KR20000038827A - Flow-type pre-reduction apparatus of powder iron ore and pre-reducing method with the same - Google Patents

Flow-type pre-reduction apparatus of powder iron ore and pre-reducing method with the same Download PDF

Info

Publication number
KR20000038827A
KR20000038827A KR1019980053955A KR19980053955A KR20000038827A KR 20000038827 A KR20000038827 A KR 20000038827A KR 1019980053955 A KR1019980053955 A KR 1019980053955A KR 19980053955 A KR19980053955 A KR 19980053955A KR 20000038827 A KR20000038827 A KR 20000038827A
Authority
KR
South Korea
Prior art keywords
fluidized bed
ore
iron ore
gas
furnace
Prior art date
Application number
KR1019980053955A
Other languages
Korean (ko)
Other versions
KR100321050B1 (en
Inventor
최낙준
강흥원
정우창
김행구
Original Assignee
이구택
포항종합제철 주식회사
신현준
재단법인 포항산업과학연구원
암루쉬 만프레드, 프로머 우어줄라
뵈스트-알핀 인두스트리안라겐바우 게엠바하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사, 신현준, 재단법인 포항산업과학연구원, 암루쉬 만프레드, 프로머 우어줄라, 뵈스트-알핀 인두스트리안라겐바우 게엠바하 filed Critical 이구택
Priority to KR1019980053955A priority Critical patent/KR100321050B1/en
Priority to CA 2320242 priority patent/CA2320242A1/en
Priority to AU15132/00A priority patent/AU1513200A/en
Priority to PCT/KR1999/000729 priority patent/WO2000034531A1/en
Priority to BR9907794A priority patent/BR9907794A/en
Priority to JP2000586963A priority patent/JP2002531705A/en
Priority to EP19990957428 priority patent/EP1055006A1/en
Publication of KR20000038827A publication Critical patent/KR20000038827A/en
Priority to ZA200004742A priority patent/ZA200004742B/en
Application granted granted Critical
Publication of KR100321050B1 publication Critical patent/KR100321050B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/02Making pig-iron other than in blast furnaces in low shaft furnaces or shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/22Increasing the gas reduction potential of recycled exhaust gases by reforming
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE: A pre-reducing method of powder iron ore is provided to improve reduction and gas-using rate by pre-reducing powder iron ore depending on particle size and to minimize the amount of dispersed powder iron ore. CONSTITUTION: Corpuscular iron ore is dispersed together with exhaust gas, and middle/large iron ore is introduced into a first gas feed pipe(126) from a first flow layer path(110). After that, the middle/large iron ore is reduced primarily as forming a vapor flow layer with reduction gas passing a first gas dispersing plate(112). The middle/large iron ore is charged into the intermediate portion of a second flow layer path(120) and reduced secondarily. The corpuscular iron ore is dispersed together with exhaust gas from the second flow layer path. The corpuscular iron ore is separates from gas in first and second cyclones(114,124) and charged into a third flow layer path(130). The corpuscular iron ore is secondarily reduced, separated from gas and circulates in the third path. The reduction iron of the second/third paths is finally discharged through second and third discharge pipes(121,131) respectively.

Description

분철광석의 유동층식 예비환원장치 및 이를 이용한 예비환원방법Fluidized bed preliminary reduction device for iron ore and preliminary reduction method using the same

본 발명은 입도분포가 넓은 분철광석을 유동상태에서 환원하는 유동층식 예비환원장치 및 이를 이용한 예비환원방법에 관한 것으로서, 보다 상세하게는, 넓은 입도분포를 갖는 분철광석을 입도에 따라 분급하여 환원시키는 분철광석의 유동층식 예비환원장치 및 이를 이용한 예비환원방법에 관한 것이다.The present invention relates to a fluidized bed type preliminary reduction device for reducing a wider particle size distribution in a flow state and a preliminary reduction method using the same, and more particularly, to classify and reduce the iron ore having a wide particle size distribution according to particle size. The present invention relates to a fluidized bed preliminary reduction apparatus for iron ore and a preliminary reduction method using the same.

현재의 용선 생산공정은 고로공정이 주류를 이루고 있으며, 최근에는 펠렛과 괴광석을 사용한 샤프트형 용융환원제철공정이 상업화되어 용선을 생산하고 있으나, 두 공정 모두 괴상화한 원료만을 사용해야 한다는 제약을 가지고 있다.In the current molten iron production process, the blast furnace process is the mainstream. Recently, shaft-type molten reduction steel processing using pellets and lump ore has been commercialized to produce molten iron, but both processes have the limitation of using only the raw material. have.

고로공정에서는 석탄을 가공한 코크스와 분상의 철광석 및 부원료를 혼합하여 가공한 소결광을 사용하여 용선을 생산한다. 이에 따라 연/원료의 예비처리를 위한 설비투자비의 증가와 예비처리과정에서 발생하는 공해문제가 심각하게 대두되고 있어 이에 따른 환경적인 규제가 강화되고 있는 실정이다. 한편, 샤프트형 용융환원제철공정에서는 원료로 미분철광석을 펠렛으로 만들어 사용하거나 제한된 입도의 괴광석을 사용하여 용선을 생산하고 있다.In the blast furnace process, molten iron is produced using sintered ore processed by mixing coal coke, powdered iron ore and by-products. As a result, the increase in facility investment costs for pretreatment of raw materials and raw materials and pollution caused during pretreatment are seriously emerging, and environmental regulations are being strengthened accordingly. On the other hand, in the shaft-type molten iron reduction process is used to make the fine iron ore as a raw material pellets or to produce molten iron using a lump ore of limited particle size.

이와같이 고로공정이나 샤프트형 용융환원제철공정에서는 분상의 철광석을 직접 사용할 수 없고 예비처리 과정을 거쳐야 되므로, 매장량이 풍부하고 가격도 저렴한 분철광석을 예비처리 과정을 거치지 않고 바로 사용하여 용선을 생산할 수 있는 유동층식 용융환원제철공정이 기존의 고로공정을 대체할 차세대 제철공정으로 주목받고 있으며, 선진 철강 생산국을 중심으로 활발한 연구가 진행되고 있다.As such, in the blast furnace process or shaft-type molten reduction steelmaking process, powdered iron ore cannot be directly used and needs to be preliminarily processed. Therefore, it is possible to produce molten iron by directly using ferrous ore, which has abundant reserves and low cost, without undergoing pretreatment. The fluidized-bed molten reduced steelmaking process is drawing attention as the next-generation steelmaking process to replace the existing blast furnace process, and active research is being conducted mainly in the advanced steel producing countries.

상기의 용융환원제철공정은 일반적으로 예비환원공정과 최종환원공정으로 구분이 되는데, 예비환원단계에서는 환원로에서 원료광석을 고체상태로 예비환원시키고 최종환원단계에서는 환원된 환원철를 용융로에 장입시키면서 최종환원하여 용선을 생산하고 있다. 예비환원공정은 일반적으로 원료광석의 입도에 따라 이동층식 및 유동층식으로 분류되는데, 입도가 작고 입도분포가 넓은 분철광석의 경우는 원료광석을 환원로에서 환원가스로 유동시키면서 환원하는 유동층식이 통기성이나 가스이용율면에서 효율적인 것으로 알려져 있다.The molten iron reduction process is generally divided into a preliminary reduction process and a final reduction process. In the preliminary reduction step, the raw ore is reduced to solid state in a reduction furnace, and in the final reduction step, the reduced reduction iron is charged into the melting furnace. To produce molten iron. The preliminary reduction process is generally classified into moving bed type and fluidized bed type according to the raw material ore's particle size.In the case of ferrite ore with small particle size and wide particle size distribution, the fluidized bed type which reduces raw material ore while flowing from reducing furnace to reducing gas is breathable. It is known to be efficient in terms of gas utilization.

용선제조장치의 일예로는 대한민국 특허 제117065호(1997)에 제시되어 있는 것을 들 수 있다.An example of a charterer manufacturing apparatus may be those disclosed in Korean Patent No. 117065 (1997).

상기 용선제조장치는 도1에 나타난 바와 같이, 넓은 입도분포를 갖는 분철광석을 안정하게 유동시킬 수 있도록 유동층의 형태를 상광하협의 원추형으로 하고, 환원율과 가스 이용율을 향상시키기 위해 분철광석이 기포유동층 상태에서 건조/예열되는 제1유동층로(10), 상기 제1유동층로의 배가스에 함유된 미립철광석을 집진하기 위한 제 1사이클론(40), 상기 제 1유동층로에서 건조예열된 분철광석을 예비환원하는 제 2유동층로(20), 상기 제 2유동층로의 배가스에 함유된 미립철광석을 집진하기 위한 제 2사이클론(50), 상기 제 2유동층로에서 예비환원된 분철광석을 최종환원는 제 3유동층로(30), 상기 제 3유동층로의 배가스에 함유된 미립철광석을 집진하기 위한 제 3사이클론(60), 및 제3유동층로(30)에서 최종 환원된 환원철을 용융환원하여 용선을 제조하는 용융가스화로(80)를 그 주요 구성으로 하고 있다.The molten iron manufacturing apparatus, as shown in Figure 1, to form a fluidized bed in the form of a fluidized bed in the form of a fluidized bed so as to stably flow the iron ore having a wide particle size distribution, the iron ore is a bubble fluidized bed to improve the reduction rate and gas utilization The first fluidized bed 10 to be dried / preheated in the state, the first cyclone 40 for collecting the fine iron ore contained in the exhaust gas of the first fluidized bed, and the preheated iron ore dried in the first fluidized bed The second fluidized bed furnace 20 for reducing, the second cyclone 50 for collecting the fine iron ore contained in the flue gas of the second fluidized bed furnace, and the final reduced powdered iron ore preliminarily reduced in the second fluidized bed furnace The molten iron is prepared by melting and reducing the reduced iron finally reduced in the furnace 30, the third cyclone 60 for collecting the fine iron ore contained in the exhaust gas of the third fluidized bed furnace, and the third fluidized bed furnace 30. And the the melter-gasifier 80 as the major component.

그러나, 상기와 같이 원추형 3단 유동층식 예비환원장치를 사용하여 분철광석을 예비환원하는 경우에는 제 1사이클론(40)에서 미처 포집되지 않은 미립의 원료 분철광석이 가스배출구를 통하여 방출됨으로써 비산손실되는 광석의 양이 많아질 수 있다. 특히 철광석의 환원중 분화현상이 대부분 환원초기에 발생한다는 점을 고려할 때, 제 1유동층로에서 1차환원시 환원분화 및 유동에 의한 기계적 분화에 의해 생성된 다량의 미립 철광석이 비산되어 제1사이클론에 과부하를 줌으로써 배가스와 철광석의 효율적인 분리를 억제시켜 다량의 미립철광석이 배가스와 함께 방출되어 손실될 수 있다.However, in the case of preliminary reduction of the iron ore using the conical three-stage fluidized bed preliminary reduction device as described above, the fine raw iron ore, which is not captured by the first cyclone 40, is scattered by the gas outlet and is scattered. The amount of ore can be high. In particular, considering that most of the differentiation phenomenon during the reduction of iron ore occurs in the early stage of reduction, a large amount of fine iron ore produced by reduction and differentiation during the first reduction and mechanical differentiation by flow is scattered in the first fluidized bed. By overloading, it inhibits the efficient separation of flue gas and iron ore, so that a large amount of fine iron ore can be released and lost together with the flue gas.

이에, 본 발명자들은 상기와 같은 종래의 유동층식 예비환원장치를 사용하여 분철광석을 예비환원할 때 나타날 수 있는 문제점을 해결하기 위하여 연구및 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게된 것으로서, 본 발명은 입도분포가 넓은 분철광석을 입도에 따라 적절히 예비환원시킴으로써 유동성을 안정시켜 환원율과 가스이용율을 향상시킴과 동시에 비산손실되는 미분철광석의 양을 최소화시킬 수 있는 분철광석의 유동층식 예비환원장치 및 이를 이용한 예비환원방법을 제공하고자 하는데, 그 목적이 있다.Thus, the present inventors conducted studies and experiments to solve the problems that may occur when pre-reduction of iron ore using the conventional fluidized bed pre-reduction device as described above, and proposed the present invention based on the results According to the present invention, a fluidized bed preliminary process of ferrite ore capable of minimizing the amount of fine iron ore that is scattered and lost at the same time as stabilizing fluidity by appropriately reducing the ferrite ore having a wide particle size distribution according to the particle size is improved. It is an object of the present invention to provide a reduction apparatus and a preliminary reduction method using the same.

도 1은 종래의 분철광석의 유동층 환원로를 개략적으로 도시한 개략도1 is a schematic diagram schematically showing a fluidized bed reduction furnace of a conventional iron ore

도 2는 본 발명에 부합되는 분철광석의 유동층식 예비환원장치의 구성도2 is a block diagram of a fluidized bed pre-reduction device of the iron ore according to the present invention

*도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

100...장입호퍼 101...제1장입관100 ... loading hopper 101 ... 1st loading

110...제1유동층로 111...제1배출관110.111 first fluidized bed road 1st ...

112...제1가스분산판 114...제1사이클론112 First gas dispersion plate 114 First cyclone

115...제1순환관 120...제2유동층로115 the first circulation pipe 120 the second fluidized bed

121...제2배출관 124...제 2사이클론121 ... 2nd exhaust pipe 124 ... 2nd cyclone

125...제2순환관 130...제 3유동층로125.2nd circulating pipe 130 ... 3rd fluidized bed furnace

131...제 3배출관 134...제3사이클론131 ... 3rd discharge pipe 134 ... 3rd cyclone

135...제 3순환관135 The Third Circulation Tube

본 발명은 유동층을 이용하여 분철광석을 예비환원하는 분철광석의 유동층식 예비환원장치에 있어서,The present invention is a fluidized bed pre-reduction device of the iron ore to reduce the iron ore using a fluidized bed,

장입호퍼로 부터 입도분포가 넓은 분철광석을 공급받아 분철광석중 미립광석은 비산시키고 중/대립 광석은 기포 유동층에 의해 1차 환원시키는 제1유동층로;A first fluidized bed which receives a wider particle size distribution from the charging hopper and scatters the fine ore in the iron ore and the primary / allele is reduced by the bubble fluidized bed;

제1유동층로로 부터 배출되는 중/대립 광석의 1차 환원철을 기포 유동층에 의해 2차 환원시키는 제2유동층로;A second fluidized bed furnace for secondaryly reducing the primary reduced iron of medium / allele ore discharged from the first fluidized bed by the bubble fluidized bed;

상기 제1유동층로에서 비산된 미립광석을 포집하는 제1사이클론;A first cyclone for collecting particulate ore scattered from the first fluidized bed furnace;

상기제2유동층로에서 비산된 미립광석을 포집하는 제2사이클론;A second cyclone to collect particulate ore scattered from the second fluidized bed furnace;

상기 제1사이클론 및 제2사이클론에서 포집된 미립광석을 공급받아 기포 유동층에 의해 2차 환원하는 제3유동층로; 및A third fluidized bed furnace receiving secondary particulates collected in the first cyclone and the second cyclone and performing secondary reduction by a bubble fluidized bed; And

상기 제3유동층로의 배가스중에 함유된 극미립광석을 포집하여 제3유동층로로 순환시키는 제3사이클론을 포함하여 구성되는 분철광석의 유동층식 예비환원장치에 관한 것이다.The present invention relates to a fluidized bed preliminary reduction device for iron ore comprising a third cyclone for collecting and circulating ultrafine ore contained in the exhaust gas to the third fluidized bed.

이하, 도면을 통해 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.

본 발명에 부합되는 분철광석의 유동층식 예비환원장치의 일예가 도2에 나타나 있다.An example of a fluidized bed preliminary reduction apparatus of ferrous ore according to the present invention is shown in FIG.

도2에 나타나 있는 바와 같이, 본 발명에 부합되는 분철광석의 유동층식 예비환원장치는 장입호퍼(100)로 부터 입도분포가 넓은 분철광석을 공급받아 분철광석중 미립광석은 비산시키고 중/대립 광석은 기포 유동층에 의해 1차 환원시키는 제1유동층로(110);As shown in Figure 2, the fluidized bed preliminary reduction device of the iron ore according to the present invention is supplied from the charging hopper 100 is a wide particle size distribution of iron ore scattered fine ore in the iron ore and medium / allele ore A first fluidized bed furnace 110 which is primarily reduced by the bubble fluidized bed;

상기 제1유동층로(110)로 부터 배출되는 중/대립 광석의 1차 환원철을 기포 유동층에 의해 2차 환원시키는 제2유동층로(120);A second fluidized bed furnace (120) for secondaryly reducing the primary reduced iron of medium / allele ore discharged from the first fluidized bed (110) by the bubble fluidized bed;

상기 제1유동층로(110)에서 비산된 미립광석을 포집하는 제1사이클론(114);A first cyclone (114) for collecting particulate ore scattered from the first fluidized bed (110);

상기제2유동층로(120)에서 비산된 미립광석을 포집하는 제2사이클론(124);A second cyclone 124 collecting particulate ore scattered from the second fluidized bed furnace 120;

상기 제1사이클론(114) 및 제2사이클론(124)에서 포집된 미립광석을 공급받아 기포 유동층에 의해 2차 환원하는 제3유동층로(130); 및A third fluidized bed furnace 130 which receives the particulate ore collected from the first cyclone 114 and the second cyclone 124 and reduces the secondary flow by the bubble fluidized bed 130; And

상기 제3유동층로(130)의 배가스중에 함유된 극미립광석을 포집하여 제3유동층로(130)로 순환시키는 제3사이클론(134)을 포함하여 구성된다.It comprises a third cyclone 134 to collect the ultra-fine ore contained in the exhaust gas of the third fluidized bed 130 and circulates to the third fluidized bed (130).

상기 제1유동층로(110)는 원통형 구조를 가지며, 그 저부에는 환원가스를 환원로내로 공급하기 위한 제1가스공급관(126)이 연결되고,그 하부내에는 제1가스분산판(112)이 장착된다.The first fluidized bed 110 has a cylindrical structure, and a first gas supply pipe 126 for supplying a reducing gas into a reduction furnace is connected to a bottom thereof, and a first gas distribution plate 112 is provided in a lower portion thereof. Is mounted.

또한, 상기 제1유동층로(110)의 측벽에는 장입호퍼(100)에 연결되어 장입호퍼(100)로 부터 분철광석을 유동층내로 공급하기 위한 제1장입관(101) 및 1차 환원된 중/대립광석을 상기 제2유동층로(120)로 배출하기 위한 제1 배출관(111)이 연결되어 있다.In addition, the first side of the first fluidized bed 110 is connected to the charging hopper 100, the first charging pipe 101 for supplying the ferrous iron ore from the charging hopper 100 into the fluidized bed and the primary reduced / The first discharge pipe 111 for discharging the opposing ore to the second fluidized bed furnace 120 is connected.

그리고 상기 제1유동층로(110)의 상부는 제 1배가스 배출관(113)을 통해 상기 제1사이클론(114)에 연결되어 있다.In addition, an upper portion of the first fluidized bed passage 110 is connected to the first cyclone 114 through a first exhaust gas discharge pipe 113.

상기 제1사이클론(114)의 하부에는 상기 제1유동층로(110)의 배가스중에 함유된 미립광석을 상기 제3유동층로(130)로 순환시키기 위한 제1순환관(115)이 연결되고, 그 상부에는 미립광석과 분리된 배가스를 배출하기 위한 제4배가스배출관(116)이 연결되어 있다.A first circulation pipe 115 is connected to a lower portion of the first cyclone 114 to circulate the particulate ore contained in the exhaust gas of the first fluidized bed 110 to the third fluidized bed 130. A fourth exhaust gas discharge pipe 116 for discharging the exhaust gas separated from the particulate ore is connected to the upper portion.

상기 제2유동층로(120)는 원통형 구조를 가지며, 그 저부에는 환원가스를 환원로내로 공급하기 위한 제2가스공급관(141)이 연결되고,그 하부내에는 제2가스분산판(122)이 장착된다.The second fluidized bed furnace 120 has a cylindrical structure, and a second gas supply pipe 141 for supplying a reducing gas into the reduction furnace is connected to a bottom thereof, and a second gas distribution plate 122 is provided in the lower part thereof. Is mounted.

또한, 상기 제2유동층로(120)의 측벽에는 상기 제1유동층로(110)에 연결되어 상기 제1유동층로(110)로 부터 1차 환원된 중/대립광석을 상기 제2유동층로(120)로 배출하기 위한 제1 배출관(111)및 2차환원된 중/대립광석을 배출하기 위한 제2배출관(121)이 연결되어 있다.In addition, the sidewall of the second fluidized bed 120 is connected to the first fluidized bed 110, the primary or secondary ore reduced from the first fluidized bed 110, the second fluidized bed 120 The first discharge pipe 111 for discharging to) and the second discharge pipe 121 for discharging secondary / reduced ore are connected.

그리고 상기 제2유동층로(110)의 상부는 제2배가스 배출관(123)을 통해 상기 제2사이클론(124)에 연결되어 있다.In addition, an upper portion of the second fluidized bed passage 110 is connected to the second cyclone 124 through a second exhaust gas discharge pipe 123.

상기 제1사이클론(124)의 하부에는 상기 제2유동층로(120)의 배가스중에 함유된 미립광석을 상기 제3유동층로(130)로 순환시키기 위한 제2순환관(125)이 연결되고, 그 상부에는 미립광석과 분리된 배가스를 상기 제1유동층로(110)로 공급하기 위한 제1가스 공급관(126)이 연결되어 있다.A second circulation pipe 125 for circulating particulate ore contained in exhaust gas of the second fluidized bed 120 to the third fluidized bed 130 is connected to a lower portion of the first cyclone 124. A first gas supply pipe 126 is connected to an upper portion of the exhaust gas separated from the particulate ore to the first fluidized bed 110.

도 2에서는 상기 제2유동층로(120)의 배가스중에 함유된 미립광석은 제2순환관(125) 및 제1순환관(115)를 차례로 통하여 상기 제3유동층로(130)에 공급되도록 제2순환관(125)은 제1순환관(115)에 연통되어 있다.In FIG. 2, the fine ore contained in the flue gas of the second fluidized bed 120 is sequentially supplied to the third fluidized bed 130 through the second circulation pipe 125 and the first circulation pipe 115. The circulation pipe 125 is in communication with the first circulation pipe 115.

본 발명은 이에 한정되는 것은 아니며, 상기 제2순환관(125)을 직접 상기 제3유동층로(130)에 연결할 수도 있다.The present invention is not limited thereto, and the second circulation pipe 125 may be directly connected to the third fluidized bed passage 130.

상기 제3유동층로(130)는 확대상부(130a), 상광경사부(130b) 및 축소하부(130c)로 이루워진 상광하협구조를 갖는다.The third fluidized bed 130 has an image light narrowing structure formed of an enlarged upper portion 130a, an image light inclined portion 130b, and a reduced lower portion 130c.

상기 축소하부(130c)내에는 제3가스분산판(132)이 장착되어 있고, 상기 제3가스분산판(132) 아래의 저부에는 환원가스를 공급하기 위한 제3가스 공급관(142)이 연결되어 있다.A third gas distribution plate 132 is mounted in the reduced lower portion 130c, and a third gas supply pipe 142 for supplying a reducing gas is connected to a bottom portion below the third gas distribution plate 132. have.

또한, 상기 제3 가스분산판(132) 위의 상기 축소하부(130c)측벽에는 제3유동층로(130)에서 환원된 미분 환원철을 배출하기 위한 제3 배출관(131)이 연결되어 있다.In addition, a third discharge pipe 131 for discharging the finely-reduced iron reduced in the third fluidized bed 130 is connected to the side wall of the reduced lower portion 130c on the third gas distribution plate 132.

그리고 상기 제3 유동층로(130)의 확대상부(130a)는 제3 배가스 배출관(133)을 통해 상기 제3 사이클론(134)에 연결되어 있다.In addition, the enlarged upper portion 130a of the third fluidized bed 130 is connected to the third cyclone 134 through a third exhaust gas discharge pipe 133.

상기 제3 사이클론(134)의 하부에는 상기 제3유동층로(130)의 배가스중에 함유된 미립광석을 상기 제3유동층로(130)로 순환시키기 위한 제3순환관(135)이 연결되어 있다.A third circulation tube 135 is connected to a lower portion of the third cyclone 134 to circulate particulate ore contained in the exhaust gas of the third fluidized bed 130 to the third fluidized bed 130.

그리고, 상기 제3사이클론(134)의 상부에는 미립광석과 분리된 배가스를 배출하기 위한 제5배가스배출관(136)이 연결되어 있으며, 상기 제5 배가스배출관(136)은 상기 제4배가스 배출관(116)에 연통되도록 하는 것이 바람직하다.In addition, a fifth exhaust gas discharge pipe 136 for discharging the exhaust gas separated from the particulate ore is connected to an upper portion of the third cyclone 134, and the fifth exhaust gas discharge pipe 136 is the fourth exhaust gas discharge pipe 116. It is desirable to communicate with).

물론, 본 발명에 있어서, 상기 제5 배가스배출관(136)은 상기 제4배가스 배출관(116)에 연통되지 않도록 할 수도 있다.Of course, in the present invention, the fifth exhaust gas discharge pipe 136 may not be in communication with the fourth exhaust gas discharge pipe 116.

또한, 상기 제1순환관(115)은 상기 제3유동층로(130)의 확대상부(130a)를 관통하여 제3유동층로(130)의 내부에 그 일단이 위치되어 있다.In addition, one end of the first circulation pipe 115 passes through the enlarged upper portion 130a of the third fluidized bed 130 and is located inside the third fluidized bed 130.

상기 제1유동층로(110)와 상기 제2유동층로(120)의 각각의 높이는 그 내경의 10-15배로 하는 것이 바람직한데, 그 이유는 그 높이가그 내경의 10배 이하인 경우에는 로내애서 철광석의 유동이 원활하지 못하여 중/대립의 철광석도 비산될 수 있으며, 그 높이가 내경의 15배 이상인 경우에는 미립철광석의 비산이 효율적으로 이루어질 수 없기 때문이다.The height of each of the first fluidized bed 110 and the second fluidized bed 110 is preferably 10-15 times its inner diameter, because if the height is less than 10 times the inner diameter of the iron ore in the furnace Because of the poor flow of iron or iron can also be scattered, and if the height is more than 15 times the inner diameter of the fine iron ore can not be efficiently scattered.

한편, 제3유동층로(130)의 축소하부(130c)의 내경은 상광경사부(130b)의 하단부의 내경을 유지하며, 확대상부(130a)의 내경은 상광경사부(130b)의 상단부의 내경을 유지한다.On the other hand, the inner diameter of the reduced lower portion 130c of the third fluidized bed 130 maintains the inner diameter of the lower end of the upper light inclined portion 130b, and the inner diameter of the enlarged upper portion 130a is the inner diameter of the upper end of the upper light inclined portion 130b. Keep it.

상기 확대상부(130a)의 내경은 노내에서의 가스유속을 감소시켜 미립 철광석의 비산을 억제시키기 위하여 축소하부내경의 1.5-2.0배의 범위로 선정하는 것이 바람직하다.The inner diameter of the enlarged upper portion 130a is preferably selected in the range of 1.5-2.0 times the reduced lower inner diameter in order to reduce the gas flow rate in the furnace to suppress the scattering of the fine iron ore.

또한, 상기 제3유동층로(130)의 전체 높이는 충분한 유동공간을 확보하고 미립 철광석의 비산을 억제시키기 위하여 축소하부내경의 10-20배의 범위로 선정하는 것이 바람직하며,상기 축소하부(130c)의 높이는 확대상부(130a)의 높이의 1.0-1.5배의 범위로 선정하는 것이 바람직하다.In addition, the total height of the third fluidized bed 130 is preferably selected to be in the range of 10-20 times the inner diameter of the reduced bottom in order to secure a sufficient flow space and to suppress the scattering of the fine iron ore, the reduced bottom 130c The height of is preferably selected in the range of 1.0-1.5 times the height of the enlarged upper portion 130a.

한편, 상기 상광경사부(130b)의 경사각도는 수직선에서 30-50˚범위로 선정하는 것이 바람직하다.On the other hand, the inclination angle of the image light inclined portion 130b is preferably selected in the range of 30-50 degrees from the vertical line.

이하,본 발명의 분철광석의 유동층 예비환원장치를 사용하여 환원철을 제조하는 방법에 대하여 설명한다.Hereinafter, a method for producing reduced iron using the fluidized bed preliminary reduction apparatus of the iron ore of the present invention will be described.

광석 장입호퍼(100)로부터 제1장입관(101)을 통하여 제1유동층로(110)로 장입된 입도분포가 넓은 분철광석중 미립의 철광석은 배가스와 함께 비산되고 중/대립의 철광석은 제1유동층로(110)에서 제1가스공급관(126)으로 유입되어 제1가스분산판(112)을 통과한 환원가스에 의해 기포 유동층을 형성하면서 1차 환원된다.Particulate iron ore from the ore-loading hopper 100, which is charged into the first fluidized bed 110 through the first charging pipe 101, is dispersed with the exhaust gas, and the iron ore of the medium / composition is the first. It is first reduced while forming a bubble fluidized bed by the reducing gas flowing into the first gas supply pipe 126 from the fluidized bed 110 and passing through the first gas distribution plate 112.

상기 제1유동층로(110)에서 1차환원된 중/대립의 철광석은 제1배출관(111)을 통하여 배출되어 제2유동층로(120)의 유동층 중단부로 장입되고 제2가스공급관(141)으로 공급되는 환원가스에 의해 기포유동층을 형성하며 2차 환원된다.The iron ore of the primary / allele reduced in the first fluidized bed 110 is discharged through the first discharge pipe 111 to be charged into the fluidized bed stop of the second fluidized bed 120 and to the second gas supply pipe 141. Secondary reduction is performed by forming a bubble fluidized bed by the supplied reducing gas.

그리고, 제2유동층로(120)에서도 제1유동층로(110)에서와 마찬가지로 미립의 철광석은 배가스와 함께 비산된다.Also, in the second fluidized bed furnace 120, as in the first fluidized bed furnace 110, the fine iron ore is scattered together with the exhaust gas.

한편, 상기 제1유동층로(110)와 제2유동층로(120)로 부터 비산된 미립의 철광석은 각각 제1사이클론(114)과 제2사이클론(124)에서 가스와 분리되어 각각 제1순환관(115)과 제2순환관(125)을 통하여 제3유동층로(130)로 장입되어 제3가스 공급관(142)으로 유입된 환원가스에 의해 기포유동층을 형성하면서 2차 환원된다.On the other hand, the fine iron ore scattered from the first fluidized bed 110 and the second fluidized bed 110 is separated from the gas in the first cyclone 114 and the second cyclone 124, respectively, the first circulation pipe The secondary fluid is charged into the third fluidized bed passage 130 through the 115 and the second circulation pipe 125 and is secondaryly reduced while forming a bubble fluidized bed by the reducing gas introduced into the third gas supply pipe 142.

제3유동층로에서 배가스와 함께 비산된 극미립의 철광석은 제3사이클론(134)에서 가스와 분리되어 제3순환관(135)을 통하여 제3유동층로(130)로 순환된다.The ultrafine iron ore scattered together with the exhaust gas in the third fluidized bed furnace is separated from the gas in the third cyclone 134 and circulated to the third fluidized bed path 130 through the third circulation pipe 135.

상기 제2유동층로(120)및 제3유동층로(130)에서 2차 환원된 환원철은 각각 제2배출관(121) 및 제3배출관(131)을 통해 최종 배출된다.The reduced iron secondary reduced in the second fluidized bed 120 and the third fluidized bed 130 is finally discharged through the second discharge pipe 121 and the third discharge pipe 131, respectively.

상기 제1 유동층로(110)와 제2유동층로(120)내에서의 가스유속은 미립과 중/대립광석의 효율적인 분리 및 원활한 유동을 위하여 노내에 체류하는 철광석의 최소유동화속도의 1.2-2.5배의 범위로 선정하는 것이 바람직하다.Gas flow rates in the first fluidized bed furnace 110 and the second fluidized bed furnace 120 are 1.2-2.5 times the minimum fluidization rate of iron ore staying in the furnace for efficient separation and smooth flow of fine and medium / allele ores. It is preferable to select in the range of.

상기 제3유동층로(130)의 로내 가스의 유속은 기포유동층의 적정유속범위인 노내에 체류하는 철광석의 최소유동화속도의 1.2-2.0배의 범위로 선정하는 것이 바람직하다.The flow rate of the gas in the furnace of the third fluidized bed 130 is preferably selected to be in the range of 1.2-2.0 times the minimum fluidization rate of the iron ore staying in the furnace, which is an appropriate flow rate range of the bubble fluidized bed.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

하기 표1에 나타난 크기의 유동층로로 구성된 도2의 예비환원장치로 표2와 표3의 화학조성과 입도분포를 갖는 분철광석을 사용하여 표4와 표5에 나타난 조건으로 환원철을 제조하였다.Reduced iron was prepared under the conditions shown in Tables 4 and 5 by using a powdered ore having a chemical composition and particle size distribution of Tables 2 and 3 as a preliminary reduction device of FIG.

유동층식 예비환원로의 내경 및 높이Internal diameter and height of fluidized bed preliminary reactor 유동층로Fluidized bed 크 기size 제1유동층로First fluidized bed 내 경: 0.5m높 이: 5.0m(분산판 상부부터)Inner diameter: 0.5m Height: 5.0m (from the top of the dispersion plate) 제2유동층로Second fluidized bed 내경: 0.5m높이: 5.0m(분산판 상부부터)Inner diameter: 0.5m Height: 5.0m (from the top of the dispersion plate) 제3유동층로Third fluidized bed 축소하부 내경: 0.3m확대상부 내경: 0.6m축소하부 높이: 3m(분산판 상부부터)확대상부 높이: 3m(경사부 하부부터)Reduced inner diameter: 0.3 m Expanded target inner diameter: 0.6 m Reduced bottom height: 3 m (from the top of the distribution plate)

원료광석의 화학조성Chemical Composition of Raw Ore 성 분ingredient T.FeT.Fe FeOFeO SiO2 SiO 2 Al2O3 Al 2 O 3 MnMn SS PP 수분moisture wt.%wt.% 63.4963.49 0.370.37 4.324.32 2.332.33 0.050.05 0.0070.007 0.0630.063 5.415.41

원료광석의 입도분포Particle Size Distribution of Raw Ore 입도(mm)Particle size (mm) <0.125<0.125 0.25~0.1250.25-0.125 0.5~0.250.5 ~ 0.25 1~0.51 ~ 0.5 3~13 ~ 1 5~35 ~ 3 5∼85 to 8 8∼108 to 10 wt.%wt.% 14.514.5 10.010.0 9.19.1 9.29.2 22.222.2 17.517.5 10.410.4 7.17.1

환원가스 조건Reducing gas condition 가스조성Gas composition CO: 65%, CO2: 5%, H2: 25%, N2: 5%CO: 65%, CO 2 : 5%, H 2 : 25%, N 2 : 5% 온 도Temperature 750~850℃750 ~ 850 ℃ 압 력pressure 1.5~2.0 kgf/cm2 1.5 ~ 2.0 kgf / cm 2

유동층로내 가스유속Gas flow rate in fluidized bed 유동층로Fluidized bed 가스유속Gas flow rate 제1유동층로First fluidized bed 유 속: 2.5 m/sFlow rate: 2.5 m / s 제2유동층로Second fluidized bed 유 속: 2.5 m/sFlow rate: 2.5 m / s 제3유동층로Third fluidized bed 축소하부 유속: 0.4 m/s확대상부 유속: 0.1 m/sLower flow rate: 0.4 m / s Target flow rate: 0.1 m / s

상기의 조건에서 환원철을 제조한 결과 장입호퍼로 부터 제1유동층로로 광석장입이 시작되어 약 60분 경과후부터 환원철 배출관을 통하여 환원철의 배출이 시작되었으며, 평균 환원율은 제2유동층로(120)에서 배출된 중/대립의 경우 88∼92%, 제3유동층로(130)에서 배출된 미립의 경우 86∼90%로 입도에 상관없이 균일한 환원율을 얻을 수 있었다. 또한, 평균 가스이용율은 30-35%, 가스원단위는 1350-1500 Nm3/t-ore이었다. 한편, 비산율은 5%이내로 매우 양호한 결과를 얻었다.As a result of the production of reduced iron under the above conditions, the ore loading started from the charging hopper into the first fluidized bed furnace, and about 60 minutes later, the reduced iron was discharged through the reduced iron discharge pipe. 88 to 92% of the discharged medium / allele, 86 to 90% of the fine particles discharged from the third fluidized bed 130, it was possible to obtain a uniform reduction rate regardless of the particle size. In addition, the average gas utilization rate was 30-35%, and the gas source unit was 1350-1500 Nm 3 / t-ore. On the other hand, the scattering ratio was very good within 5%.

상술한 바와 같이, 본 발명은 종래의 유동층식 예비환원장치에서 나타날 수 있는 사이클론의 부하를 감소시켜 환원시 발생할 수 있는 비산손실을 줄이고 입도분포가 넓은 분철광석을 입도에 따라 효율적으로 환원시킬 수 있는 효과가 있는것이다.As described above, the present invention can reduce the scattering loss that may occur in the reduction by reducing the load of the cyclone that can appear in the conventional fluidized bed pre-reduction device and can efficiently reduce the iron ore having a wide particle size distribution according to the particle size It works.

Claims (5)

입도분포가 넓은 분철광석을 예비환원하는 분철광석의 유동층식 예비환원장치에 있어서,In the fluidized bed pre-reduction device of the iron ore for pre-reduction of iron ore having a wide particle size distribution, 장입호퍼(100)로 부터 입도분포가 넓은 분철광석을 공급받아 분철광석중 미립광석은 비산시키고 중/대립 광석은 기포 유동층에 의해 1차 환원시키는 제1유동층로(110);A first fluidized bed furnace 110 which receives a wider particle size distribution from the charging hopper 100 and scatters fine ore in the iron ore and primarily reduces the medium / allele by the bubble fluidized bed; 제1유동층로(110)로 부터 배출되는 중/대립 광석의 1차 환원철을 기포 유동층에 의해 2차 환원시키는 제2유동층로(120);A second fluidized bed furnace (120) for secondaryly reducing the primary reduced iron of medium / allele ore discharged from the first fluidized bed (110) by the bubble fluidized bed; 상기 제1유동층로(110)에서 비산된 미립광석을 포집하는 제1사이클론(114);A first cyclone (114) for collecting particulate ore scattered from the first fluidized bed (110); 상기제2유동층로(120)에서 비산된 미립광석을 포집하는 제2사이클론(124);A second cyclone 124 for collecting particulate ore scattered from the second fluidized bed furnace 120; 상기 제1사이클론(114) 및 제2사이클론(124)에서 포집된 미립광석을 공급받아 기포 유동층에 의해 2차 환원하는 제3유동층로(130); 및A third fluidized bed furnace 130 which receives the particulate ore collected from the first cyclone 114 and the second cyclone 124 and reduces the secondary flow by the bubble fluidized bed 130; And 상기 제3유동층로(130)의 배가스중에 함유된 극미립광석을 포집하여 제3유동층로(130)로 순환시키는 제3사이클론(134)을 포함하고,And a third cyclone 134 for collecting the ultrafine ore contained in the exhaust gas of the third fluidized bed 130 and circulating to the third fluidized bed 130. 상기 제 1유동층로(110)는 원통형 구조를 가지며,그 하부내에는 제 1가스분산판(112)이 장착되고, 그 저부에는 환원가스로 사용하는 제2 유동층로(120)의 배가스를 공급하기 위한 제1가스 공급관(126)이 연결되고, 그 측벽에는 원료 장입 호퍼(100)에 저장된 분철광석을 제1유동층로(110)내로 공급하는 제1장입관(101) 및 1차 환원된 중/대립광석을 배출하기 위한 제1 배출관(111)이 연결되고;The first fluidized bed 110 has a cylindrical structure, and a first gas distribution plate 112 is mounted in a lower portion of the first fluidized bed furnace 110, and a lower portion of the first fluidized bed furnace 110 is provided to supply exhaust gas of the second fluidized bed furnace 120 used as a reducing gas. The first gas supply pipe 126 for connecting is connected to the side wall of the first charging pipe 101 for supplying the iron ore stored in the raw material loading hopper 100 into the first fluidized bed 110 and the primary / A first discharge pipe 111 for discharging allele ore is connected; 상기 제1유동층로(110)의 상부는 제 1배가스 배출관(113)을 통해 상기 제1사이클론(114)에 연결되고, 이 제1사이클론(114)의 하부에는 상기 제1유동층로(110)의 배가스중에 함유된 미립광석을 상기 제3유동층로(130)로 순환시키기 위한 제1순환관(115)이 연결되고, 그 상부에는 미립광석과 분리된 배가스를 배출하기 위한 제4배가스배출관(116)이 연결되고;An upper portion of the first fluidized bed 110 is connected to the first cyclone 114 through a first exhaust gas discharge pipe 113, and a lower portion of the first fluidized bed 110 is located below the first cyclone 114. A first circulation pipe 115 for circulating the particulate ore contained in the exhaust gas to the third fluidized bed passage 130 is connected, and a fourth exhaust gas discharge pipe 116 for discharging the exhaust gas separated from the particulate ore is connected thereon. Is connected; 상기 제2유동층로(120)는 원통형구조를 가지며,그 하부내에는 제2가스분산판(122)이 장착되고, 그 저부에는 환원가스를 공급하기 위한 제2가스 공급관(141)이 연결되고, 측벽에는 상기 제1유동층로(110)에 연결되어 상기 제1유동층로(110)로 부터 1차 환원된 중/대립광석을 상기 제2유동층로(120)로 배출하기 위한 제1 배출관(111)및 2차환원된 중/대립광석을 배출하기 위한 제2배출관(121)이 연결되어 있고;The second fluidized bed 120 has a cylindrical structure, and a second gas distribution plate 122 is mounted in a lower portion thereof, and a second gas supply pipe 141 for supplying a reducing gas is connected to a bottom thereof. The first discharge pipe 111 is connected to the first fluidized bed 110 on the side wall to discharge the heavy / allele ore, which is primarily reduced from the first fluidized bed 110, to the second fluidized bed furnace 120. And a second discharge pipe 121 for discharging secondary reduced heavy / allele ore; 상기 제2유동층로(110)의 상부는 제2배가스 배출관(123)을 통해 상기 제2사이클론(124)에 연결되고, 이 제1사이클론(124)의 하부에는 상기 제2유동층로(120)의 배가스중에 함유된 미립광석을 상기 제3유동층로(130)로 순환시키기 위한 제2순환관(125)이 연결되고, 그 상부에는 미립광석과 분리된 배가스를 상기 제1유동층로(110)로 공급하기 위한 제1가스 공급관(126)이 연결되어 있고;An upper portion of the second fluidized bed 110 is connected to the second cyclone 124 through a second exhaust gas discharge pipe 123, and a lower portion of the second fluidized bed 120 is located below the first cyclone 124. A second circulation pipe 125 for circulating the particulate ore contained in the flue gas to the third fluidized bed furnace 130 is connected, and the exhaust gas separated from the particulate ore is supplied to the first fluidized bed furnace 110 at an upper portion thereof. A first gas supply pipe 126 for connecting is connected; 상기 제3유동층로(130)는 확대상부(130a), 상광경사부(130b) 및 축소하부(130c)로 이루워진 상광하협구조를 가지며, 상기 축소하부(130c)내에는 제3가스분산판(132)이 장착되어 있고, 상기 제3가스분산판(132) 아래의 저부에는 환원가스를 공급하기 위한 제3가스 공급관(142)이 연결되어 있고, 이 제3 가스분산판(132) 위의 상기 축소하부(130c)측벽에는 제3유동층로(130)에서 환원된 미분 환원철을 배출하기 위한 제3 배출관(131)이 연결되어 있고;The third fluidized bed 130 has an upper light narrowing structure composed of an enlarged upper portion 130a, an upper light inclined portion 130b, and a reduced lower portion 130c, and a third gas distribution plate (3) in the reduced lower portion 130c. 132 is mounted, and a third gas supply pipe 142 for supplying a reducing gas is connected to a bottom portion below the third gas distribution plate 132, and the upper portion of the third gas distribution plate 132. A third discharge pipe 131 for discharging the finely-reduced iron reduced in the third fluidized bed 130 is connected to the side wall of the reduced lower portion 130c; 상기 제3 유동층로(130)의 확대상부(130a)는 제3 배가스 배출관(133)을 통해 상기 제3 사이클론(134)에 연결되어 있고, 이 제3 사이클론(134)의 하부에는 상기 제3유동층로(130)의 배가스중에 함유된 미립광석을 상기 제3유동층로(130)로 순환시키기 위한 제3순환관(135)이 연결되어 있고, 상기 제3사이클론(134)의 상부에는 미립광석과 분리된 배가스를 배출하기 위한 제5배가스배출관(136)이 연결되어 구성되는 것을 특징으로 하는 분철광석의 유동층식 예비환원장치The enlarged upper portion 130a of the third fluidized bed 130 is connected to the third cyclone 134 through a third exhaust gas discharge pipe 133, and the third fluidized bed is disposed below the third cyclone 134. A third circulation pipe 135 for circulating the particulate ore contained in the exhaust gas of the furnace 130 to the third fluidized bed furnace 130 is connected, and is separated from the particulate ore at the upper portion of the third cyclone 134. Fluidized bed pre-reduction device of the iron ore, characterized in that the fifth exhaust gas discharge pipe 136 for discharging the exhaust gas is configured to be connected 제1항에 있어서, 상기 제2순환관(125)은 상기 제1순환관(115)에 연통되어 있고, 그리고 상기 제5배가스 배출관(136)은 상기 제4배가스 배출관(116)에 연결되어 있는 것을 특징으로 하는 분철광석의 유동층식 예비환원장치The method of claim 1, wherein the second circulation pipe 125 is in communication with the first circulation pipe 115, and the fifth exhaust gas discharge pipe 136 is connected to the fourth exhaust gas discharge pipe 116. Fluidized bed pre-reduction device of iron ore characterized in that 제1항 또는 제2항에 있어서, 상기 제1 유동층로(110)와 제2유동층로(120)의 각각의 높이는 그 내경의 10-15배이고, 상기 제3유동층로(130)의 축소하부(130c)의 내경은 상광경사부(130b)의 하단부의 내경을 유지하고,상기 확대상부(130a)의 내경은 상광경사부(130b)의 상단부의 내경을 유지하고, 상기 확대상부(130a)의 내경은 축소하부내경의 1.5-2.0배이고, 상기 제3유동층로(130)의 전체 높이는 축소하부내경의 10-20배이고, 축소하부(130c)의 높이는 확대상부(130a)의 높이의 1.0-1.5배이고, 그리고 상기 상광경사부(130b)의 경사각도가 수직선에 대하여 30-50˚인 것을 특징으로 하는 분철광석의 유동층식 예비환원장치According to claim 1 or 2, wherein the height of each of the first fluidized bed 110 and the second fluidized bed (120) is 10-15 times its inner diameter, the reduced bottom of the third fluidized bed (130) ( The inner diameter of 130c) maintains the inner diameter of the lower end of the upper light inclined portion 130b, and the inner diameter of the enlarged upper portion 130a maintains the inner diameter of the upper end of the upper light inclined portion 130b, and the inner diameter of the enlarged upper portion 130a. Is 1.5-2.0 times the diameter of the reduced lower part, the total height of the third fluidized bed 130 is 10-20 times the diameter of the reduced lower part, and the height of the reduced lower part 130c is 1.0-1.5 times the height of the enlarged upper part 130a, And the inclination angle of the ordinary light inclined portion 130b is 30-50 ° with respect to the vertical line. 제1항의 분철광석의 유동층식 예비환원장치를 사용하여 광석 장입호퍼(100)로 부터 제1장입관(101)을 통하여 제1유동층로(110)로 입도분포가 넓은 분철광석을 장입하여 장입된 분철광석중 미립의 철광석은 배가스와 함께 비산시키고 중/대립의 철광석은 제1유동층로(110)에서 제1가스분산판(112)을 통과한 환원가스에 의해 기포 유동층을 형성하면서 1차 환원시키고,The ferrous iron ore of claim 1 was charged with a wide particle size distribution from the ore charging hopper 100 to the first fluidized bed furnace 110 through the first charging pipe 101 using the fluidized bed preliminary reduction device of the iron ore of claim 1. The fine iron ore of the iron ore is scattered together with the exhaust gas, and the iron ore of the medium / elasticity is first reduced while forming a bubble fluidized bed by the reducing gas passing through the first gas distribution plate 112 in the first fluidized bed 110. , 상기 제1유동층로(110)에서 1차 환원된 중/대립의 철광석은 제1배출관(111)을 통하여 제2유동층로(120)의 유동층 중단부로 장입시켜 제2가스공급관(141)으로 공급되는 환원가스에 의해 기포유동층을 형성하면서 2차 환원시킨 다음, 제2배출관(121)을 통해 배출시키고,The primary ore iron ore reduced in the first fluidized bed 110 is charged into the fluidized bed stop portion of the second fluidized bed 120 through the first discharge pipe 111 and is supplied to the second gas supply pipe 141. Secondary reduction while forming a bubble flow layer by reducing gas, and then discharged through a second discharge pipe 121, 상기 제1유동층로(110)와 제2유동층로(120)로 부터 비산된 미립의 철광석은 각각 제1사이클론(114)과 제2사이클론(124)에서 가스와 분리되어 각각 제1순환관(115)과 제2순환관(125)을 통하여 제3유동층로(130)로 장입시켜 제3가스 공급관(142)으로 유입된 환원가스에 의해 기포유동층을 형성하면서 2차 환원시킨 다음, 제3배출관(131)을 통해 배출시키고,Particulate iron ore scattered from the first fluidized bed 110 and the second fluidized bed 110 is separated from the gas in the first cyclone 114 and the second cyclone 124, respectively, and the first circulation pipe 115 is. ) And charged into the third fluidized bed passage 130 through the second circulation pipe 125 to form a bubble fluidized bed by reducing gas introduced into the third gas supply pipe 142, followed by secondary reduction, and then a third discharge pipe ( 131), 그리고 제3유동층로(130)에서 배가스와 함께 비산된 극미립의 철광석은 제3사이클론(134)에서 가스와 분리되어 제3순환관(135)을 통하여 제3유동층로(130)로 순환되도록 하는 분철광석을 예비환원하는 방법에 있어서.In addition, the ultrafine iron ore scattered together with the exhaust gas in the third fluidized bed 130 is separated from the gas in the third cyclone 134 to be circulated to the third fluidized bed 130 through the third circulation pipe 135. In the method of preliminary reduction of iron ore. 상기 제1 유동층로(110)와 제2유동층로(120)내에서의 가스유속은 노내에 체류하는 철광석의 최소유동화속도의 1.2-2.5배가 되도록 하고; 그리고The gas flow rates in the first fluidized bed furnace 110 and the second fluidized bed furnace 120 are 1.2-2.5 times the minimum fluidization rate of the iron ore remaining in the furnace; And 상기 제3유동층로(130)의 로내 가스의 유속은 노내에 체류하는 철광석의 최소유동화속도의 1.2-2.0배가 되도록 하는 것을 특징으로 하는 분철광석의 유동층식 예비환원방법Flow rate pre-reduction method of the iron-iron ore, characterized in that the flow rate of the gas in the furnace of the third fluidized bed 130 is 1.2-2.0 times the minimum fluidization rate of the iron ore in the furnace. 제4항에 있어서, 상기 제1 유동층로(110)와 제2유동층로(120)의 각각의 높이는 그 내경의 10-15배이고, 상기 제3유동층로(130)의 축소하부(130c)의 내경은 상광경사부(130b)의 하단부의 내경을 유지하고,상기 확대상부(130a)의 내경은 상광경사부(130b)의 상단부의 내경을 유지하고, 상기 확대상부(130a)의 내경은 축소하부내경의 1.5-2.0배이고, 상기 제3유동층로(130)의 전체 높이는 축소하부내경의 10-20배이고, 축소하부(130c)의 높이는 확대상부(130a)의 높이의 1.0-1.5배이고, 그리고 상기 상광경사부(130b)의 경사각도가 수직선에 대하여 30-50˚인 것을 특징으로 하는 분철광석의 유동층식 예비환원방법The height of each of the first fluidized bed furnace 110 and the second fluidized bed furnace 120 is 10-15 times its inner diameter, and the inner diameter of the reduced lower portion 130c of the third fluidized bed furnace 130 is defined. Silver maintains the inner diameter of the lower end of the upper light inclined portion 130b, the inner diameter of the enlarged upper portion 130a maintains the inner diameter of the upper end of the upper light inclined portion 130b, the inner diameter of the enlarged upper portion 130a is a reduced inner diameter Is 1.5-2.0 times, and the total height of the third fluidized bed 130 is 10-20 times the reduced inner diameter, and the height of the reduced lower portion 130c is 1.0-1.5 times the height of the enlarged upper portion 130a, and the upper diameter is Fluidized bed preliminary reduction method of iron ore, characterized in that the inclination angle of the sand portion 130b is 30-50 degrees with respect to the vertical line
KR1019980053955A 1998-12-09 1998-12-09 A fluidized-bed type reduction method and apparatus for fine iron ores KR100321050B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1019980053955A KR100321050B1 (en) 1998-12-09 1998-12-09 A fluidized-bed type reduction method and apparatus for fine iron ores
CA 2320242 CA2320242A1 (en) 1998-12-09 1999-12-03 Fluidized bed type fine iron ore reducing apparatus, and method therefor
AU15132/00A AU1513200A (en) 1998-12-09 1999-12-03 Fluidized bed type fine iron ore reducing apparatus, and method therefor
PCT/KR1999/000729 WO2000034531A1 (en) 1998-12-09 1999-12-03 Fluidized bed type fine iron ore reducing apparatus, and method therefor
BR9907794A BR9907794A (en) 1998-12-09 1999-12-03 Fluidized bed thin iron ore reducing apparatus, and method for it
JP2000586963A JP2002531705A (en) 1998-12-09 1999-12-03 Fluidized bed type fine iron ore reduction apparatus and method therefor
EP19990957428 EP1055006A1 (en) 1998-12-09 1999-12-03 Fluidized bed type fine iron ore reducing apparatus, and method therefor
ZA200004742A ZA200004742B (en) 1998-12-09 2000-09-08 Fluidized bed type fine iron ore reducing apparatus, and method therefor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980053955A KR100321050B1 (en) 1998-12-09 1998-12-09 A fluidized-bed type reduction method and apparatus for fine iron ores

Publications (2)

Publication Number Publication Date
KR20000038827A true KR20000038827A (en) 2000-07-05
KR100321050B1 KR100321050B1 (en) 2002-04-17

Family

ID=19562041

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980053955A KR100321050B1 (en) 1998-12-09 1998-12-09 A fluidized-bed type reduction method and apparatus for fine iron ores

Country Status (8)

Country Link
EP (1) EP1055006A1 (en)
JP (1) JP2002531705A (en)
KR (1) KR100321050B1 (en)
AU (1) AU1513200A (en)
BR (1) BR9907794A (en)
CA (1) CA2320242A1 (en)
WO (1) WO2000034531A1 (en)
ZA (1) ZA200004742B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT409387B (en) * 2000-06-28 2002-07-25 Voest Alpine Ind Anlagen Process and installation for the gas reduction of particulate oxide-containing ores
UA77355C2 (en) * 2002-12-23 2006-11-15 Method and apparatus for manufacturing molten iron
EP2647728B1 (en) 2002-12-23 2017-08-16 Posco An apparatus for manufacturing molten irons to dry and convey iron ores and additives and manufacturing method using the same
US8968693B2 (en) 2012-08-30 2015-03-03 Honeywell International Inc. Internal cyclone for fluidized bed reactor
KR102153185B1 (en) * 2018-11-28 2020-09-07 주식회사 포스코 Method and apparatus for manufacturing lithium sulfate solution from lithium bearing ore
KR20240076517A (en) * 2022-11-22 2024-05-30 주식회사 포스코 Reduction reactor and manufacturing method of direct reduced iron

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970003636B1 (en) * 1994-12-31 1997-03-20 포항종합제철 주식회사 A furnace for reduction fine coal in the manufacture of iron melts
KR100213327B1 (en) * 1995-12-29 1999-08-02 이구택 Three-stage fluidized-bed reactor for the reduction of fine ore

Also Published As

Publication number Publication date
ZA200004742B (en) 2001-03-15
AU1513200A (en) 2000-06-26
EP1055006A1 (en) 2000-11-29
JP2002531705A (en) 2002-09-24
KR100321050B1 (en) 2002-04-17
CA2320242A1 (en) 2000-06-15
WO2000034531A1 (en) 2000-06-15
BR9907794A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
KR970003636B1 (en) A furnace for reduction fine coal in the manufacture of iron melts
US5762681A (en) Fluidized bed type reduction apparatus for iron ores and method for reducing iron ores using the apparatus
KR100276339B1 (en) Three-stage Fluidized Bed Reduction Apparatus for Ferrous Iron Ore with X-shaped Circulation Tube
KR20000038827A (en) Flow-type pre-reduction apparatus of powder iron ore and pre-reducing method with the same
KR100332924B1 (en) An apparatus for preventing the sticking in the 3-step fluidized bed type apparatus for reducing the fine iron ore, and method therefor
KR100236194B1 (en) Two step twin-single type fluidized bed system for fine iron ore
KR100286687B1 (en) Charter manufacturing apparatus using iron ore
KR940001137B1 (en) Prereduction furnace of circulation type
KR100236191B1 (en) A fluidized-bed apparatus and method for reducing fine iron ores
KR100321051B1 (en) Apparatus for manufacturing pig iron and method therefor
KR100340581B1 (en) Apparatus and method for producing hot metal using fine ore and non-coking coal
KR940008451B1 (en) Fluidized pre-reduction furnace
KR100276297B1 (en) Fluidized Iron Ore Reduction Furnace
KR100276347B1 (en) A fluidized-bed apparatus for reducing fine iron ore and a method therefor
KR970003133B1 (en) Iron ore fluidized bed reduction furnace
KR920007177Y1 (en) Pre-reduction furnace of fludized bed style for iron ore
KR970003637B1 (en) Iron ore fluidized bed reduction furnace
KR970002118B1 (en) Iron ore fluidized bed reduction furnace
KR100321049B1 (en) A fluidized-bed type reduction method and apparatus for fine iron ores
KR100213342B1 (en) Dual fludized-bed reactor for the reduction of fine ore
KR20000009738A (en) Reduction method of fine iron ore using fluid-bed type reduction equipment
KR19990052850A (en) Two-stage fluidized-bed reduction unit of iron ore with X-shaped circulation tube

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee