JPH08239708A - Fluidized reduction method of powder iron ore - Google Patents

Fluidized reduction method of powder iron ore

Info

Publication number
JPH08239708A
JPH08239708A JP4091795A JP4091795A JPH08239708A JP H08239708 A JPH08239708 A JP H08239708A JP 4091795 A JP4091795 A JP 4091795A JP 4091795 A JP4091795 A JP 4091795A JP H08239708 A JPH08239708 A JP H08239708A
Authority
JP
Japan
Prior art keywords
ore
iron
gas
reduction
oxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4091795A
Other languages
Japanese (ja)
Inventor
Kazuya Kunitomo
和也 国友
Yasushi Takamoto
泰 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4091795A priority Critical patent/JPH08239708A/en
Publication of JPH08239708A publication Critical patent/JPH08239708A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To greatly improve reduction ratio by oxidizing the iron whose oxidation number is 2 in the powder iron ore into the iron whose oxidation number is 3 prior to the reduction to improve the reducibility of the ore. CONSTITUTION: A raw material ore in which the ratio of the iron whose oxidation number is 2 in the total iron ratio is >=10wt.% is charged in an iron ore oxidizing furnace 1 from an oxidized raw material feeding port 2, and an oxidizing gas 4 is introduced from a gas diffusing plate 3 for blowing the oxidizing gas at the bottom part of the oxidizing furnace to form a fluidized layer to oxidize the powder ore through the solid-gas reaction. The oxidized ore 5 is discharged from a discharge tube 6 and the exhaust gas 7 from an oxidizing furnace is discharged from the top of the oxidizing furnace. The oxidized ore 5 is charged from a reducing raw material feeding port 19 of a fluidized reducing equipment 10 into a riser 11 through a relay hopper 20, the reducing gas 13 is introduced from a reducing gas blowing nozzle 12 at the bottom part of the riser to form a fluidized layer, and the powder ore is reduced through the solid-gas reaction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化数2の鉄を含む粉
鉄鉱石を流動層において還元する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reducing powdered iron ore containing iron having an oxidation number of 2 in a fluidized bed.

【0002】[0002]

【従来の技術】鉄鉱石は、酸化数3の鉄からなるFe2
3 を主成分とする赤鉄鉱系の鉱石が一般的である。ま
た、酸化数2の鉄からなるFeOもしくはFe3 4
含有割合が比較的高い磁鉄鉱もしくは磁赤鉄鉱系の鉱石
も存在する。明確な基準はないものの、おおよそ、全鉄
分比率に占める酸化数2の鉄の割合が数%以下であれば
赤鉄鉱系の鉱石、10〜20%程度であれば磁赤鉄鉱系
の鉱石、それ以上であれば磁鉄鉱系の鉱石といわれてい
る。これら様々な性状の鉱石を対象として還元操作を行
う技術が工夫されてきている。
2. Description of the Related Art Iron ore is Fe 2 composed of iron with an oxidation number of 3.
Hematite-based ores containing O 3 as a main component are generally used. There are also magnetite or maghemite series ores having a relatively high FeO or Fe 3 O 4 content of iron having an oxidation number of 2. Although there is no clear standard, if the proportion of iron with an oxidation number of 2 in the total iron content is less than a few percent, hematite ore, if about 10 to 20%, maghemite ore, it If it is above, it is said to be magnetite ore. Techniques for performing reduction operations on ores of these various properties have been devised.

【0003】粉鉄鉱石を還元する流動層は、例えば特開
平1−111807号公報に開示されているように、溶
融還元による銑鉄の製造に際しての粉状鉱石の予備還元
装置として使用されている。この流動層は循環流動層と
呼ばれる種類で、上部に粉状鉱石投入部と底部に還元ガ
ス導入部とを設けたライザーと、その外側に設けたサイ
クロンとサイクロンによって捕集された粉状鉱石をライ
ザーに戻すためのダウンカマーとから構成されている。
また、特開昭62−228889号公報には、鉄鉱石を
流動層予備還元炉で還元するに先立って予熱し、プロセ
スの効率を向上させる技術が開示されている。更に、特
公平6−37653号公報には、鉄鉱石を高効率で還元
することを狙い、ガス流速や鉱石の循環流量を調整して
流動還元炉内の粒子体積分率を適切に維持する技術が開
示されている。
A fluidized bed for reducing powdered iron ore is used as a preliminary reduction device for powdered ore in the production of pig iron by smelting reduction, as disclosed in, for example, JP-A-1-111807. This fluidized bed is of a type called a circulating fluidized bed, and comprises a riser having a powdery ore charging section at the top and a reducing gas introducing section at the bottom, a cyclone provided outside the riser, and a powdery ore collected by the cyclone. It consists of a downcomer for returning to the riser.
Further, JP-A-62-228889 discloses a technique of improving the efficiency of the process by preheating the iron ore before reducing it in the fluidized bed preliminary reduction furnace. Further, Japanese Patent Publication No. 6-37653 discloses a technique for appropriately maintaining the particle volume fraction in a fluidized-bed reduction reactor by adjusting the gas flow rate and the circulation flow rate of the ore aiming at reducing iron ore with high efficiency. Is disclosed.

【0004】[0004]

【発明が解決しようとする課題】鉄鉱石の流動還元分野
において、高効率、高生産性を得る装置及び還元方法の
工夫は多々なされてきた。しかし、天然に産する鉱石の
うち、酸化数2の鉄を多量に含む鉱石は被還元性が悪
く、安価であっても還元に多くの時間と還元剤を必要と
するため、結果的にはコスト競争力が低いとされてき
た。即ち、磁鉄鉱、磁赤鉄鉱系の鉱石を従来技術で流動
還元しようとしても、赤鉄鉱系の鉱石と比べて反応速度
が大幅に小さいために、流動層1基当りの生産量は低く
なり、還元ガス原単位が増加するため、工業的には良好
な成績を収め得ない。
In the field of fluidized reduction of iron ore, various efforts have been made to devise an apparatus and a reduction method for obtaining high efficiency and high productivity. However, among the ores that are naturally produced, ores that contain a large amount of iron with an oxidation number of 2 have poor reducibility, and even if they are inexpensive, they require a lot of time and a reducing agent for reduction, and as a result, It has been said that cost competitiveness is low. That is, even if an attempt is made to fluidize and reduce magnetite or maghemite ore with conventional technology, the reaction rate is significantly smaller than that of hematite ore, so the production amount per fluidized bed is low, As the gas consumption rate increases, good results cannot be achieved industrially.

【0005】また、従来技術で多少の改善が図れても、
赤鉄鉱系の鉱石に関しても同様の手段により改善が図れ
るため、相対的な差異は変化せず、鉱石原料としての評
価は低いままである。本発明は、これらの点に着目して
なされたもので、磁鉄鉱、磁赤鉄鉱系の鉱石を事前に処
理し被還元性を向上させた後流動層で還元を行うことに
より、結果として従来よりも大幅に還元効率の改善を図
るものである。
Further, even if some improvement can be achieved by the prior art,
As for hematite-based ores, since similar measures can be used to improve them, the relative differences do not change and the evaluation as an ore raw material remains low. The present invention has been made in view of these points, by performing a reduction in a fluidized bed after the magnetite, maghemite ore is treated in advance to improve the reducibility, as a result of the conventional Also aims to greatly improve the reduction efficiency.

【0006】[0006]

【課題を解決するための手段】本発明は、粉鉄鉱石を流
動層で還元し還元鉱石を得る流動還元方法において、粉
鉄鉱石中の全鉄分に対する酸化数2の鉄の割合が10重
量%以上である粉鉄鉱石を、酸化雰囲気中で酸化数3の
鉄に酸化した後に流動層で流動還元することを特徴とす
る。また、本発明はその際に、粉鉄鉱石中に含有する酸
化数2の鉄の10〜50%を酸化することを特徴とす
る。
According to the present invention, in a fluidized reduction method of reducing powdered iron ore in a fluidized bed to obtain reduced ore, the ratio of iron having an oxidation number of 2 to the total iron content in the powdered iron ore is 10% by weight. The iron ore powder described above is oxidized into iron having an oxidation number of 3 in an oxidizing atmosphere, and then fluidized and reduced in a fluidized bed. Further, the present invention is characterized by oxidizing 10 to 50% of iron having an oxidation number of 2 contained in the fine iron ore.

【0007】[0007]

【作用】以下、本発明を図1に基づき説明する。鉄鉱石
酸化炉1の酸化原料供給口2から鉄鉱石酸化炉1に、全
鉄分比率に占める酸化数2の鉄の割合が10重量%以下
である原料鉱石を投入し、酸化炉底部の酸化ガス吹き込
み用ガス分散板3から酸化ガス4を導入して流動層を形
成し、固気反応によって粉状鉱石を酸化する。中間成品
である酸化された酸化鉱石5は酸化鉱石排出管6から排
出され、酸化炉排ガス7は鉄鉱石酸化炉1の上部より排
出される。
The present invention will be described below with reference to FIG. From the oxidizing raw material supply port 2 of the iron ore oxidizing furnace 1, to the iron ore oxidizing furnace 1, the raw ore in which the proportion of iron having an oxidation number of 2 in the total iron content is 10% by weight or less is charged, and the oxidizing gas at the bottom of the oxidizing furnace is introduced. The oxidizing gas 4 is introduced from the blowing gas dispersion plate 3 to form a fluidized bed, and the powdery ore is oxidized by a solid-gas reaction. The oxidized ore 5, which is an intermediate product, is discharged from the oxide ore discharge pipe 6, and the oxidizing furnace exhaust gas 7 is discharged from the upper part of the iron ore oxidizing furnace 1.

【0008】鉄鉱石酸化炉1で酸化された酸化鉱石5
は、中継ホッパー20を介して流動還元装置10の還元
用原料供給口19からライザー11内に投入し、ライザ
ーの底部の還元ガス吹き込みノズル12から、還元ガス
13を導入して流動層を形成し、固気反応によって粉状
鉱石を還元する。
Oxide ore 5 oxidized in the iron ore oxidation furnace 1
Is charged into the riser 11 from the reducing raw material supply port 19 of the fluidized reduction apparatus 10 via the relay hopper 20, and the reducing gas 13 is introduced from the reducing gas blowing nozzle 12 at the bottom of the riser to form a fluidized bed. , Reduce powdery ore by solid-gas reaction.

【0009】こうして還元された鉱石はライザーの頂部
から排ガスと共に一次サイクロン14に送られ、そこで
捕集された鉱石は一次ダウンカマー15からライザー1
1に循環する。その一部は還元鉱石抜き取り管16を経
て最終成品として抜き出される。また、一次サイクロン
14を出た排ガスは、二次サイクロン17に導かれ再度
除塵した後、捕集粉18は一次ダウンカマー15に戻さ
れる。
The thus-reduced ore is sent from the top of the riser to the primary cyclone 14 together with the exhaust gas, and the ore collected there from the primary downcomer 15 to the riser 1
Cycle to 1. A part thereof is extracted as a final product through the reduced ore extracting pipe 16. Further, the exhaust gas discharged from the primary cyclone 14 is guided to the secondary cyclone 17 to remove dust again, and then the collected powder 18 is returned to the primary downcomer 15.

【0010】さて、本発明は鉄鉱石を効率よく還元する
ためのものであるが、磁鉄鉱や磁赤鉄鉱系の粉状鉱石を
原料とする場合は、あえて一旦酸化させてから還元炉に
装入するところに、本発明の特徴がある。本来、磁鉄鉱
や磁赤鉄鉱系の鉱石は赤鉄鉱系の鉱石と比べて幾分還元
が進行しているものであり、その分、還元操作に関して
は有利と考えられる。しかし、本発明者の検討による
と、酸化数2の鉄を酸化数3の鉄に一旦酸化すると被還
元性が向上する。
The present invention is intended to efficiently reduce iron ore. When magnetite or maghemite-type powdered ore is used as a raw material, it is intentionally oxidized and then charged into a reduction furnace. There is a feature of the present invention. Originally, magnetite or maghemite-based ores are somewhat reduced compared to hematite-type ores, and it is considered that the reduction operation is advantageous accordingly. However, according to the study by the present inventors, once the iron having the oxidation number 2 is oxidized to the iron having the oxidation number 3, the reducibility is improved.

【0011】つまり、酸化数2の鉄を酸化し被還元性の
よい酸化数3の鉄に変化させることが還元時間の短縮に
有効である。このため、本発明では酸化、還元の2工程
を必要とするものの、本発明を適用しない場合に比べて
トータルの所要時間が短縮され、還元に要するガスの総
原単位も低下する。ただし、酸化処理をすることによ
り、還元に要する時間は短縮されるが、酸化に要する時
間が必要となるため、総合的に生産性を向上させようと
すれば、必ずしも全ての酸化数2の鉄を酸化数3の鉄に
酸化する必要はない。
That is, it is effective to shorten the reduction time by oxidizing iron having an oxidation number of 2 and changing it to iron having an oxidation number of 3 which has a good reducibility. Therefore, although the present invention requires two steps of oxidation and reduction, the total required time is shortened compared with the case where the present invention is not applied, and the total basic unit of gas required for reduction is also reduced. However, although the time required for reduction is shortened by performing the oxidation treatment, the time required for oxidation is required. Therefore, if the overall productivity is to be improved, all irons with an oxidation number of 2 are required. Need not be oxidized to iron with an oxidation number of 3.

【0012】部分的に酸化しただけでも還元時間短縮の
効果は生じ、酸化した鉄鉱石の中の全鉄分比率に占める
酸化数2の鉄の割合を原料鉱石での値の10〜50%と
すると、還元時間の短縮効果が極めて顕著になる。ここ
で、酸化数2の鉄を10%未満まで酸化するには酸化時
間が長くなりすぎ好ましくなく、酸化数2の鉄を50%
超酸化する場合は酸化による還元時間短縮効果が小さ
い。
[0012] Even if only partially oxidized, the effect of shortening the reduction time occurs, and if the ratio of iron having an oxidation number of 2 to the total iron content in the oxidized iron ore is 10 to 50% of the value in the raw ore. The effect of shortening the reduction time becomes extremely remarkable. Here, the oxidation time is too long to oxidize iron having an oxidation number of 2 to less than 10%, and 50% of iron having an oxidation number of 2 is not preferable.
In the case of superoxidation, the effect of reducing the reduction time by oxidation is small.

【0013】本発明で用いる酸化炉は、単に酸化数2の
鉄を酸化させるだけのものであるから、流動層に限ら
ず、ロータリーキルンでも代替可能であることは自明で
ある。酸化鉱石は、顕熱を有効に利用する観点からは還
元炉に高温のまま装入することが望ましいが、搬送技術
の困難さや操業制御の煩雑さを考慮して、一旦系外で貯
留し、冷却されたものを還元炉に装入しても還元炉にお
ける被還元性向上の効果は何ら影響を受けない。
Since the oxidation furnace used in the present invention only oxidizes iron having an oxidation number of 2, it is obvious that a rotary kiln can be used instead of the fluidized bed. From the viewpoint of effectively utilizing sensible heat, it is desirable to load the oxide ore into the reduction furnace at a high temperature, but in consideration of the difficulty of transfer technology and the complexity of operation control, once stored outside the system, Even if the cooled one is charged into the reduction furnace, the effect of improving the reducibility in the reduction furnace is not affected at all.

【0014】また、酸化雰囲気は、例えば気体燃料や液
体燃料を完全燃焼させたガスで容易につくりこむことが
できる。酸化雰囲気を構成するガス組成としては、CO
2 、H2 O、O2 のいずれかが含まれている必要があ
る。窒素などの不活性ガスは酸化性ガスの分圧を低下さ
せ酸化速度は低下するものの、含有は許容される。コス
ト、酸化に要する時間、燃焼温度等を考慮して、燃料を
空気で燃焼するか酸素もしくは酸素富化空気で燃焼する
かを決定すればよい。
Further, the oxidizing atmosphere can be easily created by, for example, a gas obtained by completely burning a gaseous fuel or a liquid fuel. The gas composition of the oxidizing atmosphere is CO
Any one of 2 , H 2 O and O 2 must be contained. Although an inert gas such as nitrogen lowers the partial pressure of the oxidizing gas and lowers the oxidation rate, its inclusion is acceptable. Considering the cost, the time required for oxidation, the combustion temperature, etc., it may be determined whether to burn the fuel with air or oxygen or oxygen-enriched air.

【0015】また、CO、H2 の混入は還元に作用する
ため望ましくなく、極力少なくすべきである。ただし、
通常は理論酸素比を1以上として燃料を燃焼すればC
O、H2 の存在はほとんど無視できるため、酸化ガスの
製造時には燃料に対する理論酸素量を1以上とすればよ
い。また、酸化炉の温度は高温ほど酸化反応が速いた
め、酸化に要する時間を短縮するためには400℃以
上、好ましくは600℃以上の温度が適切である。
Further, the incorporation of CO and H 2 is not desirable because it acts on the reduction, and should be minimized. However,
Normally, if the theoretical oxygen ratio is set to 1 or more and fuel is burned, C
Since the existence of O and H 2 can be almost ignored, the theoretical oxygen amount with respect to the fuel may be set to 1 or more when producing the oxidizing gas. Further, the higher the temperature of the oxidation furnace is, the faster the oxidation reaction is. Therefore, a temperature of 400 ° C. or higher, preferably 600 ° C. or higher is suitable in order to shorten the time required for the oxidation.

【0016】[0016]

【実施例】流動層還元装置においては、還元温度が80
0℃〜910℃、ライザー内ガス流速5m/sの条件で
鉄鉱石の還元を行った。用いた還元ガスの成分は表1の
とおりである。
EXAMPLE In a fluidized bed reduction apparatus, the reduction temperature is 80
The iron ore was reduced under the conditions of 0 ° C to 910 ° C and a gas flow rate in the riser of 5 m / s. The components of the reducing gas used are shown in Table 1.

【表1】 [Table 1]

【0017】実施例1は、原料中の全鉄分比率に占める
酸化数2の鉄の割合が略40重量%である磁鉄鉱系の粉
鉄鉱石を酸化処理した後、還元炉に装入した。平均粒径
は180μmであり−2mmの重量割合は98%であっ
た。鉄鉱石酸化炉の操業温度は850℃とした。酸化ガ
スは微粉炭を酸素富化空気で燃焼して製造した。酸化ガ
ス組成を表2に示す。
In Example 1, a magnetite-based powdered iron ore in which the ratio of iron having an oxidation number of 2 to the total iron content in the raw material was about 40% by weight was subjected to an oxidation treatment and then charged into a reduction furnace. The average particle size was 180 μm and the weight percentage of −2 mm was 98%. The operating temperature of the iron ore oxidation furnace was 850 ° C. The oxidizing gas was produced by burning pulverized coal with oxygen-enriched air. The oxidizing gas composition is shown in Table 2.

【表2】 [Table 2]

【0018】実施例1−1では鉄鉱石酸化炉での鉱石の
滞留時間を15分としたが、実施例1−2では酸化炉で
の滞留時間を8分とし、対比例1では酸化処理を全くし
ないまま還元に供した。酸化前(酸化原料)及び酸化後
の実施例1−1、実施例1−2の鉱石組成を表3に示
す。
In Example 1-1, the residence time of the ore in the iron ore oxidation furnace was set to 15 minutes. In Example 1-2, the residence time in the oxidation furnace was set to 8 minutes. It was used for reduction without doing anything. Table 3 shows the ore compositions of Example 1-1 and Example 1-2 before oxidation (oxidation raw material) and after oxidation.

【表3】 [Table 3]

【0019】実施例1−1、実施例1−2、対比例1の
還元及び酸化のトータルに要した時間の比較を図2に示
す。この場合の最終成品還元率はいずれも85%であ
る。この還元率の成品を得るに要した酸化、還元のトー
タル時間は、実施例1−1の場合は36分であり一番短
く、実施例1−2、対比例1はそれぞれ41分、45分
となった。また、還元に要した時間のみを比較すると、
実施例1−1では酸化処理を行わない対比例1の半分以
下となっており、実施例1−2でも短縮の効果が認めら
れる。
A comparison of the total time required for reduction and oxidation of Example 1-1 and Example 1-2 and Comparative Example 1 is shown in FIG. In this case, the final product reduction rate is 85%. The total time of oxidation and reduction required to obtain a product with this reduction rate was 36 minutes in the case of Example 1-1, which was the shortest, and 41 minutes and 45 minutes in Example 1-2 and Comparative Example 1 respectively. Became. Also, comparing only the time required for reduction,
In Example 1-1, it is less than half of Comparative Example 1 in which no oxidation treatment is performed, and the effect of shortening is also recognized in Example 1-2.

【0020】実施例2は、原料中の全鉄分比率に占める
酸化数2の鉄の割合が略10重量%である磁赤鉄鉱系の
粉鉄鉱石を酸化処理した後、還元炉に装入した。平均粒
径は360μmであり−2mmの重量割合は87%であっ
た。酸化炉の操業温度は650℃とした。酸化ガスはL
PGを空気で燃焼して製造した。酸化ガス組成を表4に
示す。
In Example 2, a maghemite-type pulverized iron ore in which the ratio of iron having an oxidation number of 2 to the total iron content in the raw material was approximately 10% by weight was subjected to an oxidation treatment and then charged into a reduction furnace. . The average particle size was 360 μm and the weight percentage of −2 mm was 87%. The operating temperature of the oxidation furnace was 650 ° C. Oxidizing gas is L
It was produced by burning PG with air. Table 4 shows the oxidizing gas composition.

【表4】 [Table 4]

【0021】実施例2−1では鉄鉱石酸化炉での滞留時
間を20分とし、実施例2−2では酸化炉での滞留時間
を12分とした。対比例2では酸化処理を全くしないま
ま還元した。酸化前(酸化原料)及び酸化後の実施例2
−1、実施例2−2の鉱石組成を表5に示す。
In Example 2-1, the residence time in the iron ore oxidizing furnace was 20 minutes, and in Example 2-2, the residence time in the oxidizing furnace was 12 minutes. In Comparative Example 2, reduction was carried out without any oxidation treatment. Example 2 before oxidation (oxidation raw material) and after oxidation
-1, and the ore composition of Example 2-2 is shown in Table 5.

【表5】 [Table 5]

【0022】実施例2−1、実施例2−2、対比例2の
最終成品還元率の比較を図3に示す。この場合の還元及
び酸化のトータルに要した時間はいずれも60分とし
た。同じ時間内で到達した成品還元率は、還元操作をす
る前の鉱石中の全鉄分比率に占める酸化数2の鉄の割合
が原料鉱石の場合の45%とした実施例2−1の場合が
最も高くなっており、次いで実施例2−2、対比例2の
順となった。
A comparison of the final product reduction rates of Example 2-1, Example 2-2, and Comparative Example 2 is shown in FIG. In this case, the total time required for reduction and oxidation was 60 minutes. The product reduction rate reached in the same time was the case of Example 2-1 in which the proportion of iron having an oxidation number of 2 in the total iron content in the ore before the reduction operation was 45% of that in the raw ore. It was the highest, followed by Example 2-2 and Comparative Example 2.

【0023】[0023]

【発明の効果】本発明によって、本来被還元性の悪い酸
化数2の鉄を含む粉鉄鉱石の還元速度を大幅に向上させ
ることができ、還元鉱石の生産性や還元ガス原単位の向
上が図られるため、その工業的な寄与は多大である。
According to the present invention, it is possible to greatly improve the reduction rate of a powdered iron ore containing iron having an oxidation number of 2, which is originally poor in reducibility, and to improve the productivity of the reduced ore and the reduction gas basic unit. Therefore, its industrial contribution is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法に基づく流動還元方式の模式図。FIG. 1 is a schematic diagram of a fluidized reduction system based on the method of the present invention.

【図2】還元率85%の成品を得るに要する時間の実施
例と対比例との比較図表。
FIG. 2 is a comparison chart of an example of time required to obtain a product with a reduction rate of 85% and a comparative example.

【図3】一定の処理時間内に到達した還元率の実施例と
対比例との比較図表。
FIG. 3 is a comparison chart of the reduction ratios reached within a certain processing time between an example and a proportional ratio.

【符号の説明】[Explanation of symbols]

1: 鉄鉱石酸化炉 2: 酸化原料供給口 3: 酸化ガス吹き込み用ガス分散板 4: 酸化ガス 5: 酸化鉱石 6: 酸化鉱石排出管 7: 酸化炉排ガス 10: 流動還元装置 11: ライザー 12: 還元ガス吹き込みノズル 13: 還元ガス 14: 一次サイクロン 15: 一次ダウンカマー 16: 還元鉱石抜き取り管 17: 二次サイクロン 18: 捕集粉 19: 還元用原料供給口 20: 中継ホッパー 1: Iron ore oxidation furnace 2: Oxidizing raw material supply port 3: Oxidizing gas blowing gas dispersion plate 4: Oxidizing gas 5: Oxide ore 6: Oxide ore discharge pipe 7: Oxidation furnace exhaust gas 10: Fluidization reduction device 11: Riser 12: Reducing gas blowing nozzle 13: Reducing gas 14: Primary cyclone 15: Primary downcomer 16: Reduction ore extraction pipe 17: Secondary cyclone 18: Collecting powder 19: Reduction raw material supply port 20: Relay hopper

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉鉄鉱石を流動層で還元し還元鉱石を得
る流動還元方法において、粉鉄鉱石中の全鉄分に対する
酸化数2の鉄の割合が10重量%以上である粉鉄鉱石
を、酸化雰囲気中で酸化数3の鉄に酸化した後に流動層
で流動還元することを特徴とする粉鉄鉱石の流動還元方
法。
1. A fluidized reduction method of reducing iron ore in a fluidized bed to obtain reduced ore, wherein the iron ore having an oxidation number of 2 with respect to the total iron content in the iron ore is 10% by weight or more, A fluidized reduction method for fine iron ore, comprising fluidizing in a fluidized bed after being oxidized to iron having an oxidation number of 3 in an oxidizing atmosphere.
【請求項2】 粉鉄鉱石中に含有する酸化数2の鉄の1
0〜50%を酸化することを特徴とする請求項1記載の
流動還元方法。
2. One of irons having an oxidation number of 2 contained in fine iron ore.
The fluidized reduction method according to claim 1, wherein 0 to 50% is oxidized.
JP4091795A 1995-02-28 1995-02-28 Fluidized reduction method of powder iron ore Withdrawn JPH08239708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4091795A JPH08239708A (en) 1995-02-28 1995-02-28 Fluidized reduction method of powder iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4091795A JPH08239708A (en) 1995-02-28 1995-02-28 Fluidized reduction method of powder iron ore

Publications (1)

Publication Number Publication Date
JPH08239708A true JPH08239708A (en) 1996-09-17

Family

ID=12593860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4091795A Withdrawn JPH08239708A (en) 1995-02-28 1995-02-28 Fluidized reduction method of powder iron ore

Country Status (1)

Country Link
JP (1) JPH08239708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10422582B2 (en) * 2012-12-27 2019-09-24 Posco Molten iron manufacturing apparatus and molten iron manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10422582B2 (en) * 2012-12-27 2019-09-24 Posco Molten iron manufacturing apparatus and molten iron manufacturing method

Similar Documents

Publication Publication Date Title
US10202662B2 (en) System and method for fluidized reduction of iron ore powder
CN106319126B (en) One kind being used for the redox system and method for vanadium titano-magnetite fluidization
CN106906353A (en) Process the method and system of schreyerite
US2663632A (en) Reduction of iron ores
JPH08239708A (en) Fluidized reduction method of powder iron ore
US4255185A (en) Processes and apparatus for reducing and subsequently pelletizing moist fine-grained ore
JPH10147806A (en) Production of high quality reduced iron from ironmaking dust
CN110592304B (en) Iron ore powder pretreatment process
US3645717A (en) Process of producing sponge iron pellets
EP1756322B1 (en) A direct reduction process
JP3395505B2 (en) Operating method of endless mobile sintering machine
JPH0699734B2 (en) Circulating fluidized bed type pre-reduction furnace for fine iron ore
KR100360111B1 (en) Method For Manufacturing Molten Iron Using Non-Coking Coal And Fine Iron Ore And Device For Manufacturing Molten Iron
JP5892317B2 (en) Production method of raw materials for blast furnace
KR100340581B1 (en) Apparatus and method for producing hot metal using fine ore and non-coking coal
US3709679A (en) Wustite bed improvement
KR20000038827A (en) Flow-type pre-reduction apparatus of powder iron ore and pre-reducing method with the same
JP2579785B2 (en) Pre-reduction device for smelting reduction
US3598569A (en) Pelletizing of iron ore
JP5971482B2 (en) Agglomerate production method
JP2014031528A (en) Method for producing raw material for blast furnace
JP5892318B2 (en) Agglomerate production method
JPH03138309A (en) Apparatus for reducing ore
JPH08253801A (en) Method for using reduced ore in blast furnace
JPH0611884B2 (en) Smelting reduction ironmaking method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507