG. 2 shows a powdery granular ore pre-reduction apparatus using a fluidized bed.

予備還元炉1は溶融で粉粒状鉱石原料供給口4を具えて
おり、鉱石ホッパ7からの鉱石を炉内に供給する供給装
置6が設置してある。また、炉下部には鉱石を流動化さ
せるガス分散板3を設ける。分散板の下方には、高温の
還元ガス供給口8が開口している。還元ガスとしては、
加熱炉、還元ガス発生炉あるいは溶融還元炉から発生し
た高温の排ガスを使用する。このガスは還元ガスとして
の作用および流動化ガスとしての作用をなすものであ
る。この還元ガスを炉内に導入することにより、ガス分
散板3上の粉粒状鉱石は流動化して、流動層2を形成し
流動化還元することができる。予備還元炉1から排出口
10を通じて排出される流動層2からの排出ガス中に
は、粉鉱石を多量に含有するのでサイクロン11で捕集
分離しダウンカマ12を経て循環経路13を通って流動
層2へ循環する。一方、予備還元生成物は、排出管5よ
り排出され、次工程の溶融還元炉などへ移送される。
The preliminary reduction furnace 1 is equipped with a powdery ore raw material supply port 4 by melting, and a supply device 6 for supplying ore from an ore hopper 7 into the furnace is installed. Further, a gas dispersion plate 3 for fluidizing the ore is provided in the lower part of the furnace. A high-temperature reducing gas supply port 8 is opened below the dispersion plate. As the reducing gas,
High temperature exhaust gas generated from a heating furnace, a reducing gas generating furnace or a smelting reducing furnace is used. This gas acts as a reducing gas and a fluidizing gas. By introducing this reducing gas into the furnace, the granular ore on the gas dispersion plate 3 is fluidized to form the fluidized bed 2 and can be fluidized and reduced. The exhaust gas from the fluidized bed 2 discharged from the preliminary reduction furnace 1 through the exhaust port 10 contains a large amount of fine ore, so it is collected and separated by the cyclone 11 and passed through the downcomer 12 and the circulation path 13 to pass through the fluidized bed. Cycle to 2. On the other hand, the preliminary reduction product is discharged from the discharge pipe 5 and transferred to a smelting reduction furnace or the like in the next step.

特開昭62−230910号公報には、従来のバブリン
グ型流動層に代る流動化方法として、流動層のガス流速
を粒子終端速度以上とし、予備還元鉱粉を流動層からガ
スに同伴させて排出しサイクロンで捕集し、捕集した予
備還元鉱はクローズドサーキットで粒子循環装置により
連続的に流動層予備還元炉に戻し循環流動させつつ、予
備還元する方法が提案されている。
Japanese Patent Laid-Open No. 62-230910 discloses a fluidization method which replaces the conventional bubbling type fluidized bed, in which the gas flow velocity in the fluidized bed is set equal to or higher than the particle terminal velocity, and pre-reduced mineral powder is allowed to accompany the gas from the fluidized bed. A method has been proposed in which the discharged pre-reduction ore is collected by a cyclone, and the collected pre-reduction ore is continuously returned to the fluidized-bed pre-reduction furnace by a particle circulation device in a closed circuit while being circulated and fluidized, while being pre-reduced.

ところが上記の循環流動層予備還元方法においては流動
層内のガス流速や粉状鉱石の銘柄によっては流動層内で
の粒子間の衝突や鉱石自体の熱割れ、還元粉化等によ
り、還元鉱石粉に著しい粉化が発生し、サイクロンの集
塵効率低下や流動化状態の悪化により操業が不安定とな
り生産性も確保できないという新たな問題が生じた。
However, in the above circulating fluidized bed pre-reduction method, depending on the gas flow rate in the fluidized bed and the brand of powdered ore, collision of particles in the fluidized bed, thermal cracking of the ore itself, reduction pulverization, etc. There was a new problem that the operation became unstable and the productivity could not be secured due to the remarkable dusting of the cyclone and the deterioration of the dust collection efficiency of the cyclone and the deterioration of the fluidization state.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、溶融還元炉から発生する高温の還元性排ガス
を粉状鉱石を予備還元する流動層予備還元炉に導入する
一方、流動層予備還元炉には流動層からガスに同伴して
飛び出した予備還元鉱粉を捕集するサイクロンを備え、
このサイクロン下部には捕集した予備還元鉱粉を溜める
ダウンカマ及びダウンカマ内の予備還元鉱粉を流動層予
備還元炉に戻す粒子循環経路を備える循環流動層予備還
元方法において、上述の問題の解決を図るためのもので
流動層内のガス流速を適正に調節することにより予備還
元鉱粉の粉化を抑制する方法を提供することを目的とす
る。
The present invention introduces a high-temperature reducing exhaust gas generated from a smelting reduction furnace into a fluidized bed preliminary reduction furnace that preliminarily reduces powdery ore, while in the fluidized bed preliminary reduction furnace, gas is ejected along with the gas from the fluidized bed. Equipped with a cyclone that collects pre-reduced mineral powder,
In the circulating fluidized bed preliminary reduction method, which comprises a downcomer for accumulating the collected preliminary reduced ore powder in the lower part of the cyclone and a particle circulation path for returning the prereduced ore powder in the downcomer to the fluidized bed preliminary reduction furnace, the above-mentioned problem is solved. It is intended to provide a method for suppressing the pulverization of the pre-reduced mineral powder by appropriately adjusting the gas flow velocity in the fluidized bed.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、上記のような流動層予備還元方法において、
流動層予備還元炉内のガス流速を、 ) 粉状鉱石の結晶水含有量 粉状鉱石の粒子径 に応じて定められる範囲に調節することを特徴とする粉
状鉱石の流動層予備還元方法である。この流速の範囲は
各炉に応じて実測によって定めることができる。
The present invention is a fluidized bed preliminary reduction method as described above,
In the fluidized bed pre-reduction method, the gas flow velocity in the fluidized bed pre-reduction furnace is adjusted to a range defined by the content of water of crystallization of the powdered ore and the particle size of the powdered ore. is there. The range of this flow velocity can be determined by actual measurement according to each furnace.

〔作用〕[Action]

粉状鉱石から直接溶融金属を製造する方法として溶融還
元製鉄法が数多く提案されている。粉状鉱石を流動層予
備還元炉に供給し、溶融還元炉から排出される高温の還
元性排ガスをこの流動層予備還元炉に導入して粉状鉱石
を予備還元し、予備還元した粉状鉱石を溶融還元炉で溶
融還元することによって燃料原単位を低減することがで
きることは公知技術として知られている。
Many smelting reduction ironmaking methods have been proposed as a method for directly producing molten metal from powdered ore. Powdered ore is supplied to a fluidized bed pre-reduction furnace, high-temperature reducing exhaust gas discharged from the smelting reduction furnace is introduced into this fluidized bed pre-reduction furnace to pre-reduce the powdered ore, and pre-reduced powdered ore It is known as a known technique that the fuel consumption rate can be reduced by smelting and reducing smelting in a smelting reduction furnace.

循環流動層を用いる流動化方法においては、流動層内の
ガス流速が粒子の終端速度以上あるため、ガス流速の範
囲や粉状鉱石の銘柄によっては流動層内で粒子間の衝突
や鉱石の熱割れ、還元粉化が生ずる。これ等により還元
鉱石粉に著しい粉化が発生し、サイクロンの集塵効率低
下や流動化状態の悪化を招き、その結果生産性が低下す
る。
In a fluidization method using a circulating fluidized bed, the gas flow velocity in the fluidized bed is higher than the terminal velocity of the particles.Therefore, depending on the range of gas flow velocity and the brand of powdered ore, collision between particles and heat of the ore in the fluidized bed may occur. Cracking and reduction powdering occur. As a result, the reduced ore powder is remarkably pulverized, which leads to a reduction in the dust collection efficiency of the cyclone and deterioration of the fluidization state, resulting in a reduction in productivity.

そこで本発明は者らは上記の問題解決を図るため、種々
の調査を行つた。その結果予備還元鉱粉の粉化は粉状鉱
石中の結晶水含有量が多いほど、また流動層内のガス流
速が速くなるほど進行することを見出した。そこで粉状
鉱石の平均粒子径と粉状鉱石の結晶水含有量に応じて流
動層ガス流速を適正に調節することにより還元鉱粉の粉
化を抑制し、安定な循環予備流動層還元炉操業を達成可
能にした。
Therefore, the present inventors conducted various investigations in order to solve the above problems. As a result, it was found that the pulverization of the pre-reduced ore powder progressed as the content of water of crystallization in the powdered ore increased and the gas flow velocity in the fluidized bed increased. Therefore, by appropriately adjusting the fluidized bed gas flow velocity according to the average particle size of the powdered ore and the water content of crystallization of the powdered ore, it is possible to suppress the pulverization of the reduced ore powder and to operate the stable circulating pre-fluidized bed reduction furnace. Made achievable.

第1図はこのことを示すもので粉状鉱石の平均粒子径に
対する流動層ガス流速の関係を粉状鉱石中の結晶水含有
量をパラメータとして示したグラフである。図中CWは
粉状鉱石の結晶水含有%を示す。CWが0.5%より多
いか少ないかに応じて、平均粒子径に対応する適正な流
動層ガス流速を定めることができる。第1図から明らか
なように、結晶水含有%の少ない粉状鉱石ほど流動層ガ
ス流速を高めることができ、結晶水含有%の多い時は低
くしなければならない。
FIG. 1 shows this, and is a graph showing the relationship between the average particle size of powdered ores and the fluidized-bed gas flow velocity with the water content of crystallization in the powdered ores as a parameter. In the figure, CW indicates the content of crystal water in the powdery ore. An appropriate fluidized bed gas flow velocity corresponding to the average particle diameter can be determined depending on whether CW is higher or lower than 0.5%. As is clear from FIG. 1, the fluidized bed gas flow velocity can be increased as the powdery ore containing a smaller amount of crystal water is contained, and must be lowered when the contained amount of crystal water is large.

例えば粉状鉱石の平均粒子径をx(μm)、流動層ガス
速度(空搭速度)をv(m/s)とすれば CW<0.5%のとき 0.012x+5.1≧v≧0.012x+3.6 CW>0.5%のとき 0.012x+3.6>v≧0.012x+1.3 とする。
For example, if the average particle diameter of the powdered ore is x (μm) and the fluidized bed gas velocity (empty velocity) is v (m / s), then CW <0.5% 0.012x + 5.1 ≧ v ≧ 0 0.012x + 3.6> v ≧ 0.012x + 1.3 when CW> 0.5%.

〔実施例〕〔Example〕

実施例として、下記装置を用いて操業試験を行った。 As an example, an operation test was performed using the following device.

試験条件及びその成績を第1表に示した。 The test conditions and the results are shown in Table 1.

第1表に示す通り、結晶水含有量と粒子の径に対応する
適切な流速で操業した実施例1、3では適切な予備還元
率を得ることができたが、適切でない流速の場合は予備
還元率が低くなった。
As shown in Table 1, in Examples 1 and 3 which were operated at an appropriate flow rate corresponding to the water content of crystallization and the particle diameter, an appropriate preliminary reduction rate could be obtained, but in the case of an inappropriate flow rate, The reduction rate became low.

〔発明の効果〕〔The invention's effect〕

本発明によれば予備還元鉱生産量15トン/日が安定的
に生産可能となり従来より生産性が30%以上向上する
効果がある。
According to the present invention, the preliminary reduction ore production amount of 15 tons / day can be stably produced, and there is an effect that the productivity is improved by 30% or more as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

第1図は粉状鉱石の平均粒子径に対する流動層ガス流速
の関係を粉状鉱石中の結晶水含有量をパラメータとして
示したグラフ、第2図は流動層予備還元装置のフローシ
ートである。 1……予備還元炉 2……流動層 3……ガス分散板 4……原料供給口 5……排出管 6……供給装置 7……鉱石ホッパ 8……ガス供給口 10……排出口 11……サイクロン 12……ダウンカマ 13……循環経路
FIG. 1 is a graph showing the relationship between the average particle size of powdered ores and the fluidized bed gas flow velocity with the content of water of crystallization in the powdered ores as a parameter, and FIG. 2 is a flow sheet of the fluidized bed preliminary reduction device. 1 ... Preliminary reduction furnace 2 ... Fluidized bed 3 ... Gas distribution plate 4 ... Raw material supply port 5 ... Discharge pipe 6 ... Supply device 7 ... Ore hopper 8 ... Gas supply port 10 ... Discharge port 11 ...... Cyclone 12 ...... Downcomer 13 ...... Circulation path

フロントページの続き (72)発明者 牛島 崇 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内Front page continuation (72) Inventor Takashi Ushijima 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流動層予備還元炉と、流動層からガスに同
伴して排出した予備還元鉱粉を捕集するサイクロンと、
捕集した予備還元鉱粉を溜めるダウンカマと、ダウンカ
マ内の予備還元鉱粉を流動層予備還元炉に戻す循環経路
を備えた装置を用いて、粉状鉱石を循環流動層予備還元
するに当り、 粉状鉱石の結晶水含有量及び粉状鉱石の粒子径に応じて
定められる範囲に流動層予備還元炉内のガス流速を調節
することを特徴とする粉状鉱石の流動層予備還元方法。
1. A fluidized bed pre-reduction furnace, and a cyclone for collecting the pre-reduced mineral powder discharged from the fluidized bed along with gas.
Using a device equipped with a downcomer that stores the collected pre-reduced ore powder and a circulation path that returns the pre-reduced ore powder in the downcomer to the fluidized-bed pre-reduction furnace, when preliminarily reducing the ore in a circulating fluidized bed, A fluidized bed pre-reduction method for a powdered ore, which comprises adjusting a gas flow rate in a fluidized bed pre-reduction furnace within a range determined according to the water content of crystallization of the powdered ore and the particle size of the powdered ore.
JP32134889A 1989-12-13 1989-12-13 Fluidized bed pre-reduction method for powdered ore Expired - Lifetime JPH0637662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32134889A JPH0637662B2 (en) 1989-12-13 1989-12-13 Fluidized bed pre-reduction method for powdered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32134889A JPH0637662B2 (en) 1989-12-13 1989-12-13 Fluidized bed pre-reduction method for powdered ore

Publications (2)

Publication Number Publication Date
JPH03183715A JPH03183715A (en) 1991-08-09
JPH0637662B2 true JPH0637662B2 (en) 1994-05-18

Family

ID=18131581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32134889A Expired - Lifetime JPH0637662B2 (en) 1989-12-13 1989-12-13 Fluidized bed pre-reduction method for powdered ore

Country Status (1)

Country Link
JP (1) JPH0637662B2 (en)

Also Published As

Publication number Publication date
JPH03183715A (en) 1991-08-09

Similar Documents

Publication Publication Date Title
EP0748391B1 (en) Fluidized bed type reduction apparatus for iron ore particles and its use for reducing iron ore particles
EP0316819B1 (en) Metal-making process and apparatus involving the smelting reduction of metallic oxides
RU2143007C1 (en) Double-stage furnace with fluidized bed for preliminarily reducing finely divided iron ore and method for preliminarily reducing finely divided iron ore at using such furnace
JP2608736B2 (en) Method of charging exhaust gas dust in smelting reduction furnace
JPH0637662B2 (en) Fluidized bed pre-reduction method for powdered ore
JP2620793B2 (en) Preliminary reduction furnace for smelting reduction
JPH0699734B2 (en) Circulating fluidized bed type pre-reduction furnace for fine iron ore
AU717927B2 (en) Two step twin-single fluidized bed type pre-reduction apparatus for pre-reducing fine iron ore, and method therefor
JP2579785B2 (en) Pre-reduction device for smelting reduction
CN107686869A (en) A kind of pneumoelectric mixed type gas-based shaft kiln reduces system and method
JPH01184211A (en) Fluidized bed reduction device for ore
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JP2659589B2 (en) Circulating fluidized bed reduction device
JPH077313Y2 (en) Pre-reduction equipment for smelting reduction of iron ore
JPH06145749A (en) Method for reducing ore by circulating fluidized bed
JPH0788523B2 (en) Operating method of circulating fluidized bed reduction equipment
JPH03138309A (en) Apparatus for reducing ore
JPS59104410A (en) Fluidized bed type preliminary reducing furnace
JPH01129916A (en) Method for charging ore in smelting reduction furnace
JP2502976B2 (en) Iron ore preliminary reduction device
JPH09159371A (en) Outside particle circulating device for circulating fluidized bed reducing device
JPH01100227A (en) Method for reducing fluidized bed of fine powdered ore
JPS63103008A (en) Blast furnace operational method using high al2o3 ore
JPH0324213A (en) Treatment of drop ore of preliminary reduction furnace
JPH03294410A (en) Device for blowing gas in circulating fluidized bed reduction apparatus